1
|
van der Schaar J, van der Lee SJ, Asscher ECA, Pijnenburg YAL, de Geus CM, Bredenoord AL, van der Flier WM, van den Hoven MA, Smets EMA, Visser LNC. Deciding on genetic testing for familial dementia: Perspectives of patients and families. Alzheimers Dement 2025; 21:e70140. [PMID: 40189825 PMCID: PMC11972981 DOI: 10.1002/alz.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION We explored patients' and families' interest in, predictors of, and considerations regarding genetic testing for monogenic causes of dementia in a diagnostic setting. METHODS This mixed-methods study evaluated 519 consecutive Alzheimer Center Amsterdam patients for monogenic testing eligibility. Among those qualifying, differences between testers and non-testers were analyzed. Thirty-three patients completed questionnaires. Additionally, we conducted 21 semi-structured interviews with 15 patients and 18 relatives. Verbatim transcripts were analyzed inductively. RESULTS Of 138 (27%) eligible patients (46% female, age 61 ± 8 years, Mini-Mental State Examination [MMSE] 22 ± 6), 75 (54%) underwent genetic testing. Testers had better cognition, higher quality of life, and more often undetermined diagnoses than non-testers (all p < 0.05). Decisions were guided by intuitive, value-driven judgments: testers sought to provide heredity information to relatives, enhance actionability, and reduce uncertainty, while non-testers worried about psychosocial impact on family, or unfavorable timing. DISCUSSION The substantial interest in genetic testing for monogenic causes of dementia underscores the need for further research into the implications of disclosing test results to memory clinic patients. HIGHLIGHTS Half of memory clinic patients' who met eligibility criteria proceeded with genetic testing. Those tested were more likely to have an undetermined diagnosis, better cognition, and higher quality of life. Decisions were motivated less by deliberation of factual information, and more by quick, intuitive judgments. Motivations pro included providing information, enhancing actionability, and resolving uncertainty. Motivations con comprised concerns about the emotional burden and disruptive impact on their family.
Collapse
Affiliation(s)
- Jetske van der Schaar
- Section Genomics of Neurodegenerative Diseases and AgingDepartment of Human GeneticsVrije Universiteit AmsterdamAmsterdamNetherlands
- Alzheimer Center AmsterdamNeurology, Vrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationResearch & Diagnostics Center (RDC) ‐ ADOREAmsterdamThe Netherlands
| | - Sven J. van der Lee
- Section Genomics of Neurodegenerative Diseases and AgingDepartment of Human GeneticsVrije Universiteit AmsterdamAmsterdamNetherlands
- Alzheimer Center AmsterdamNeurology, Vrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationResearch & Diagnostics Center (RDC) ‐ ADOREAmsterdamThe Netherlands
| | | | - Yolande A. L. Pijnenburg
- Alzheimer Center AmsterdamNeurology, Vrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationResearch & Diagnostics Center (RDC) ‐ ADOREAmsterdamThe Netherlands
| | - Christa M. de Geus
- Clinical GeneticsDepartment of Human GeneticsVrije Universiteit AmsterdamAmsterdamNetherlands
| | | | - Wiesje M. van der Flier
- Alzheimer Center AmsterdamNeurology, Vrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationResearch & Diagnostics Center (RDC) ‐ ADOREAmsterdamThe Netherlands
- Department of Epidemiology & Data sciencesVrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamThe Netherlands
| | | | - Ellen M. A. Smets
- Department of Medical PsychologyAmsterdam UMClocation AMCAmsterdamThe Netherlands
- Amsterdam Public HealthQuality of CareAmsterdamThe Netherlands
| | - Leonie N. C. Visser
- Alzheimer Center AmsterdamNeurology, Vrije Universiteit AmsterdamAmsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationResearch & Diagnostics Center (RDC) ‐ ADOREAmsterdamThe Netherlands
- Department of Medical PsychologyAmsterdam UMClocation AMCAmsterdamThe Netherlands
- Amsterdam Public HealthQuality of CareAmsterdamThe Netherlands
- Department of Bioethics and Health HumanitiesJulius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
2
|
Van Der Lee SJ, Hulsman M, Van Spaendonk R, Van Der Schaar J, Dijkstra J, Tesi N, van Ruissen F, Elting M, Reinders M, De Rojas I, Verschuuren-Bemelmans CC, Van Der Flier WM, van Haelst MM, de Geus C, Pijnenburg Y, Holstege H. Prevalence of Pathogenic Variants and Eligibility Criteria for Genetic Testing in Patients Who Visit a Memory Clinic. Neurology 2025; 104:e210273. [PMID: 39869842 PMCID: PMC11776143 DOI: 10.1212/wnl.0000000000210273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/27/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Identifying genetic causes of dementia in patients visiting memory clinics is important for patient care and family planning. Traditional clinical selection criteria for genetic testing may miss carriers of pathogenic variants in dementia-related genes. This study aimed identify how many carriers we are missing and to optimize criteria for selecting patients for genetic counseling in memory clinics. METHODS In this clinical cohort study, we retrospectively genetically tested patients during 2.5 years (2010-2012) visiting the Alzheimer Center Amsterdam, a specialized memory clinic. Genetic tests consisted of a 54-gene dementia panel, focusing on Class IV/V variants per American College of Medical Genetics and Genomics guidelines, including APP duplications and the C9ORF72 repeat expansion. We determined the prevalence of pathogenic variants and propose new eligibility criteria for genetic testing in memory clinics. The eligibility criteria were prospectively applied for 1 year (2021-2022), and results were compared with the retrospective cohort. RESULTS Genetic tests were retrospectively performed in in 1,022 of 1,138 patients (90%) who consecutively visited the memory clinic. Among these, 1,022 patients analyzed (mean age 62.1 ± 8.9 years; 40.4% were female), 34 pathogenic variant carriers were identified (3.3%), with 24 being symptomatic. Previous clinical criteria would have identified only 15 carriers (44% of all carriers, 65% of symptomatic carriers). The proposed criteria increased identification to 22 carriers (62.5% of all carriers, 91% of symptomatic carriers). In the prospective cohort, 148 (28.7%) of 515 patients were eligible for testing under the new criteria. Of the 90 eligible patients who consented to testing, 13 pathogenic carriers were identified, representing a 73% increase compared with the previous criteria. DISCUSSION We found that patients who visit a memory clinic and carry a pathogenic genetic variant are often not eligible for genetic testing. The proposed new criteria improve the identification of patients with a genetic cause for their cognitive complaints. In systems without practical or financial barriers to genetic testing, the new criteria can enhance personalized care. In other countries where the health care systems differs and in other genetic ancestry groups, the performance of the criteria may be different.
Collapse
Affiliation(s)
- Sven J Van Der Lee
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Marc Hulsman
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Rosalina Van Spaendonk
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jetske Van Der Schaar
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Janna Dijkstra
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Niccoló Tesi
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Fred van Ruissen
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Mariet Elting
- Clinical Genetics, Dept. Human Genetics, Amsterdam UMC, the Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Itziar De Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Wiesje M Van Der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
- Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
| | - Mieke M van Haelst
- Clinical Genetics, Dept. Human Genetics, Amsterdam UMC, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam UMC, the Netherlands; and
- Emma Center for Personalized Medicine, Amsterdam UMC, the Netherlands
| | - Christa de Geus
- Clinical Genetics, Dept. Human Genetics, Amsterdam UMC, the Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Henne Holstege
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| |
Collapse
|
3
|
Karachanak-Yankova S, Serbezov D, Antov G, Stancheva M, Mihaylova M, Hadjidekova S, Toncheva D, Pashov A, Belejanska D, Zhelev Y, Petrova M, Mehrabian S, Traykov L. Rare Pathogenic Variants in Pooled Whole-Exome Sequencing Data Suggest Hyperammonemia as a Possible Cause of Dementia Not Classified as Alzheimer's Disease or Frontotemporal Dementia. Genes (Basel) 2024; 15:753. [PMID: 38927689 PMCID: PMC11202446 DOI: 10.3390/genes15060753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The genetic bases of Alzheimer's disease (AD) and frontotemporal dementia (FTD) have been comprehensively studied, which is not the case for atypical cases not classified into these diagnoses. In the present study, we aim to contribute to the molecular understanding of the development of non-AD and non-FTD dementia due to hyperammonemia caused by mutations in urea cycle genes. The analysis was performed by pooled whole-exome sequencing (WES) of 90 patients and by searching for rare pathogenic variants in autosomal genes for enzymes or transporters of the urea cycle pathway. The survey returned two rare pathogenic coding mutations leading to citrullinemia type I: rs148918985, p.Arg265Cys, C>T; and rs121908641, p.Gly390Arg, G>A in the argininosuccinate synthase 1 (ASS1) gene. The p.Arg265Cys variant leads to enzyme deficiency, whereas p.Gly390Arg renders the enzyme inactive. These variants found in simple or compound heterozygosity can lead to the late-onset form of citrullinemia type I, associated with high ammonia levels, which can lead to cerebral dysfunction and thus to the development of dementia. The presence of urea cycle disorder-causing mutations can be used for the early initiation of antihyperammonemia therapy in order to prevent the neurotoxic effects.
Collapse
Affiliation(s)
- Sena Karachanak-Yankova
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
- Department of Genetics, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164 Sofia, Bulgaria;
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
| | - Georgi Antov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Mikaela Stancheva
- Department of Genetics, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164 Sofia, Bulgaria;
| | - Marta Mihaylova
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
| | - Savina Hadjidekova
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
| | - Draga Toncheva
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria; (D.S.); (M.M.); (S.H.); (D.T.)
- Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Anastas Pashov
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Diyana Belejanska
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| | - Yavor Zhelev
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| | - Mariya Petrova
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| | - Shima Mehrabian
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| | - Latchezar Traykov
- Department of Neurology, University Hospital ‘Alexandrovska’, 1431 Sofia, Bulgaria; (D.B.); (Y.Z.); (M.P.); (S.M.); (L.T.)
| |
Collapse
|
4
|
Foxe D, D'Mello M, Cheung SC, Bowen J, Piguet O, Hwang YT. Dementia in Australia: Clinical recommendations post-diagnosis. Australas J Ageing 2024; 43:394-402. [PMID: 38404252 DOI: 10.1111/ajag.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
The delivery of a dementia diagnosis, the information provided, and the practical advice and support arranged can have a long-lasting impact on patients and their families and deserves attention equal to that given to the assessment and investigation process. Patients and their families need a constructive yet sensitive conversation about the nature and cause of their difficulties, communicated in plain language, and tailored to their main concerns and needs. This conversation should lead to the provision of high-quality, easily accessible information. Following this, clinicians may wish to consider broaching the following dementia topics: (1) pharmacological and non-pharmacological interventions, (2) connection and integration with relevant organisations, (3, 4) application for formal support services and engagement with support teams, (5) safety in the home, (6, 7) financial planning, guardianship and legal matters, (8) driving eligibility, (9) support and education resources to family carers and (10) research initiatives and genetic information. Addressing these topics will contribute to improved disease management, which is likely to improve the dementia journey for the patient, their carer(s), and family.
Collapse
Affiliation(s)
- David Foxe
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Mirelle D'Mello
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Sau Chi Cheung
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Neuropsychology Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Julane Bowen
- The Australian Frontotemporal Dementia Association, Sydney, New South Wales, Australia
| | - Olivier Piguet
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Yun Tae Hwang
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Central Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Gosford Hospital, Gosford, New South Wales, Australia
| |
Collapse
|
5
|
Sevigny J, Uspenskaya O, Heckman LD, Wong LC, Hatch DA, Tewari A, Vandenberghe R, Irwin DJ, Saracino D, Le Ber I, Ahmed R, Rohrer JD, Boxer AL, Boland S, Sheehan P, Brandes A, Burstein SR, Shykind BM, Kamalakaran S, Daniels CW, David Litwack E, Mahoney E, Velaga J, McNamara I, Sondergaard P, Sajjad SA, Kobayashi YM, Abeliovich A, Hefti F. Progranulin AAV gene therapy for frontotemporal dementia: translational studies and phase 1/2 trial interim results. Nat Med 2024; 30:1406-1415. [PMID: 38745011 PMCID: PMC11108785 DOI: 10.1038/s41591-024-02973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
GRN mutations cause progranulin haploinsufficiency, which eventually leads to frontotemporal dementia (FTD-GRN). PR006 is an investigational gene therapy delivering the granulin gene (GRN) using an adeno-associated virus serotype 9 (AAV9) vector. In non-clinical studies, PR006 transduced neurons derived from induced pluripotent stem cells of patients with FTD-GRN, resulted in progranulin expression and improvement of lipofuscin, lysosomal and neuroinflammation pathologies in Grn-knockout mice, and was well tolerated except for minimal, asymptomatic dorsal root ganglionopathy in non-human primates. We initiated a first-in-human phase 1/2 open-label trial. Here we report results of a pre-specified interim analysis triggered with the last treated patient of the low-dose cohort (n = 6) reaching the 12-month follow-up timepoint. We also include preliminary data from the mid-dose cohort (n = 7). Primary endpoints were safety, immunogenicity and change in progranulin levels in cerebrospinal fluid (CSF) and blood. Secondary endpoints were Clinical Dementia Rating (CDR) plus National Alzheimer's Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) rating scale and levels of neurofilament light chain (NfL). One-time administration of PR006 into the cisterna magna was generally safe and well tolerated. All patients developed treatment-emergent anti-AAV9 antibodies in the CSF, but none developed anti-progranulin antibodies. CSF pleocytosis was the most common PR006-related adverse event. Twelve serious adverse events occurred, mostly unrelated to PR006. Deep vein thrombosis developed in three patients. There was one death (unrelated) occurring 18 months after treatment. CSF progranulin increased after PR006 treatment in all patients; blood progranulin increased in most patients but only transiently. NfL levels transiently increased after PR006 treatment, likely reflecting dorsal root ganglia toxicity. Progression rates, based on the CDR scale, were within the broad ranges reported for patients with FTD. These data provide preliminary insights into the safety and bioactivity of PR006. Longer follow-up and additional studies are needed to confirm the safety and potential efficacy of PR006. ClinicalTrials.gov identifier: NCT04408625 .
Collapse
Affiliation(s)
- Jeffrey Sevigny
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA.
| | - Olga Uspenskaya
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Laura Dean Heckman
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Li Chin Wong
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Daniel A Hatch
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Ambika Tewari
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Leuven, Belgium and Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Dario Saracino
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, Inserm, CNRS UMR 7225 APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, Inserm, CNRS UMR 7225 APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Rebekah Ahmed
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Center, UCL Queen Square Institute of Neurology, London, UK
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sebastian Boland
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Patricia Sheehan
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Alissa Brandes
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Suzanne R Burstein
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Benjamin M Shykind
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Sitharthan Kamalakaran
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Carter W Daniels
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - E David Litwack
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Erin Mahoney
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Jenny Velaga
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Ilan McNamara
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Patricia Sondergaard
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Syed A Sajjad
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Yvonne M Kobayashi
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Asa Abeliovich
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Franz Hefti
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly and Company, New York, NY, USA
| |
Collapse
|
6
|
Smith HS, Robinson JO, Levchenko A, Pereira S, Pascual B, Bradbury K, Arbones V, Fong J, Shulman JM, McGuire AL, Masdeu J. Research Participants' Perspectives on Precision Diagnostics for Alzheimer's Disease. J Alzheimers Dis 2024; 97:1261-1274. [PMID: 38250770 PMCID: PMC10894569 DOI: 10.3233/jad-230609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Understanding research participants' responses to learning Alzheimer's disease (AD) risk information is important to inform clinical implementation of precision diagnostics given rapid advances in disease modifying therapies. OBJECTIVE We assessed participants' perspectives on the meaning of their amyloid positron emission tomography (PET) imaging results for their health, self-efficacy to understand their results, psychological impact of learning their results, experience receiving their results from the clinical team, and interest in genetic testing for AD risk. METHODS We surveyed individuals who were being clinically evaluated for AD and received PET imaging six weeks after the return of results. We analyzed responses to close-ended survey items by PET result using Fisher's exact test and qualitatively coded open-ended responses. RESULTS A total of 88 participants completed surveys, most of whom had mild cognitive impairment due to AD (38.6%), AD (28.4%), or were cognitively unimpaired (21.6%). Participants subjectively understood their results (25.3% strongly agreed, 41.8% agreed), which could help them plan (16.5% strongly agreed, 49.4% agreed). Participants with a negative PET result (n = 25) reported feelings of relief (Fisher's exact p < 0.001) and happiness (p < 0.001) more frequently than those with a positive result. Most participants felt that they were treated respectfully and were comfortable voicing concerns during the disclosure process. Genetic testing was anticipated to be useful for medical care decisions (48.2%) and to inform family members about AD risk (42.9%). CONCLUSIONS Participants had high subjective understanding and self-efficacy around their PET results and did not experience negative psychological effects. Interest in genetic testing was high.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
- Department of Population Medicine, Harvard Medical School, Boston, MA, USA
| | - Jill O. Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Ariel Levchenko
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Belen Pascual
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, TX, USA
| | - Kathleen Bradbury
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, TX, USA
| | - Victoria Arbones
- Department of Neurology, Nantz National Alzheimer Center, Houston Methodist, Houston, TX, USA
| | - Jamie Fong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Amy L. McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Masdeu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Angelidou IA, Stocker H, Beyreuther K, Teichmann B. Validation of the "Perceptions Regarding pRE-Symptomatic Alzheimer's Disease Screening" (PRE-ADS) Questionnaire in the German Population: Attitudes, Motivations, and Barriers to Pre-Symptomatic Dementia Screening. J Alzheimers Dis 2024; 97:309-325. [PMID: 38189757 PMCID: PMC10789340 DOI: 10.3233/jad-230961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Attitudes, motivations, and barriers to pre-symptomatic screening for Alzheimer's disease (AD) in the general population are unclear, and validated measurement tools are lacking. OBJECTIVE Translation and validation of the German version of the "Perceptions regarding pRE-symptomatic Alzheimer's Disease Screening" (PRE-ADS) questionnaire. METHODS A convenience sample (N = 256) was recruited via an online platform. Validation of the PRE-ADS-D consisted of assessments of reliability, structural validity using Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA) and construct validity using known-group tests. A subscale "Acceptability of Screening", with 5 PRE-ADS-D items, was extracted to measure acceptance of screening in clinical practice. The STROBE checklist was used for reporting. RESULTS EFA revealed a three-factor model for the PRE-ADS-D. Acceptable to good internal consistency was found for the 25-item scale (α= 0.78), as well as for the three factors "Concerns about Screening" (α= 0.85), "Intention to be Screened" (α= 0.87), and "Preventive Health Behaviors" (α= 0.81). Construct validity was confirmed for both the 25-item PRE-ADS-D and the "Acceptability of Screening" scale (α= 0.91). Overall, 51.2% of the participants showed a preference for screening. Non-parametric tests were conducted to further explore group differences of the sample. CONCLUSIONS The PRE-ADS-D is a reliable and valid tool to measure attitudes, motives, and barriers regarding pre-symptomatic dementia screening in the German-speaking general population. Additionally, the subscale "Acceptability of Screening" demonstrated good construct validity and reliability, suggesting its promising potential as a practical tool in clinical practice.
Collapse
Affiliation(s)
| | - Hannah Stocker
- Network Aging Research, Heidelberg University, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | | | - Birgit Teichmann
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Wilson NA, Peters R, Lautenschlager NT, Anstey KJ. Testing times for dementia: a community survey identifying contemporary barriers to risk reduction and screening. Alzheimers Res Ther 2023; 15:76. [PMID: 37038211 PMCID: PMC10088195 DOI: 10.1186/s13195-023-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Advances in pharmacological and non-pharmacological dementia interventions may mean future dementia prevention incorporates a combination of targeted screening and lifestyle modifications. Elucidating potential barriers which may prevent community engagement with dementia prevention initiatives is important to maximise the accessibility and feasibility of these initiatives across the lifespan. METHODS Six hundred seven adults aged over 18 years completed a 54-item, multiple-choice survey exploring contemporary attitudes towards, and barriers to, dementia risk reduction and screening relative to other common health conditions. Participants were sourced from Australia's largest, paid, data analytics service (ORIMA). RESULTS Finances (p = .009), poor motivation (p = .043), and time (p ≤ .0001) emerged as significant perceived barriers to dementia risk reduction behaviours. Lack of time was more likely to be reported by younger, relative to older, participants (p ≤ .0001), while females were more likely than males to report financial (p = .019) and motivational (p = .043) factors. Binary logistic regression revealed willingness to undertake dementia testing modalities was significantly influenced by gender (genetic testing, p = .012; saliva, p = .038, modifiable risk factors p = .003), age (cognitive testing, p ≤ .0001; blood, p = .010), and socio-economic group (retinal imaging, p = .042; modifiable risk-factor screening, p = .019). Over 65% of respondents felt adequately informed about risk reduction for at least one non-dementia health condition, compared to 30.5% for dementia. CONCLUSIONS This study found perceived barriers to dementia risk reduction behaviours, and the willingness to engage in various dementia testing modalities, was significantly associated with socio-demographic factors across the lifespan. These findings provide valuable insight regarding the accessibility and feasibility of potential methods for identifying those most at risk of developing dementia, as well as the need to better promote and support wide-scale engagement in dementia risk reduction behaviours across the lifespan.
Collapse
Affiliation(s)
- Nikki-Anne Wilson
- Dementia Centre for Research Collaboration, Sydney, Australia.
- Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia.
- School of Psychology, The University of New South Wales, Randwick, Sydney, Australia.
| | - Ruth Peters
- Dementia Centre for Research Collaboration, Sydney, Australia
- Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia
- School of Psychology, The University of New South Wales, Randwick, Sydney, Australia
- The George Institute for Global Health, Newtown, Sydney, Australia
| | - Nicola T Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Parkville, Melbourne, Australia
- North Western Mental Health, Royal Melbourne Hospital, Parkville, Melbourne, Australia
| | - Kaarin J Anstey
- Dementia Centre for Research Collaboration, Sydney, Australia
- Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia
- School of Psychology, The University of New South Wales, Randwick, Sydney, Australia
| |
Collapse
|
9
|
Perneel J, Manoochehri M, Huey ED, Rademakers R, Goldman J. Case report: TMEM106B haplotype alters penetrance of GRN mutation in frontotemporal dementia family. Front Neurol 2023; 14:1160248. [PMID: 37077569 PMCID: PMC10106611 DOI: 10.3389/fneur.2023.1160248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second-most common young-onset dementia. Variants in the TMEM106B gene have been proposed as modifiers of FTD disease risk, especially in progranulin (GRN) mutation carriers. A patient in their 50s presented to our clinic with behavioral variant FTD (bvFTD). Genetic testing revealed the disease-causing variant c.349 + 1G > C in GRN. Family testing revealed that the mutation was inherited from an asymptomatic parent in their 80s and that the sibling also carries the mutation. Genetic analyses showed that the asymptomatic parent and sibling carry two copies of the protective TMEM106B haplotype (defined as c.554C > G, p.Thr185Ser), whereas the patient is heterozygous. This case report illustrates that combining TMEM106B genotyping with GRN mutation screening may provide more appropriate genetic counseling on disease risk in GRN families. Both the parent and sibling were counseled to have a significantly reduced risk for symptomatic disease. Implementing TMEM106B genotyping may also promote the collection of biosamples for research studies to improve our understanding of the risk-and disease-modifying effect of this important modifier gene.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Masood Manoochehri
- Department of Neurology, Columbia University, New York, NY, United States
| | - Edward D. Huey
- Department of Neurology, Columbia University, New York, NY, United States
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, United States
| | - Jill Goldman
- Department of Neurology, Columbia University, New York, NY, United States
| |
Collapse
|
10
|
Mathioudakis L, Dimovasili C, Bourbouli M, Latsoudis H, Kokosali E, Gouna G, Vogiatzi E, Basta M, Kapetanaki S, Panagiotakis S, Kanterakis A, Boumpas D, Lionis C, Plaitakis A, Simos P, Vgontzas A, Kafetzopoulos D, Zaganas I. Study of Alzheimer's disease- and frontotemporal dementia-associated genes in the Cretan Aging Cohort. Neurobiol Aging 2023; 123:111-128. [PMID: 36117051 DOI: 10.1016/j.neurobiolaging.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
Using exome sequencing, we analyzed 196 participants of the Cretan Aging Cohort (CAC; 95 with Alzheimer's disease [AD], 20 with mild cognitive impairment [MCI], and 81 cognitively normal controls). The APOE ε4 allele was more common in AD patients (23.2%) than in controls (7.4%; p < 0.01) and the PSEN2 p.Arg29His and p.Cys391Arg variants were found in 3 AD and 1 MCI patient, respectively. Also, we found the frontotemporal dementia (FTD)-associated TARDBP gene p.Ile383Val variant in 2 elderly patients diagnosed with AD and in 2 patients, non CAC members, with the amyotrophic lateral sclerosis/FTD phenotype. Furthermore, the p.Ser498Ala variant in the positively selected GLUD2 gene was less frequent in AD patients (2.11%) than in controls (16%; p < 0.01), suggesting a possible protective effect. While the same trend was found in another local replication cohort (n = 406) and in section of the ADNI cohort (n = 808), this finding did not reach statistical significance and therefore it should be considered preliminary. Our results attest to the value of genetic testing to study aged adults with AD phenotype.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Christina Dimovasili
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Mara Bourbouli
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Evgenia Kokosali
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Garyfallia Gouna
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Emmanouella Vogiatzi
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Maria Basta
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Stefania Kapetanaki
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Simeon Panagiotakis
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Alexandros Kanterakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas (ICS-FORTH), Heraklion, Crete, Greece
| | - Dimitrios Boumpas
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Christos Lionis
- University of Crete, Medical School, Clinic of Social and Family Medicine, Heraklion, Crete, Greece
| | - Andreas Plaitakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Panagiotis Simos
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Dimitrios Kafetzopoulos
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Ioannis Zaganas
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece.
| |
Collapse
|
11
|
Makri M, Gkioka M, Moraitou D, Fidani L, Tegos T, Tsolaki M. Attitudes, Motivations, and Barriers to Pre-Symptomatic Alzheimer's Disease Screening: Development and Validation of the 'Perceptions regarding pRE-symptomatic Alzheimer's Disease Screening' (PRE-ADS) Questionnaire. J Alzheimers Dis 2023; 95:1163-1174. [PMID: 37661876 DOI: 10.3233/jad-220954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Pre-symptomatic screening methods for detecting a higher risk of Alzheimer's disease (AD) are gaining popularity; thus, more people are seeking these tests. However, to date, not much is known about the attitudes toward pre-symptomatic AD screening. OBJECTIVE The goal of this study is to examine the psychometric properties of a tool for assessing the attitudes, barriers, and motivations to pre-symptomatic AD screening. METHODS This is a cross-sectional study performed on 208 Greek participants (189 students and 19 caregivers) provided with an online questionnaire. Psychometric properties were assessed through the examination of its construct validity (principal component analysis) and internal consistency. RESULTS Exploratory factor analysis revealed the presence of four factors. The first factor is labeled as "Perceived harms of testing" (10 items), the second "Acceptance of testing" (5 items), the third "Perceived benefits of testing" (6 items), and the fourth factor "Need for knowledge" (4 items). The reliability (internal consistency) of each factor separately was acceptable to good (0.70-0.87) while the internal consistency of the overall questionnaire (25 items) was good (Cronbach's α=0.82). CONCLUSION PRE-ADS is a valid questionnaire that might help in the research of peoples' attitudes related to the pros and cons of pre-symptomatic screening for AD, and the development of effective counseling programs and prevention strategies. However, future research is required in the target population.
Collapse
Affiliation(s)
- Marina Makri
- Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Greek Association of Alzheimer Disease and Related Disorders, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Balkan Center, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mara Gkioka
- Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Balkan Center, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Moraitou
- Department of Experimental and Cognitive Psychology, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Balkan Center, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Liana Fidani
- Department of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Tegos
- Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Balkan Center, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magdalini Tsolaki
- Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Greek Association of Alzheimer Disease and Related Disorders, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Balkan Center, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Zetterberg H, Teunissen C, van Swieten J, Kuhle J, Boxer A, Rohrer JD, Mitic L, Nicholson AM, Pearlman R, McCaughey SM, Tatton N. The role of neurofilament light in genetic frontotemporal lobar degeneration. Brain Commun 2023; 5:fcac310. [PMID: 36694576 PMCID: PMC9866262 DOI: 10.1093/braincomms/fcac310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic frontotemporal lobar degeneration caused by autosomal dominant gene mutations provides an opportunity for targeted drug development in a highly complex and clinically heterogeneous dementia. These neurodegenerative disorders can affect adults in their middle years, progress quickly relative to other dementias, are uniformly fatal and have no approved disease-modifying treatments. Frontotemporal dementia, caused by mutations in the GRN gene which encodes the protein progranulin, is an active area of interventional drug trials that are testing multiple strategies to restore progranulin protein deficiency. These and other trials are also examining neurofilament light as a potential biomarker of disease activity and disease progression and as a therapeutic endpoint based on the assumption that cerebrospinal fluid and blood neurofilament light levels are a surrogate for neuroaxonal damage. Reports from genetic frontotemporal dementia longitudinal studies indicate that elevated concentrations of blood neurofilament light reflect disease severity and are associated with faster brain atrophy. To better inform patient stratification and treatment response in current and upcoming clinical trials, a more nuanced interpretation of neurofilament light as a biomarker of neurodegeneration is now required, one that takes into account its relationship to other pathophysiological and topographic biomarkers of disease progression from early presymptomatic to later clinically symptomatic stages.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden.,Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Dementia Research Institute, University College London, London, UK.,DRI Fluid Biomarker Laboratory, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jens Kuhle
- Department of Clinical Research, Department of Neurology, Department of Biomedicine, Multiple Sclerosis Centre, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan D Rohrer
- Queen Square UCL Institute of Neurology, Dementia Research Centre, UK Dementia Research Institute, University College London, London, UK
| | - Laura Mitic
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA.,The Bluefield Project to Cure FTD, San Francisco, CA, USA
| | - Alexandra M Nicholson
- The Bluefield Project to Cure FTD, San Francisco, CA, USA.,Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | | | | | - Nadine Tatton
- Medical Affairs, Alector, Inc., South San Francisco, CA, USA
| |
Collapse
|
13
|
Characterization of the logopenic variant of Primary Progressive Aphasia: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101760. [PMID: 36244629 DOI: 10.1016/j.arr.2022.101760] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/11/2022] [Indexed: 01/31/2023]
Abstract
The linguistic and anatomical variability of the logopenic variant of Primary Progressive Aphasia (lv-PPA) as defined by current diagnostic criteria has been the topic of an intense debate. The present review and meta-analysis aims at characterizing the profile of lv-PPA, by a comprehensive analysis of the available literature on the neuropsychological, neuroimaging, electrophysiological, pathological, and genetic features of lv-PPA. We conducted a systematic bibliographic search, leading to the inclusion of 207 papers. Of them, 12 were used for the Anatomical Likelihood Estimation meta-analysis on grey matter revealed by magnetic resonance imaging data. The results suggest that the current guidelines outline a relatively consistent syndrome, characterized by a core set of linguistic and, to a lesser extent, non-linguistic deficits, mirroring the involvement of left temporal and parietal regions typically affected by Alzheimer Disease pathology. Variations of the lv-PPA profile are discussed in terms of heterogeneity of the neuropsychological instruments and the diagnostic criteria adopted.
Collapse
|
14
|
Huq AJ, Thompson B, Bennett MF, Bournazos A, Bommireddipalli S, Gorelik A, Schultz J, Sexton A, Purvis R, West K, Cotter M, Valente G, Hughes A, Riaz M, Walsh M, Farrand S, Loi SM, Kilpatrick T, Brodtmann A, Darby D, Eratne D, Walterfang M, Delatycki MB, Storey E, Fahey M, Cooper S, Lacaze P, Masters CL, Velakoulis D, Bahlo M, James PA, Winship I. Clinical impact of whole-genome sequencing in patients with early-onset dementia. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328146. [PMID: 35906014 DOI: 10.1136/jnnp-2021-328146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND In the clinical setting, identification of the genetic cause in patients with early-onset dementia (EOD) is challenging due to multiple types of genetic tests required to arrive at a diagnosis. Whole-genome sequencing (WGS) has the potential to serve as a single diagnostic platform, due to its superior ability to detect common, rare and structural genetic variation. METHODS WGS analysis was performed in 50 patients with EOD. Point mutations, small insertions/deletions, as well as structural variants (SVs) and short tandem repeats (STRs), were analysed. An Alzheimer's disease (AD)-related polygenic risk score (PRS) was calculated in patients with AD. RESULTS Clinical genetic diagnosis was achieved in 7 of 50 (14%) of the patients, with a further 8 patients (16%) found to have established risk factors which may have contributed to their EOD. Two pathogenic variants were identified through SV analysis. No expanded STRs were found in this study cohort, but a blinded analysis with a positive control identified a C9orf72 expansion accurately. Approximately 37% (7 of 19) of patients with AD had a PRS equivalent to >90th percentile risk. DISCUSSION WGS acts as a single genetic test to identify different types of clinically relevant genetic variations in patients with EOD. WGS, if used as a first-line clinical diagnostic test, has the potential to increase the diagnostic yield and reduce time to diagnosis for EOD.
Collapse
Affiliation(s)
- Aamira J Huq
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
- Department of Clinical Genetics, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Bryony Thompson
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
- Department of Pathology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark F Bennett
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Adam Bournazos
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Shobhana Bommireddipalli
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra Gorelik
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Joshua Schultz
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Adrienne Sexton
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Rebecca Purvis
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Kirsty West
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Megan Cotter
- Department of Clinical Genetics, Austin Health, Heidelberg, Victoria, Australia
| | - Giulia Valente
- Department of Clinical Genetics, Austin Health, Heidelberg, Victoria, Australia
| | - Andrew Hughes
- Department of Clinical Genetics, Austin Health, Heidelberg, Victoria, Australia
| | - Moeen Riaz
- Public Health and Preventative Medicine, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Maie Walsh
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Sarah Farrand
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Samantha M Loi
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Trevor Kilpatrick
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Brodtmann
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Victoria, Australia
- Florey Neurosciences Institutes, University of Melbourne, Carlton South, Victoria, Australia
| | - David Darby
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Victoria, Australia
- Mental Health Research Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | - Elsdon Storey
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
- Neuroscience, Alfred Health, Melbourne, Victoria, Australia
| | - Michael Fahey
- Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Sandra Cooper
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Paul Lacaze
- Public Health and Preventative Medicine, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Paul A James
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Ingrid Winship
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Adji AS, Widjaja JS, Wardani VAK, Muhammad AH, Handajani F, Putra HBP, Rahman FS. A Review of CRISPR Cas9 for Alzheimer’s Disease: Treatment Strategies and Could target APOE e4, APP, and PSEN-1 Gene using CRISPR cas9 Prevent the Patient from Alzheimer’s Disease? Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A Review of CRISPR Cas9 for Alzheimer’s Disease: Treatment Strategies and Could target APOE e4, APP, and PSEN-1 Gene using CRISPR cas9 Prevent the Patient from Alzheimer’s Disease?
BACKGROUND: Alzheimer’s disease is a neurodegenerative disorder characterized by the formation of β-amyloid plaques and neurofibrillary tangles from hyperphosphorylated tau. Several studies suggest that targeting the deletion of the APOE e4, PSEN-1, and APP will reduce tau phosphorylation and Aβ protein accumulation, a crucial hypothesis for the causation of Alzheimer’s disease. APOE e4, PSEN-1, and APP with genome editing Clustered Regular interspersed Short Palindromic Repeats-CRISPR-related (CRISPR/Cas9) are thought to have therapeutic promise for Alzheimer’s disease.AIM: The purpose of this study was to determine whether targeting APOE e4, PSEN-1, and APP using CRISPR/Cas9 is an effective therapeutic and whether it has a long-term effect on Alzheimer’s disease.METHODS: The method used in this study summarized articles by examining the titles and abstracts of specific specified keywords. In this situation, the author picked the title and abstract that matched PubMed, Google Scholar, Science Direct, Cochrane, and the Frontiers in Neuroscience; this was followed by checking to see whether the paper was available in full-text. Eventually, the researcher will study the entire article to decide if it is valuable and relevant to the issue.RESULTS: CRISPR/Cas9 deletion of APOE e4, PSEN-1, and APP in induced pluripotent stem cells (iPSC’s) and g2576 mice as APP mutant models reduce tau phosphorylation and Aβ protein accumulation from neurofibrillary tangles and prevent cell death, vascular damage, and dementia. Furthermore, CRISPR/Cas9 deletion in APOE e4, PSEN-1, and APP improved neuronal cell resilience to oxidative stress and inflammation.CONCLUSION: APOE e4, PSEN-1, and APP deletion by genome editing CRISPR/Cas9 is effective to reduce tau phosphorylation and Aβ protein accumulation from neurofibrillary tangles, cell death, vascular damage, and dementia. However, further research is needed to determine the side effects and safety of its use.
Collapse
|
16
|
Opwonya J, Doan DNT, Kim SG, Kim JI, Ku B, Kim S, Park S, Kim JU. Saccadic Eye Movement in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2022; 32:193-227. [PMID: 33959887 PMCID: PMC9090874 DOI: 10.1007/s11065-021-09495-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/01/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, and mild cognitive impairment (MCI) is considered the transitional state to AD dementia (ADD) and other types of dementia, whose symptoms are accompanied by altered eye movement. In this work, we reviewed the existing literature and conducted a meta-analysis to extract relevant eye movement parameters that are significantly altered owing to ADD and MCI. We conducted a systematic review of 35 eligible original publications in saccade paradigms and a meta-analysis of 27 articles with specified task conditions, which used mainly gap and overlap conditions in both prosaccade and antisaccade paradigms. The meta-analysis revealed that prosaccade and antisaccade latencies and frequency of antisaccade errors showed significant alterations for both MCI and ADD. First, both prosaccade and antisaccade paradigms differentiated patients with ADD and MCI from controls, however, antisaccade paradigms was more effective than prosaccade paradigms in distinguishing patients from controls. Second, during prosaccade in the gap and overlap conditions, patients with ADD had significantly longer latencies than patients with MCI, and the trend was similar during antisaccade in the gap condition as patients with ADD had significantly more errors than patients with MCI. The anti-effect magnitude was similar between controls and patients, and the magnitude of the latency of the gap effect varied among healthy controls and MCI and ADD subjects, but the effect size of the latency remained large in both patients. These findings suggest that, using gap effect, anti-effect, and specific choices of saccade paradigms and conditions, distinctions could be made between MCI and ADD patients as well as between patients and controls.
Collapse
Affiliation(s)
- Julius Opwonya
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Korean Convergence Medicine, University of Science and Technology, Daejeon, Republic of Korea
| | - Dieu Ni Thi Doan
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Korean Convergence Medicine, University of Science and Technology, Daejeon, Republic of Korea
| | - Seul Gee Kim
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Joong Il Kim
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Boncho Ku
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Soochan Kim
- Department of Electrical and Electronic Engineering, Hankyong National University, Anseong, Republic of Korea
| | - Sunju Park
- Department of Preventive Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea.
| | - Jaeuk U Kim
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea.
- Korean Convergence Medicine, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Mol MO, van der Lee SJ, Hulsman M, Pijnenburg YAL, Scheltens P, Seelaar H, van Swieten JC, Kaat LD, Holstege H, van Rooij JGJ. Mapping the genetic landscape of early-onset Alzheimer's disease in a cohort of 36 families. Alzheimers Res Ther 2022; 14:77. [PMID: 35650585 PMCID: PMC9158156 DOI: 10.1186/s13195-022-01018-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Many families with clinical early-onset Alzheimer's disease (EOAD) remain genetically unexplained. A combination of genetic factors is not standardly investigated. In addition to monogenic causes, we evaluated the possible polygenic architecture in a large series of families, to assess if genetic testing of familial EOAD could be expanded. METHODS Thirty-six pedigrees (77 patients) were ascertained from a larger cohort of patients, with relationships determined by genetic data (exome sequencing data and/or SNP arrays). All families included at least one AD patient with symptom onset <70 years. We evaluated segregating rare variants in known dementia-related genes, and other genes or variants if shared by multiple families. APOE was genotyped and duplications in APP were assessed by targeted test or using SNP array data. We computed polygenic risk scores (PRS) compared with a reference population-based dataset, by imputing SNP arrays or exome sequencing data. RESULTS In eight families, we identified a pathogenic variant, including the genes APP, PSEN1, SORL1, and an unexpected GRN frameshift variant. APOE-ε4 homozygosity was present in eighteen families, showing full segregation with disease in seven families. Eight families harbored a variant of uncertain significance (VUS), of which six included APOE-ε4 homozygous carriers. PRS was not higher in the families combined compared with the population mean (beta 0.05, P = 0.21), with a maximum increase of 0.61 (OR = 1.84) in the GRN family. Subgroup analyses indicated lower PRS in six APP/PSEN1 families compared with the rest (beta -0.22 vs. 0.10; P = 0.009) and lower APOE burden in all eight families with monogenic cause (beta 0.29 vs. 1.15, P = 0.010). Nine families remained without a genetic cause or risk factor identified. CONCLUSION Besides monogenic causes, we suspect a polygenic disease architecture in multiple families based on APOE and rare VUS. The risk conveyed by PRS is modest across the studied families. Families without any identified risk factor render suitable candidates for further in-depth genetic evaluation.
Collapse
Affiliation(s)
- Merel O Mol
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Phillip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Harro Seelaar
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Jeroen G J van Rooij
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Nicolas G, Sévigny M, Lecoquierre F, Marguet F, Deschênes A, del Pelaez MC, Feuillette S, Audebrand A, Lecourtois M, Rousseau S, Richard AC, Cassinari K, Deramecourt V, Duyckaerts C, Boland A, Deleuze JF, Meyer V, Clarimon Echavarria J, Gelpi E, Akiyama H, Hasegawa M, Kawakami I, Wong TH, Van Rooij JGJ, Van Swieten JC, Campion D, Dutchak PA, Wallon D, Lavoie-Cardinal F, Laquerrière A, Rovelet-Lecrux A, Sephton CF. A postzygotic de novo NCDN mutation identified in a sporadic FTLD patient results in neurochondrin haploinsufficiency and altered FUS granule dynamics. Acta Neuropathol Commun 2022; 10:20. [PMID: 35151370 PMCID: PMC8841087 DOI: 10.1186/s40478-022-01314-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical disorder characterized by progressive abnormalities in behavior, executive functions, personality, language and/or motricity. A neuropathological subtype of FTD, frontotemporal lobar degeneration (FTLD)-FET, is characterized by protein aggregates consisting of the RNA-binding protein fused in sarcoma (FUS). The cause of FTLD-FET is not well understood and there is a lack of genetic evidence to aid in the investigation of mechanisms of the disease. The goal of this study was to identify genetic variants contributing to FTLD-FET and to investigate their effects on FUS pathology. We performed whole-exome sequencing on a 50-year-old FTLD patient with ubiquitin and FUS-positive neuronal inclusions and unaffected parents, and identified a de novo postzygotic nonsense variant in the NCDN gene encoding Neurochondrin (NCDN), NM_014284.3:c.1206G > A, p.(Trp402*). The variant was associated with a ~ 31% reduction in full-length protein levels in the patient’s brain, suggesting that this mutation leads to NCDN haploinsufficiency. We examined the effects of NCDN haploinsufficiency on FUS and found that depleting primary cortical neurons of NCDN causes a reduction in the total number of FUS-positive cytoplasmic granules. Moreover, we found that these granules were significantly larger and more highly enriched with FUS. We then examined the effects of a loss of FUS function on NCDN in neurons and found that depleting cells of FUS leads to a decrease in NCDN protein and mRNA levels. Our study identifies the NCDN protein as a likely contributor of FTLD-FET pathophysiology. Moreover, we provide evidence for a negative feedback loop of toxicity between NCDN and FUS, where loss of NCDN alters FUS cytoplasmic dynamics, which in turn has an impact on NCDN expression.
Collapse
|
19
|
Rhinn H, Tatton N, McCaughey S, Kurnellas M, Rosenthal A. Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol Sci 2022; 43:641-652. [PMID: 35039149 DOI: 10.1016/j.tips.2021.11.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023]
Abstract
Progranulin (PGRN, encoded by the GRN gene) plays a key role in the development, survival, function, and maintenance of neurons and microglia in the mammalian brain. It regulates lysosomal biogenesis, inflammation, repair, stress response, and aging. GRN loss-of-function mutations cause neuronal ceroid lipofuscinosis or frontotemporal dementia-GRN (FTD-GRN) in a gene dosage-dependent manner. Mutations that reduce PGRN levels increase the risk for developing Alzheimer's disease, Parkinson's disease, and limbic-predominant age-related transactivation response DNA-binding protein 43 encephalopathy, as well as exacerbate the progression of amyotrophic lateral sclerosis (ALS) and FTD caused by the hexanucleotide repeat expansion in the C9orf72 gene. Elevating and/or restoring PGRN levels is an attractive therapeutic strategy and is being investigated for neurodegenerative diseases through multiple mechanisms of action.
Collapse
Affiliation(s)
- Herve Rhinn
- Alector, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF THE REVIEW This article provides a practical overview of the diagnostic process for patients with memory dysfunction through exploration of the anatomic, physiologic, and psychological aspects of human memory. RECENT FINDINGS As updated methods become available to neurologists, the ability to accurately identify and treat patients with memory disorders evolves. An appreciation of current concepts in the anatomic, physiologic, and psychological aspects of memory, combined with a rational application of everyday tools (such as clinical examination, bedside testing, standardized cognitive screening, and formal neuropsychological examination), allows the clinician to identify possible etiologies and track longitudinal changes in functional memory status. Recent findings regarding the interactions of limbic, anterior temporal, primary sensory, parietal, and dorsal prefrontal structures shed new light on the putative classifications of procedural and declarative memory and their subfunctions. SUMMARY An understanding of memory profiles pertaining to registration, encoding, consolidation, storage, and retrieval, as well as methods to assess those functions, facilitates the clinician's identification of underlying pathology and affected cerebral territories. The memory profile must be appreciated in the context of the entire individual, including possible confounds of comorbid conditions, psychiatric disorders, and normal healthy aging.
Collapse
|
21
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|
22
|
Bourbouli M, Paraskevas GP, Rentzos M, Mathioudakis L, Zouvelou V, Bougea A, Tychalas A, Kimiskidis VK, Constantinides V, Zafeiris S, Tzagournissakis M, Papadimas G, Karadima G, Koutsis G, Kroupis C, Kartanou C, Kapaki E, Zaganas I. Genotyping and Plasma/Cerebrospinal Fluid Profiling of a Cohort of Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Patients. Brain Sci 2021; 11:brainsci11091239. [PMID: 34573259 PMCID: PMC8472580 DOI: 10.3390/brainsci11091239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of the same pathophysiological spectrum and have common genetic and cerebrospinal fluid (CSF) biomarkers. Our aim here was to identify causative gene variants in a cohort of Greek patients with FTD, ALS and FTD-ALS, to measure levels of CSF biomarkers and to investigate genotype-phenotype/CSF biomarker associations. In this cohort of 130 patients (56 FTD, 58 ALS and 16 FTD-ALS), we performed C9orf72 hexanucleotide repeat expansion analysis, whole exome sequencing and measurement of “classical” (Aβ42, total tau and phospho-tau) and novel (TDP-43) CSF biomarkers and plasma progranulin. Through these analyses, we identified 14 patients with C9orf72 repeat expansion and 11 patients with causative variants in other genes (three in TARDBP, three in GRN, three in VCP, one in FUS, one in SOD1). In ALS patients, we found that levels of phospho-tau were lower in C9orf72 repeat expansion and MAPT c.855C>T (p.Asp285Asp) carriers compared to non-carriers. Additionally, carriers of rare C9orf72 and APP variants had lower levels of total tau and Aβ42, respectively. Plasma progranulin levels were decreased in patients carrying GRN pathogenic variants. This study expands the genotypic and phenotypic spectrum of FTD/ALS and offers insights in possible genotypic/CSF biomarker associations.
Collapse
Affiliation(s)
- Mara Bourbouli
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - George P. Paraskevas
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
- 2nd Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| | - Mihail Rentzos
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Vasiliki Zouvelou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Anastasia Bougea
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Athanasios Tychalas
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- 1st Department of Neurology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Vasilios Constantinides
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Spiros Zafeiris
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Minas Tzagournissakis
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Georgios Papadimas
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Georgia Karadima
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Georgios Koutsis
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Chrisoula Kartanou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Elisabeth Kapaki
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Ioannis Zaganas
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
- Correspondence: ; Tel.: +30-2810-394643
| |
Collapse
|
23
|
Panegyres PK. The Clinical Spectrum of Young Onset Dementia Points to Its Stochastic Origins. J Alzheimers Dis Rep 2021; 5:663-679. [PMID: 34632303 PMCID: PMC8461730 DOI: 10.3233/adr-210309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dementia is a major global health problem and the search for improved therapies is ongoing. The study of young onset dementia (YOD)-with onset prior to 65 years-represents a challenge owing to the variety of clinical presentations, pathology, and gene mutations. The advantage of the investigation of YOD is the lack of comorbidities that complicate the clinical picture in older adults. Here we explore the origins of YOD. OBJECTIVE To define the clinical diversity of YOD in terms of its demography, range of presentations, neurological examination findings, comorbidities, medical history, cognitive findings, imaging abnormalities both structural and functional, electroencephagraphic (EEG) data, neuropathology, and genetics. METHODS A prospective 20-year study of 240 community-based patients referred to specialty neurology clinics established to elucidate the nature of YOD. RESULTS Alzheimer's disease (AD; n = 139) and behavioral variant frontotemporal (bvFTD; n = 58) were the most common causes with a mean age of onset of 56.5 years for AD (±1 SD 5.45) and 57.1 years for bvFTD (±1 SD 5.66). Neuropathology showed a variety of diagnoses from multiple sclerosis, Lewy body disease, FTD-MND, TDP-43 proteinopathy, adult-onset leukoencephalopathy with axonal steroids and pigmented glia, corticobasal degeneration, unexplained small vessel disease, and autoimmune T-cell encephalitis. Non-amnestic forms of AD and alternative forms of FTD were discovered. Mutations were only found in 11 subjects (11/240 = 4.6%). APOE genotyping was not divergent between the two populations. CONCLUSION There are multiple kinds of YOD, and most are sporadic. These observations point to their stochastic origins.
Collapse
Affiliation(s)
- Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Australia
- The University of Western Australia, Nedlands, Australia
| |
Collapse
|
24
|
Prota J, Rizzi L, Bonadia L, de Souza LC, Caramelli P, Secolin R, Lopes-Cendes I, Balthazar MLF. Slowly progressive behavioral frontotemporal dementia syndrome in a family co-segregating the C9orf72 expansion and a Synaptophysin mutation. Alzheimers Dement 2021; 18:523-528. [PMID: 34310040 DOI: 10.1002/alz.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Synaptophysin, already related to X-linked intellectual disability, is expressed mainly in the central nervous system. Studies in humans indicate that the downregulation of synaptophysin could be involved in the development of dementia. Our study presents the first familial case of behavioral variant frontotemporal dementia associated with the co-occurrence of the repeat expansion in C9orf72 and a pathogenic variant in the SYP gene. METHODS Exome sequencing and repeat-primed PCR for C9orf72 were performed for two siblings with clinical and imaging findings suggestive of slowly progressive behavioral frontotemporal dementia. RESULTS We found that both siblings have the hexanucleotide expansion in C9orf72 and a null variant in the SYP gene. The most affected sibling presents the putative variant in a hemizygous state. With milder symptoms, his sister has the same pathogenic variant in heterozygosis, compatible with X-linked inheritance. DISCUSSION Our results strengthened previous suggestive evidence that the phenotypes associated with C9orf72 repeat expansion are variable and probably influenced by additional genetic modifiers. We hypothesized that the pathogenic variant in the SYP gene might have modified the typical phenotype associated with the C9orf72 mutation.
Collapse
Affiliation(s)
- Joana Prota
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.,The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Liara Rizzi
- Department of Neurology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciana Bonadia
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.,The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Leonardo Cruz de Souza
- Department of Internal Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Paulo Caramelli
- Department of Internal Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rodrigo Secolin
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.,The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.,The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Marcio L F Balthazar
- Department of Neurology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| |
Collapse
|
25
|
The role of frontotemporal dementia associated genes in patients with Alzheimer's disease. Neurobiol Aging 2021; 107:153-158. [PMID: 34172279 DOI: 10.1016/j.neurobiolaging.2021.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) overlap clinically and pathologically. However, the role of FTD-associated genes in patients with AD remained unclear. To explore the relationship between FTD-associated genes and AD risk, we investigated 14 FTD-associated genes via targeted next-generation sequencing panel or whole-genome sequencing in a total of 721 AD patients and 1391 controls. Common variant-based association analysis and gene-based association test of rare variants were performed by PLINK 1.9 and Sequence Kernel Association Test-Optimal (SKAT-O test) respectively. As a result, 2 common variants, UBQLN1 rs1044175 (p value = 2.76 × 10-4) and MAPT rs2258689 (p value = 5.71 × 10-4), differed significantly between AD patients and controls. Additionally, gene-based analysis aggregating rare variants demonstrated that HNRNPA1 reached statistical significance in the SKAT-O test (p value = 2.24 × 10-3). Protein-protein interaction analysis showed that UBQLN1, MAPT, and HNRNPA1 interacted with proteins encoded by well-recognized AD-associated genes. Our study indicated that UBQLN1, MAPT, and HNRNPA1 are implicated in the pathogenesis of AD in the mainland Chinese population.
Collapse
|
26
|
Zampatti S, Ragazzo M, Peconi C, Luciano S, Gambardella S, Caputo V, Strafella C, Cascella R, Caltagirone C, Giardina E. Genetic Counselling Improves the Molecular Characterisation of Dementing Disorders. J Pers Med 2021; 11:474. [PMID: 34073306 PMCID: PMC8227097 DOI: 10.3390/jpm11060474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Dementing disorders are a complex group of neurodegenerative diseases characterised by different, but often overlapping, pathological pathways. Genetics have been largely associated with the development or the risk to develop dementing diseases. Recent advances in molecular technologies permit analyzing of several genes in a small time, but the interpretation analysis is complicated by several factors: the clinical complexity of neurodegenerative disorders, the frequency of co-morbidities, and the high phenotypic heterogeneity of genetic diseases. Genetic counselling supports the diagnostic path, providing an accurate familial and phenotypic characterisation of patients. In this review, we summarise neurodegenerative dementing disorders and their genetic determinants. Genetic variants and associated phenotypes will be divided into high and low impact, in order to reflect the pathologic continuum between multifactorial and mendelian genetic factors. Moreover, we report a molecular characterisation of genes associated with neurodegenerative disorders with cognitive impairment. In particular, the high frequency of rare coding genetic variants in dementing genes strongly supports the role of geneticists in both, clinical phenotype characterisation and interpretation of genotypic data. The smart application of exome analysis to dementia patients, with a pre-analytical selection on familial, clinical, and instrumental features, improves the diagnostic yield of genetic test, reduces time for diagnosis, and allows a rapid and personalised management of disease.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Serena Luciano
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Stefano Gambardella
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| |
Collapse
|
27
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
28
|
Genetic counseling and testing practices for late-onset neurodegenerative disease: a systematic review. J Neurol 2021; 269:676-692. [PMID: 33649871 PMCID: PMC7920548 DOI: 10.1007/s00415-021-10461-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
Objective To understand contemporary genetic counseling and testing practices for late-onset neurodegenerative diseases (LONDs), and identify whether practices address the internationally accepted goals of genetic counseling: interpretation, counseling, education, and support. Methods Four databases were systematically searched for articles published from 2009 to 2020. Peer-reviewed research articles in English that reported research and clinical genetic counseling and testing practices for LONDs were included. A narrative synthesis was conducted to describe different practices and map genetic counseling activities to the goals. Risk of bias was assessed using the Qualsyst tool. The protocol was registered with PROSPERO (CRD42019121421). Results Sixty-one studies from 68 papers were included. Most papers focused on predictive testing (58/68) and Huntington’s disease (41/68). There was variation between papers in study design, study population, outcomes, interventions, and settings. Although there were commonalities, novel and inconsistent genetic counseling practices were identified. Eighteen papers addressed all four goals of genetic counseling. Conclusion Contemporary genetic counseling and testing practices for LONDs are varied and informed by regional differences and the presence of different health providers. A flexible, multidisciplinary, client- and family-centered care continues to emerge. As genetic testing becomes a routine part of care for patients (and their relatives), health providers must balance their limited time and resources with ensuring clients are safely and effectively counseled, and all four genetic counseling goals are addressed. Areas of further research include diagnostic and reproductive genetic counseling/testing practices, evaluations of novel approaches to care, and the role and use of different health providers in practice. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10461-5.
Collapse
|
29
|
Hori A, Ai T, Isshiki M, Motoi Y, Yano K, Tabe Y, Hattori N, Miida T. Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series. Geriatrics (Basel) 2021; 6:geriatrics6010014. [PMID: 33562224 PMCID: PMC7931039 DOI: 10.3390/geriatrics6010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia has an enormous impact on medical and financial resources in aging societies like Japan. Diagnosis of dementia can be made by physical and mental examinations, imaging tests, and findings of high abnormal proteins in cerebrospinal fluids. In addition, genetic tests can be performed in neurodegenerative diseases such as Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). In this case series, we presented three cases of dementia with unknown causes who carry novel variants in the genes associated with neurodegenerative diseases. Three patients (Patients 1, 2, and 6) were found by screening 18 dementia patients using a gene panel including 63 genes. The age of onset for Patient 1 was 74 years old, and his father had PD and mother had AD. The age of onset for Patient 2 was 75 years old, and her mother had AD. The age of onset for Patient 6 was 83 years old, and her father, two sisters, and daughter had dementia. The Mini-Mental State Examination produced results of 20, 15, and 22, respectively. The suspected diagnosis by neurological examinations and imaging studies for Patients 1 and 2 was AD, and for Patient 6 was FTD. Patient 1 was treated with donepezil; Patient 2 was treated with donepezil and memantine; and Patient 6 was treated with donepezil, galantamine, and rivastigmine. The three rare variants identified were: CLCN1, encoding a chloride channel, c.2848G>A:p.Glu950Lys (Patient 1); RYR2, encoding a calcium releasing ryanodine receptor, c.13175A>G:p.Lys4392Arg (Patient 2); and DCTN1, encoding a subunit of dynactin, c. 3209G>A:p.Arg1070Gln (Patient 6). The detected variants were interpreted according to the American College of Medical Genetics (ACMG) guidelines. The minor allele frequency for each variant was 0.025%, 0.023%, and 0.0004% in East Asians, respectively. The DCTN1 variant found in Patient 6 might be associated with FTD. Although none of them were previously reported in dementia patients, all variants were classified as variants of unknown significance (VUS). Our report suggests that results of genetic tests in elderly patients with dementia need to be carefully interpreted. Further data accumulation of genotype–phenotype relationships and development of appropriate functional models are warranted.
Collapse
Affiliation(s)
- Atsushi Hori
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (A.H.); (K.Y.)
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: or
| | - Miwa Isshiki
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
| | - Yumiko Motoi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (Y.M.); (N.H.)
| | - Kouji Yano
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (A.H.); (K.Y.)
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (Y.M.); (N.H.)
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
| |
Collapse
|
30
|
Castro M, Venkateswaran N, Peters ST, Deyle DR, Bower M, Koob MD, Boeve BF, Vossel K. Case Report: Early-Onset Behavioral Variant Frontotemporal Dementia in Patient With Retrotransposed Full-Length Transcript of Matrin-3 Variant 5. Front Neurol 2020; 11:600468. [PMID: 33408686 PMCID: PMC7779795 DOI: 10.3389/fneur.2020.600468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) rarely occurs in individuals under the age of 30, and genetic causes of early-onset FTD are largely unknown. The current report follows a 27 year-old patient with no significant past medical history presenting with two years of progressive changes in behavior, rushed speech, verbal aggression, and social withdrawal. MRI and FDG-PET imaging of the brain revealed changes maximally in the frontal and temporal lobes, which along with the clinical features, are consistent with behavioral variant FTD. Next generation sequencing of a panel of 28 genes associated with dementia and amyotrophic lateral sclerosis (ALS) initially revealed a duplication of exon 15 in Matrin-3 (MATR3). Whole genome sequencing determined that this genetic anomaly was, in fact, a sequence corresponding with full-length MATR3 variant 5 inserted into chromosome 12, indicating retrotransposition from a messenger RNA intermediate. To our knowledge, this is a novel mutation of MATR3, as the majority of mutations in MATR3 linked to FTD-ALS are point mutations. Genomic DNA analysis revealed that this mutation is also present in one unaffected first-degree relative and one unaffected second-degree relative. This suggests that the mutation is either a disease-causing mutation with incomplete penetrance, which has been observed in heritable FTD, or a benign variant. Retrotransposons are not often implicated in neurodegenerative diseases; thus, it is crucial to clarify the potential role of this MATR3 variant 5 retrotransposition in early-onset FTD.
Collapse
Affiliation(s)
- Madelyn Castro
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States
| | - Nisha Venkateswaran
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States.,Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Samuel T Peters
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States
| | - David R Deyle
- Department of Clinical Genomics, Mayo Clinic Rochester, Rochester, MN, United States
| | - Matthew Bower
- Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, United States.,Molecular Diagnostics Laboratory, M Health-Fairview, University of Minnesota, Minneapolis, MN, United States
| | - Michael D Koob
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, United States
| | - Keith Vossel
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States.,Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
31
|
Polygenic risk scores for genetic counseling in psychiatry: Lessons learned from other fields of medicine. Neurosci Biobehav Rev 2020; 121:119-127. [PMID: 33301779 DOI: 10.1016/j.neubiorev.2020.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Polygenic risk scores (PRS) may aid in the identification of individuals at-risk for psychiatric disorders, treatment optimization, and increase in prognostic accuracy. PRS may also add significant value to genetic counseling. Thus far, integration of PRSs in genetic counseling sessions remains problematic because of uncertainties in risk prediction and other concerns. Here, we review the current utility of PRSs in the context of clinical psychiatry. By comprehensively appraising the literature in other fields of medicine including breast cancer, Alzheimer's Disease, and cardiovascular disease, we outline several lessons learned that could be applied to future studies and may thus benefit the incorporation of PRS in psychiatric genetic counseling. These include integrating PRS with environmental factors (e.g. lifestyle), setting up large-scale studies, and applying reproducible methods allowing for cross-validation between cohorts. We conclude that psychiatry may benefit from experiences in these fields. PRS may in future have a role in genetic counseling in clinical psychiatric practice, by advancing prevention strategies and treatment decision-making, thus promoting quality of life for (potentially) affected individuals.
Collapse
|
32
|
Mishra R, Li B. The Application of Artificial Intelligence in the Genetic Study of Alzheimer's Disease. Aging Dis 2020; 11:1567-1584. [PMID: 33269107 PMCID: PMC7673858 DOI: 10.14336/ad.2020.0312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which genetic factors contribute approximately 70% of etiological effects. Studies have found many significant genetic and environmental factors, but the pathogenesis of AD is still unclear. With the application of microarray and next-generation sequencing technologies, research using genetic data has shown explosive growth. In addition to conventional statistical methods for the processing of these data, artificial intelligence (AI) technology shows obvious advantages in analyzing such complex projects. This article first briefly reviews the application of AI technology in medicine and the current status of genetic research in AD. Then, a comprehensive review is focused on the application of AI in the genetic research of AD, including the diagnosis and prognosis of AD based on genetic data, the analysis of genetic variation, gene expression profile, gene-gene interaction in AD, and genetic analysis of AD based on a knowledge base. Although many studies have yielded some meaningful results, they are still in a preliminary stage. The main shortcomings include the limitations of the databases, failing to take advantage of AI to conduct a systematic biology analysis of multilevel databases, and lack of a theoretical framework for the analysis results. Finally, we outlook the direction of future development. It is crucial to develop high quality, comprehensive, large sample size, data sharing resources; a multi-level system biology AI analysis strategy is one of the development directions, and computational creativity may play a role in theory model building, verification, and designing new intervention protocols for AD.
Collapse
Affiliation(s)
- Rohan Mishra
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Georgetown University Medical Center, Washington D.C. 20057, USA
| |
Collapse
|
33
|
Scarioni M, Arighi A, Fenoglio C, Sorrentino F, Serpente M, Rotondo E, Mercurio M, Marotta G, Dijkstra AA, Pijnenburg YAL, Scarpini E, Galimberti D. Late-onset presentation and phenotypic heterogeneity of the rare R377W PSEN1 mutation. Eur J Neurol 2020; 27:2630-2634. [PMID: 32894632 DOI: 10.1111/ene.14506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/31/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Mutations in the PSEN1 gene are the most common cause of autosomal-dominant Alzheimer's disease and have been associated with the earliest disease onset. We describe an unusual presentation of the rare R377W PSEN1 mutation with a late age of onset, and we provide for the first time in vivo pathological evidence for this mutation. METHODS A 71-year-old female patient with progressive cognitive decline in the past 3 years and positive family history for dementia underwent neurological evaluation, neuropsychological testing, lumbar puncture, conventional brain imaging, amyloid-positron emission tomography (PET) and extensive genetic screening with a next-generation sequencing technique. RESULTS The diagnostic workup revealed mixed behavioural and amnestic disease features on neuropsychological tests, magnetic resonance imaging, and 18-fluorodeoxyglucose (FDG)-PET. Amyloid-PET detected amyloid deposition in the frontal areas, in the parietal lobes and the precunei. The genetic screening revealed the presence of the rare R377W mutation in the PSEN1 gene. CONCLUSIONS Extensive genetic screening is also advisable for late-onset presentations of Alzheimer's disease, especially in the presence of a positive family history or atypical clinical features.
Collapse
Affiliation(s)
- M Scarioni
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy.,Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Neurology, Alzheimer Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - A Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - C Fenoglio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - F Sorrentino
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - M Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - E Rotondo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - M Mercurio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - G Marotta
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - A A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Y A L Pijnenburg
- Department of Neurology, Alzheimer Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - E Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - D Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| |
Collapse
|
34
|
A Customized Next-Generation Sequencing-Based Panel to Identify Novel Genetic Variants in Dementing Disorders: A Pilot Study. Neural Plast 2020. [PMID: 32908482 DOI: 10.1155/2020/8078103.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose The advancements in the next-generation sequencing (NGS) techniques have allowed for rapid, efficient, and cost-time-effective genetic variant detection. However, in both clinical practice and research setting, sequencing is still often limited to the use of gene panels clinically targeted on the genes underlying the disease of interest. Methods We performed a neurogenetic study through an ad hoc NGS-based custom sequencing gene panel in order to screen 16 genes in 8 patients with different types of degenerative cognitive disorders (Alzheimer's disease, mild cognitive impairment, frontotemporal dementia, and dementia associated with Parkinson's disease). The study protocol was based on previous evidence showing a high sensitivity and specificity of the technique even when the panel is limited to some hotspot exons. Results We found variants of the TREM2 and APP genes in three patients; these have been previously identified as pathogenic or likely pathogenic and, therefore, considered "disease causing." In the remaining subjects, the pathogenicity was evaluated according to the guidelines of the American College of Medical Genetics (ACMG). In one patient, the p.R205W variant in the CHMP2B gene was found to be likely pathogenic of the disease. A variant in the CSF1R and SERPINI1 genes found in two patients was classified as benign, whereas the other two (in the GRN and APP genes) were classified as likely pathogenic according to the ACMG. Conclusions Notwithstanding the preliminary value of this study, some rare genetic variants with a probable disease association were detected. Although future application of NGS-based sensors and further replication of these experimental data are needed, this approach seems to offer promising translational perspectives in the diagnosis and management of a wide range of neurodegenerative disorders.
Collapse
|
35
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
36
|
Lanza G, Calì F, Vinci M, Cosentino FII, Tripodi M, Spada RS, Cantone M, Bella R, Mattina T, Ferri R. A Customized Next-Generation Sequencing-Based Panel to Identify Novel Genetic Variants in Dementing Disorders: A Pilot Study. Neural Plast 2020; 2020:8078103. [PMID: 32908482 PMCID: PMC7450320 DOI: 10.1155/2020/8078103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The advancements in the next-generation sequencing (NGS) techniques have allowed for rapid, efficient, and cost-time-effective genetic variant detection. However, in both clinical practice and research setting, sequencing is still often limited to the use of gene panels clinically targeted on the genes underlying the disease of interest. METHODS We performed a neurogenetic study through an ad hoc NGS-based custom sequencing gene panel in order to screen 16 genes in 8 patients with different types of degenerative cognitive disorders (Alzheimer's disease, mild cognitive impairment, frontotemporal dementia, and dementia associated with Parkinson's disease). The study protocol was based on previous evidence showing a high sensitivity and specificity of the technique even when the panel is limited to some hotspot exons. RESULTS We found variants of the TREM2 and APP genes in three patients; these have been previously identified as pathogenic or likely pathogenic and, therefore, considered "disease causing." In the remaining subjects, the pathogenicity was evaluated according to the guidelines of the American College of Medical Genetics (ACMG). In one patient, the p.R205W variant in the CHMP2B gene was found to be likely pathogenic of the disease. A variant in the CSF1R and SERPINI1 genes found in two patients was classified as benign, whereas the other two (in the GRN and APP genes) were classified as likely pathogenic according to the ACMG. CONCLUSIONS Notwithstanding the preliminary value of this study, some rare genetic variants with a probable disease association were detected. Although future application of NGS-based sensors and further replication of these experimental data are needed, this approach seems to offer promising translational perspectives in the diagnosis and management of a wide range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Oasi Research Institute–IRCCS, Troina, Italy
| | | | | | | | | | | | - Mariagiovanna Cantone
- Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Teresa Mattina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | |
Collapse
|
37
|
Abstract
Hintergrund Aufgrund des demographischen Wandels sind Demenzen ein häufiger und dramatisch zunehmender Grund für ärztliche Vorstellungen. In etwa 8 % der Fälle treten sie bereits vor dem 65. Lebensjahr auf. Gerade bei jüngeren Patienten sind die psychosozialen und ökonomischen Folgen oft gravierend. Die Behandler stehen vor großen diagnostischen Herausforderungen. Eine rasche Diagnose ist für das Patientenmanagement von zentraler Bedeutung. Ziel der Arbeit/Fragestellung Dieser Übersichtsartikel stellt die Besonderheiten der Demenzen bei jüngeren Menschen sowie die wichtigsten zugrunde liegenden Krankheitsbilder vor und vermittelt ein strukturiertes klinisch-diagnostisches Vorgehen. Methoden Narrativer Review. Die Literatursuche wurde in PubMed durchgeführt. Ergebnisse Das differenzialdiagnostische Spektrum von Demenzen bei jüngeren Menschen vor dem 65. Lebensjahr ist sehr breit. Die häufigsten Ursachen stellen die Alzheimer-Krankheit mit typischen oder atypischen klinischen Präsentationen sowie die frontotemporale Lobärdegeneration dar. Je jünger das Erkrankungsalter, desto höher ist der Anteil an behandelbaren und potenziell reversiblen Ursachen eines demenziellen Syndroms. Diskussion Die Diagnostik primär neurodegenerativer Erkrankungen hat sich zunehmend verbessert, insbesondere unter Berücksichtigung einer stetig steigenden Zahl an klinischen, molekularen und bildgebenden Biomarkern. Dennoch muss die Diagnostik der Demenzen mit frühem Erkrankungsbeginn hypothesengeleitet erfolgen, d. h. nach einer präzisen klinisch-syndromalen Zuordnung der Symptome. So können unnötige und belastende Untersuchungen vermieden werden.
Collapse
|
38
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
39
|
Roggenbuck J, Fong JC. Genetic Testing for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: Impact on Clinical Management. Clin Lab Med 2020; 40:271-287. [PMID: 32718499 DOI: 10.1016/j.cll.2020.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative disorders that share clinical, pathologic, and genetic features. Persons and families affected by these conditions frequently question why they developed the disease, the expected disease course, treatment options, and the likelihood that family members will be affected. Genetic testing has the potential to answers these important questions. Despite the progress in gene discovery, the offer of genetic testing is not yet "standard of care" in ALS and FTD clinics. The authors review the current genetic landscape and present recommendations for the laboratory genetic evaluation of persons with these conditions.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Division of Human Genetics, Department of Neurology, The Ohio State University, 2012 Kenny Road, Columbus, OH 43221, USA.
| | - Jamie C Fong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS: BCM115, Houston, TX 77030, USA
| |
Collapse
|
40
|
Sellami L, Saracino D, Le Ber I. Genetic forms of frontotemporal lobar degeneration: Current diagnostic approach and new directions in therapeutic strategies. Rev Neurol (Paris) 2020; 176:571-581. [PMID: 32312500 DOI: 10.1016/j.neurol.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Recent advances in the genetics of neurodegenerative diseases have substantially improved our knowledge about the genetic causes of frontotemporal lobar degeneration (FTLD). Three major genes, namely progranulin (GRN), C9orf72 and MAPT, as well as several less common genes, are responsible for the majority of familial cases and for a significant proportion of sporadic forms, including FTLD with or without associated amyotrophic lateral sclerosis and some rarer clinical presentations. Plasma progranulin dosage and next-generation sequencing are currently available tools which allow the detection of a genetic cause in a more rapid and efficient way. This has important consequences for clinical practice and genetic counseling for patients and families. The ongoing investigations on some therapeutic candidates targeting different biological pathways involved in the most frequent genetic forms of FTLD, as well as a better understanding of the early pathophysiological modifications occurring during the presymptomatic phase of the disease could hopefully contribute to develop effective disease-modifying therapies. The identification of a causal mutation in a family is of outmost importance indeed to propose to presymptomatic carriers their inclusion in clinical trials with the aim to prevent or delay the onset of disease.
Collapse
Affiliation(s)
- L Sellami
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - D Saracino
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - I Le Ber
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Institut du cerveau et de la moelle épinière (ICM), FrontLab, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, CS21414, 75646 Paris cedex, France.
| |
Collapse
|
41
|
Ramos EM, Dokuru DR, Van Berlo V, Wojta K, Wang Q, Huang AY, Deverasetty S, Qin Y, van Blitterswijk M, Jackson J, Appleby B, Bordelon Y, Brannelly P, Brushaber DE, Dickerson B, Dickinson S, Domoto-Reilly K, Faber K, Fields J, Fong J, Foroud T, Forsberg LK, Gavrilova R, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford N, Grant I, Grossman M, Heuer HW, Hsiung GYR, Huey E, Irwin D, Kantarci K, Karydas A, Kaufer D, Kerwin D, Knopman D, Kornak J, Kramer JH, Kremers W, Kukull W, Litvan I, Ljubenkov P, Lungu C, Mackenzie I, Mendez MF, Miller BL, Onyike C, Pantelyat A, Pearlman R, Petrucelli L, Potter M, Rankin KP, Rascovsky K, Roberson ED, Rogalski E, Shaw L, Syrjanen J, Tartaglia MC, Tatton N, Taylor J, Toga A, Trojanowski JQ, Weintraub S, Wong B, Wszolek Z, Rademakers R, Boeve BF, Rosen HJ, Boxer AL, Coppola G. Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases. Alzheimers Dement 2020; 16:118-130. [PMID: 31914217 PMCID: PMC7199807 DOI: 10.1002/alz.12011] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/13/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS) consortia are two closely connected studies, involving multiple North American centers that evaluate both sporadic and familial frontotemporal dementia (FTD) participants and study longitudinal changes. METHODS We screened the major dementia-associated genes in 302 sporadic and 390 familial (symptomatic or at-risk) participants enrolled in these studies. RESULTS Among the sporadic patients, 16 (5.3%) carried chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), and progranulin (GRN) pathogenic variants, whereas in the familial series we identified 207 carriers from 146 families. Of interest, one patient was found to carry a homozygous C9orf72 expansion, while another carried both a C9orf72 expansion and a GRN pathogenic variant. We also identified likely pathogenic variants in the TAR DNA binding protein (TARDBP), presenilin 1 (PSEN1), and valosin containing protein (VCP) genes, and a subset of variants of unknown significance in other rare FTD genes. DISCUSSION Our study reports the genetic characterization of a large FTD series and supports an unbiased sequencing screen, irrespective of clinical presentation or family history.
Collapse
Affiliation(s)
- Eliana Marisa Ramos
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Deepika Reddy Dokuru
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Victoria Van Berlo
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kevin Wojta
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Qing Wang
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alden Y. Huang
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Sandeep Deverasetty
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yue Qin
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | | | | | - Yvette Bordelon
- University of California Los Angeles, Los Angeles, California
| | | | | | | | - Susan Dickinson
- Association for Frontotemporal Degeneration, Radnor, Pennsylvania
| | | | - Kelley Faber
- National Centralized Repository for Alzheimer’s Disease and Related Dementia (NCRAD), Indiana University, Indianapolis, Indiana
| | | | - Jamie Fong
- University of California, San Francisco, San Francisco, California
| | - Tatiana Foroud
- National Centralized Repository for Alzheimer’s Disease and Related Dementia (NCRAD), Indiana University, Indianapolis, Indiana
| | | | | | | | | | | | | | - Ian Grant
- Northwestern University, Chicago, Illinois
| | | | - Hilary W. Heuer
- University of California, San Francisco, San Francisco, California
| | | | | | - David Irwin
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Anna Karydas
- University of California, San Francisco, San Francisco, California
| | - Daniel Kaufer
- University of North Carolina, Chapel Hill, North Carolina
| | - Diana Kerwin
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - John Kornak
- University of California, San Francisco, San Francisco, California
| | - Joel H. Kramer
- University of California, San Francisco, San Francisco, California
| | | | - Walter Kukull
- National Alzheimer Coordinating Center (NACC), University of Washington, Seattle, Washington
| | - Irene Litvan
- University of California, San Diego, San Diego, California
| | - Peter Ljubenkov
- University of California, San Francisco, San Francisco, California
| | - Codrin Lungu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, Maryland
| | - Ian Mackenzie
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Mario F. Mendez
- University of California Los Angeles, Los Angeles, California
| | - Bruce L. Miller
- University of California, San Francisco, San Francisco, California
| | | | | | | | | | - Madeline Potter
- National Centralized Repository for Alzheimer’s Disease and Related Dementia (NCRAD), Indiana University, Indianapolis, Indiana
| | | | | | | | | | - Leslie Shaw
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, Pennsylvania
| | - Joanne Taylor
- University of California, San Francisco, San Francisco, California
| | - Arthur Toga
- Laboratory of Neuroimaging (LONI), USC, Los Angeles, California
| | | | | | - Bonnie Wong
- Harvard University/MGH, Boston, Massachusetts
| | | | | | | | - Howard J. Rosen
- University of California, San Francisco, San Francisco, California
| | - Adam L. Boxer
- University of California, San Francisco, San Francisco, California
| | - Giovanni Coppola
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
42
|
Abstract
Alzheimer's disease (AD) dementia refers to a particular onset and course of cognitive and functional decline associated with age together with a particular neuropathology. It was first described by Alois Alzheimer in 1906 about a patient whom he first encountered in 1901. Modern clinical diagnostic criteria have been developed, and criteria have also been proposed to recognize preclinical (or presymptomatic) stages of the disease with the use of biomarkers. The primary neuropathology was described by Alzheimer, and in the mid-1980s subsequently evolved into a more specific neuropathologic definition that recognizes the comorbid neuropathologies that frequently contribute to clinical dementia. Alzheimer's disease is now the most common form of neurodegenerative dementia in the United States with a disproportionate disease burden in minority populations. Deficits in the ability to encode and store new memories characterizes the initial stages of the disease. Subsequent progressive changes in cognition and behavior accompany the later stages. Changes in amyloid precursor protein (APP) cleavage and production of the APP fragment beta-amyloid (Aβ) along with hyperphosphorylated tau protein aggregation coalesce to cause reduction in synaptic strength, synaptic loss, and neurodegeneration. Metabolic, vascular, and inflammatory changes, as well as comorbid pathologies are key components of the disease process. Symptomatic treatment offers a modest, clinically measurable effect in cognition, but disease-modifying therapies are desperately needed.
Collapse
Affiliation(s)
- Jose A Soria Lopez
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States
| | - Hector M González
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States
| | - Gabriel C Léger
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|