1
|
de Franceschi L, Locatelli F, Rees D, Chabannon C, Dalle J, Rivella S, Iolascon A, Lobitz S, Abboud MR, de la Fuente J, Flevari P, Angelucci E, de Montalembert M. Selecting patients with sickle cell disease for gene addition or gene editing-based therapeutic approaches: Report on behalf of a joint EHA Specialized Working Group and EBMT Hemoglobinopathies Working Party consensus conference. Hemasphere 2025; 9:e70089. [PMID: 40084235 PMCID: PMC11904809 DOI: 10.1002/hem3.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 03/16/2025] Open
Abstract
Sickle cell disease (SCD) remains associated with reduced life expectancy and poor quality of life despite improvements observed in the last decades mostly related to comprehensive care, use of hydroxycarbamide, screening to identify patients at risk of strokes, and implementation of safe transfusion protocols. The course of the disease is highly variable, making it difficult to predict severity and response to therapy. Allogeneic hematopoietic stem cell transplantation potentially provides a cure with a relatively low rate of complications, but few patients have an HLA-identical sibling. The hopes of patients and healthcare providers have been raised after the initial excellent results of gene therapy studies. However, there is a strong contrast between the high expectations of families and patients and the limited availability of the product, which is technically complex and very expensive. In light of this consideration and of the limited data available on the long-term efficacy and toxicity of different gene therapy approaches, the European Hematology Association Red Cell & Iron Specialized Working Group (EHA SWG) and the hemoglobinopathy working part of the European Blood & Marrow Transplant (EBMT) Group have prioritized the development of recommendations for selection of patients with SCD who are good candidates for gene therapy. The decision-making algorithm was developed by a panel of experts in hemoglobinopathies and/or transplantation chosen by EHA SWG and EBMT, to discuss the selection of SCD patients for gene therapy and draw notes on the related clinical problems.
Collapse
Affiliation(s)
- Lucia de Franceschi
- Department of Engineering for Innovative MedicineUniversity of VeronaVeronaItaly
- Azienda Ospedaliera Universitaria integrata di VeronaVeronaItaly
| | - Franco Locatelli
- IRCCS Bambino Gesù Children's HospitalCatholic University of the Sacred HeartRomeItaly
| | - David Rees
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences Medicine, King's College London, and Department of Haematological MedicineKing's College HospitalLondonUK
| | - Christian Chabannon
- Institut Paoli‐Calmettes Comprehensive Cancer Center and Module Biotherapies du Centre d'Investigations Cliniques de Marseille, INSERM‐Aix‐Marseille Université AP‐HM‐IPCCBT‐1409MarseilleFrance
| | - Jean‐Hugues Dalle
- Pediatric Hematology and Immunoloy Department, Robert‐Debré Academic HospitalGHU AP‐HP Nord Université Paris CitéParisFrance
| | - Stefano Rivella
- Department of PediatricsHematology, The Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn Institute for RNA InnovationUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Institute for Regenerative Medicine (IRM)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico IINaplesItaly
- CEINGE Biotecnologie AvanzateNaplesItaly
| | - Stephan Lobitz
- Pediatric Hematology & Oncology, Gemeinschaftsklinikum MittelrheinKoblenzGermany
| | - Miguel R. Abboud
- Department of Pediatrics and Adolescent MedicineAmerican University of BeirutBeirutLebanon
| | - Josu de la Fuente
- Department of Immunology and InflammationCentre for Haematology, Imperial College LondonLondonUK
- Department of PaediatricsImperial College Healthcare NHS TrustLondonUK
| | - Pagona Flevari
- Thalassemia Unit—Center of Expertise in Haemoglobinopathies, Laiko General HospitalAthensGreece
| | - Emanuele Angelucci
- UO Ematologia e Terapie Cellulari, IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Mariane de Montalembert
- Department of General Pediatrics and Pediatric Infectious Diseases, Sickle Cell Center, Necker‐Enfants Malades Hospital, Assistance Publique—Hôpitaux de Paris (AP‐HP)Université Paris CitéParisFrance
- Laboratory of Excellence GR‐ExParisFrance
| |
Collapse
|
2
|
Diamantidis MD, Ikonomou G, Argyrakouli I, Pantelidou D, Delicou S. Genetic Modifiers of Hemoglobin Expression from a Clinical Perspective in Hemoglobinopathy Patients with Beta Thalassemia and Sickle Cell Disease. Int J Mol Sci 2024; 25:11886. [PMID: 39595957 PMCID: PMC11593634 DOI: 10.3390/ijms252211886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hemoglobinopathies, namely β-thalassemia and sickle cell disease (SCD), are hereditary diseases, characterized by molecular genetic aberrations in the beta chains of hemoglobin. These defects affect the normal production of hemoglobin with severe anemia due to less or no amount of beta globins in patients with β-thalassemia (quantitative disorder), while SCD is a serious disease in which a mutated form of hemoglobin distorts the red blood cells into a crescent shape at low oxygen levels (qualitative disorder). Despite the revolutionary progress in recent years with the approval of gene therapy and gene editing for specific patients, there is an unmet need for highlighting the mechanisms influencing hemoglobin production and for the development of novel drugs and targeted therapies. The identification of the transcription factors and other genetic modifiers of hemoglobin expression is of utmost importance for discovering novel therapeutic approaches for patients with hemoglobinopathies. The aim of this review is to describe these complex molecular mechanisms and pathways affecting hemoglobin expression and to highlight the relevant investigational approaches or pharmaceutical interventions focusing on restoring the hemoglobin normal function by linking the molecular background of the disease with the clinical perspective. All the associated drugs increasing the hemoglobin expression in patients with hemoglobinopathies, along with gene therapy and gene editing, are also discussed.
Collapse
Affiliation(s)
- Michael D. Diamantidis
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Georgia Ikonomou
- Thalassemia and Sickle Cell Disease Prevention Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Ioanna Argyrakouli
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Despoina Pantelidou
- Thalassemia and Sickle Cell Disease Unit, AHEPA University General Hospital, 41221 Thessaloniki, Greece;
| | - Sophia Delicou
- Center of Expertise in Hemoglobinopathies and Their Complications, Thalassemia and Sickle Cell Disease Unit, Hippokration General Hospital, 41221 Athens, Greece;
| |
Collapse
|
3
|
Kunz JB, Tagliaferri L. Sickle Cell Disease. Transfus Med Hemother 2024; 51:332-344. [PMID: 39371249 PMCID: PMC11452173 DOI: 10.1159/000540149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Sickle cell disease (SCD) is among the most frequent hereditary disorders globally and its prevalence in Europe is increasing due to migration movements. Summary The basic pathophysiological event of SCD is polymerization of deoxygenated sickle hemoglobin, resulting in hemolysis, vasoocclusion, and multiorgan damage. While the pathophysiological cascade offers numerous targets for treatment, currently only two disease-modifying drugs have been approved in Europe and transfusion remains a mainstay of both preventing and treating severe complications of SCD. Allogeneic stem cell transplantation and gene therapy offer a curative option but are restricted to few patients due to costs and limited availability of donors. Key Message Further efforts are needed to grant patients access to approved treatments, to explore drug combinations and to establish new treatment options.
Collapse
Affiliation(s)
- Joachim B Kunz
- Department of Pediatric Oncology, Hematology and Immunology, Hopp-Children's Cancer Center (KiTZ) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Tagliaferri
- Department of Pediatric Oncology, Hematology and Immunology, Hopp-Children's Cancer Center (KiTZ) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Sjodin BMF, Schmidt DA, Galbreath KE, Russello MA. Putative climate adaptation in American pikas (Ochotona princeps) is associated with copy number variation across environmental gradients. Sci Rep 2024; 14:8568. [PMID: 38609461 PMCID: PMC11014952 DOI: 10.1038/s41598-024-59157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Improved understanding of the genetic basis of adaptation to climate change is necessary for maintaining global biodiversity moving forward. Studies to date have largely focused on sequence variation, yet there is growing evidence that suggests that changes in genome structure may be an even more significant source of adaptive potential. The American pika (Ochotona princeps) is an alpine specialist that shows some evidence of adaptation to climate along elevational gradients, but previous work has been limited to single nucleotide polymorphism based analyses within a fraction of the species range. Here, we investigated the role of copy number variation underlying patterns of local adaptation in the American pika using genome-wide data previously collected across the entire species range. We identified 37-193 putative copy number variants (CNVs) associated with environmental variation (temperature, precipitation, solar radiation) within each of the six major American pika lineages, with patterns of divergence largely following elevational and latitudinal gradients. Genes associated (n = 158) with independent annotations across lineages, variables, and/or CNVs had functions related to mitochondrial structure/function, immune response, hypoxia, olfaction, and DNA repair. Some of these genes have been previously linked to putative high elevation and/or climate adaptation in other species, suggesting they may serve as important targets in future studies.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Danielle A Schmidt
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI, 49855, USA
| | - Michael A Russello
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
5
|
Gambari R, Waziri AD, Goonasekera H, Peprah E. Pharmacogenomics of Drugs Used in β-Thalassemia and Sickle-Cell Disease: From Basic Research to Clinical Applications. Int J Mol Sci 2024; 25:4263. [PMID: 38673849 PMCID: PMC11050010 DOI: 10.3390/ijms25084263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 40124 Ferrara, Italy
| | - Aliyu Dahiru Waziri
- Department of Hematology and Blood Transfusion, Ahmadu Bello University Teaching Hospital Zaria, Kaduna 810001, Nigeria;
| | - Hemali Goonasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo P.O. Box 271, Sri Lanka;
| | - Emmanuel Peprah
- Implementing Sustainable Evidence-Based Interventions through Engagement (ISEE) Lab, Department of Global and Environmental Health, School of Global Public Health, New York University, New York, NY 10003, USA;
| |
Collapse
|
6
|
Franco E, Karkoska KA, McGann PT. Inherited disorders of hemoglobin: A review of old and new diagnostic methods. Blood Cells Mol Dis 2024; 104:102758. [PMID: 37246072 DOI: 10.1016/j.bcmd.2023.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
The genetic regulation of hemoglobin is complex and there are a number of genetic abnormalities that result in clinically important hemoglobin disorders. Here, we review the molecular pathophysiology of hemoglobin disorders and review both old and new methods of diagnosing these disorders. Timely diagnosis of hemoglobinopathies in infants is essential to coordinate optimal life-saving interventions, and accurate identification of carriers of deleterious mutations allows for genetic counseling and informed family planning. The initial laboratory workup of inherited disorders of hemoglobin should include a complete blood count (CBC) and peripheral blood smear, followed by carefully selected tests based on clinical suspicion and available methodology. We discuss the utility and limitations of the various methodologies to fractionate hemoglobin, including cellulose acetate and citrate agar hemoglobin electrophoresis, isoelectric focusing, high-resolution high-performance liquid chromatography, and capillary zone electrophoresis. Recognizing that most of the global burden of hemoglobin disorders exists in low- and middle-income countries, we review the increasingly available array of point-of-care-tests (POCT), which have an increasingly important role in expanding early diagnosis programs to address the global burden of sickle cell disease, including Sickle SCAN, HemoTypeSC, Gazelle Hb Variant, and Smart LifeLC. A comprehensive understanding of the molecular pathophysiology of hemoglobin and the globin genes, as well as a clear understanding of the utility and limitations of currently available diagnostic tests, is essential in reducing global disease burden.
Collapse
Affiliation(s)
- Emily Franco
- Warren Alpert Medical School of Brown University, Providence, RI, United States of America; Lifespan Comprehensive Sickle Cell Center at Hasbro Children's Hospital and Rhode Island Hospital, Providence, RI, United States of America
| | - Kristine A Karkoska
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Patrick T McGann
- Warren Alpert Medical School of Brown University, Providence, RI, United States of America; Lifespan Comprehensive Sickle Cell Center at Hasbro Children's Hospital and Rhode Island Hospital, Providence, RI, United States of America.
| |
Collapse
|
7
|
Hardouin G, Magrin E, Corsia A, Cavazzana M, Miccio A, Semeraro M. Sickle Cell Disease: From Genetics to Curative Approaches. Annu Rev Genomics Hum Genet 2023; 24:255-275. [PMID: 37624668 DOI: 10.1146/annurev-genom-120122-081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Sickle cell disease (SCD) is a monogenic blood disease caused by a point mutation in the gene coding for β-globin. The abnormal hemoglobin [sickle hemoglobin (HbS)] polymerizes under low-oxygen conditions and causes red blood cells to sickle. The clinical presentation varies from very severe (with acute pain, chronic pain, and early mortality) to normal (few complications and a normal life span). The variability of SCD might be due (in part) to various genetic modulators. First, we review the main genetic factors, polymorphisms, and modifier genes that influence the expression of globin or otherwise modulate the severity of SCD. Considering SCD as a complex, multifactorial disorder is important for the development of appropriate pharmacological and genetic treatments. Second, we review the characteristics, advantages, and disadvantages of the latest advances in gene therapy for SCD, from lentiviral-vector-based approaches to gene-editing strategies.
Collapse
Affiliation(s)
- Giulia Hardouin
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France; ,
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France;
| | - Elisa Magrin
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
| | - Alice Corsia
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France;
| | - Marina Cavazzana
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
- Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Université Paris Cité, Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France; ,
| | - Michaela Semeraro
- Université Paris Cité, Paris, France
- Centre d'Investigation Clinique and Unité de Recherche Clinique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France;
| |
Collapse
|
8
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
9
|
Caro-Consuegra R, Lucas-Sánchez M, Comas D, Bosch E. Identifying signatures of positive selection in human populations from North Africa. Sci Rep 2023; 13:8166. [PMID: 37210386 DOI: 10.1038/s41598-023-35312-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Because of its location, North Africa (NA) has witnessed continuous demographic movements with an impact on the genomes of present-day human populations. Genomic data describe a complex scenario with varying proportions of at least four main ancestry components: Maghrebi, Middle Eastern-, European-, and West-and-East-African-like. However, the footprint of positive selection in NA has not been studied. Here, we compile genome-wide genotyping data from 190 North Africans and individuals from surrounding populations, investigate for signatures of positive selection using allele frequencies and linkage disequilibrium-based methods and infer ancestry proportions to discern adaptive admixture from post-admixture selection events. Our results show private candidate genes for selection in NA involved in insulin processing (KIF5A), immune function (KIF5A, IL1RN, TLR3), and haemoglobin phenotypes (BCL11A). We also detect signatures of positive selection related to skin pigmentation (SLC24A5, KITLG), and immunity function (IL1R1, CD44, JAK1) shared with European populations and candidate genes associated with haemoglobin phenotypes (HPSE2, HBE1, HBG2), other immune-related (DOCK2) traits, and insulin processing (GLIS3) traits shared with West and East African populations. Finally, the SLC8A1 gene, which codifies for a sodium-calcium exchanger, was the only candidate identified under post-admixture selection in Western NA.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Marcel Lucas-Sánchez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - David Comas
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
10
|
Ginete C, Delgadinho M, Santos B, Pinto V, Silva C, Miranda A, Brito M. Are Genetic Modifiers the Answer to Different Responses to Hydroxyurea Treatment?-A Pharmacogenetic Study in Sickle Cell Anemia Angolan Children. Int J Mol Sci 2023; 24:ijms24108792. [PMID: 37240136 DOI: 10.3390/ijms24108792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Sickle cell anemia (SCA) is an inherited disease affecting the hemoglobin that is particularly common in sub-Saharan Africa. Although monogenic, phenotypes are markedly heterogeneous in terms of severity and life span. Hydroxyurea is still the most common treatment for these patients, and the response to treatment is highly variable and seems to be an inherited trait. Therefore, identifying the variants that might predict hydroxyurea response is important for identifying patients who will have a poorer or non-response to treatment, and the ones that are more prone to suffer from severe side effects. In the present pharmacogenetic study, we analyzed the exons of 77 genes described in the literature as potentially associated with hydroxyurea metabolism in Angolan children treated with hydroxyurea and evaluated the drug response considering fetal hemoglobin levels, other hematological and biochemical parameters, hemolysis, number of vaso-occlusive crises and hospitalizations. Thirty variants were identified in 18 of those genes as possibly associated with drug response, five of them in gene DCHS2. Other polymorphisms in this gene were also associated with hematological, biochemical and clinical parameters. Further research examining the maximum tolerated dose and fixed dose with a larger sample size is necessary to corroborate these findings.
Collapse
Affiliation(s)
- Catarina Ginete
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Mariana Delgadinho
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Brígida Santos
- Centro de Investigação em Saúde de Angola (CISA), Bengo, Angola
- Hospital Pediátrico David Bernardino (HPDB), Luanda, Angola
| | - Vera Pinto
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Centro de Estatística e Aplicações, Universidade de Lisboa (CEAUL), 1749-016 Lisbon, Portugal
| | - Carina Silva
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Centro de Estatística e Aplicações, Universidade de Lisboa (CEAUL), 1749-016 Lisbon, Portugal
| | - Armandina Miranda
- Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
| | - Miguel Brito
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Centro de Investigação em Saúde de Angola (CISA), Bengo, Angola
| |
Collapse
|
11
|
Drakopoulou E, Georgomanoli M, Lederer CW, Panetsos F, Kleanthous M, Voskaridou E, Valakos D, Papanikolaou E, Anagnou NP. The Optimized γ-Globin Lentiviral Vector GGHI-mB-3D Leads to Nearly Therapeutic HbF Levels In Vitro in CD34 + Cells from Sickle Cell Disease Patients. Viruses 2022; 14:v14122716. [PMID: 36560719 PMCID: PMC9783242 DOI: 10.3390/v14122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
We have previously demonstrated that both the original γ-globin lentiviral vector (LV) GGHI and the optimized GGHI-mB-3D LV, carrying the novel regulatory elements of the 3D HPFH-1 enhancer and the 3' β-globin UTR, can significantly increase HbF production in thalassemic CD34+ cells and ameliorate the disease phenotype in vitro. In the present study, we investigated whether the GGHI-mB-3D vector can also exhibit an equally therapeutic effect, following the transduction of sickle cell disease (SCD) CD34+ cells at MOI 100, leading to HbF increase coupled with HbS decrease, and thus, to phenotype improvement in vitro. We show that GGHI-mB-3D LV can lead to high and potentially therapeutic HbF levels, reaching a mean 2-fold increase to a mean value of VCN/cell of 1.0 and a mean transduction efficiency of 55%. Furthermore, this increase was accompanied by a significant 1.6-fold HbS decrease, a beneficial therapeutic feature for SCD. In summary, our data demonstrate the efficacy of the optimized γ-globin lentiviral vector to improve the SCD phenotype in vitro, and highlights its potential use in future clinical SCD trials.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Georgomanoli
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | | | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Ersi Voskaridou
- Thalassemia and Sickle Cell Disease Centre, Laiko General Hospital, 11527 Athens, Greece
| | - Dimitrios Valakos
- Laboratory of Molecular Biology, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
12
|
Sales RR, Nogueira BL, Belisário AR, Faria G, Mendes F, Viana MB, Luizon MR. Fetal hemoglobin-boosting haplotypes of BCL11A gene and HBS1L-MYB intergenic region in the prediction of clinical and hematological outcomes in a cohort of children with sickle cell anemia. J Hum Genet 2022; 67:701-709. [PMID: 36167770 DOI: 10.1038/s10038-022-01079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Single nucleotide polymorphisms (SNPs) of BCL11A gene and HBS1L-MYB intergenic region (named HMIP-2) affect both fetal hemoglobin (HbF) concentration and clinical outcomes in patients with sickle cell anemia (SCA). However, no previous study has examined the interaction among these SNPs in the regulation of HbF. We examined whether HbF-boosting haplotypes combining alleles of functional SNPs of BCL11A and HMIP-2 were associated with clinical outcomes and hematological parameters, and whether they interact to regulate HbF in a cohort of Brazilian children with SCA. The minor haplotype of BCL11A ("TCA", an allele combination of rs1427407, rs766432, and rs4671393) was associated with higher HbF, hemoglobin and lower reticulocytes count compared to reference haplotype "GAG". The minor haplotype of HMIP-2 ("CGC", an allele combination of rs9399137, rs4895441, and rs9494145) was associated with higher HbF and hemoglobin compared to reference haplotype "TAT". Subjects carrying minor haplotypes showed reduced rate of clinical complications compared to reference haplotypes. Non-carriers of both minor haplotypes for BCL11A and HMIP-2 showed the lowest HbF concentration. Subjects carrying only the minor haplotype of BCL11A showed significantly higher HbF concentration than non-carriers of any minor haplotype, which showed no significant difference compared to subjects carrying only the minor haplotype of HMIP-2. Interestingly, subjects carrying both minor haplotypes of BCL11A ("TCA") and HMIP-2 ("CGC") showed significantly higher HbF levels than subjects carrying only the minor haplotype of BCL11A. Our novel findings suggest that HbF-boosting haplotypes of BCL11A and HMIP-2 can predict clinical outcomes and may interact to regulate HbF in patients with SCA.
Collapse
Affiliation(s)
- Rahyssa Rodrigues Sales
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bárbara Lisboa Nogueira
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - André Rolim Belisário
- Centro de Tecidos Biológicos de Minas Gerais, Fundação Hemominas, Lagoa Santa, Minas Gerais, 33400-000, Brazil
| | - Gabriela Faria
- Serviço de Pesquisa, Fundação Hemominas, Belo Horizonte, Minas Gerais, 30130-110, Brazil
| | - Fabiola Mendes
- Serviço de Pesquisa, Fundação Hemominas, Belo Horizonte, Minas Gerais, 30130-110, Brazil
| | - Marcos Borato Viana
- Faculdade de Medicina/NUPAD, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Marcelo Rizzatti Luizon
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil. .,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
13
|
Rizo-de la Torre LC, Borrayo-López FJ, Perea-Díaz FJ, Aquino E, Venegas M, Hernández-Carbajal C, Espinoza-Mata LL, Ibarra-Cortés B. Fetal hemoglobin regulating genetic variants identified in homozygous (HbSS) and heterozygous (HbSA) subjects from South Mexico. J Trop Pediatr 2022; 68:6709334. [PMID: 36130307 DOI: 10.1093/tropej/fmac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Hemoglobin S is caused by a nucleotide change in HBB gene (HBB:c.20A>T, p.Glu6Val), is presented in diverse forms: simple carriers (HbSA), homozygotes (HbSS) also known as sickle cell anemia, and compound heterozygotes with other β-hemoglobinopathies. It is worldwide distributed, in Mexico, is frequently observed in the southern states Guerrero, Oaxaca and Chiapas. Elevated fetal hemoglobin (HbF) is associated with mild phenotype; single-nucleotide variants (SNVs) in modifier genes, such as BCL11A, HBG2, HBBP1 pseudogene and HBS1L-MYB intergenic region, upregulate HbF synthesis. The aim of this study was to identify HbF regulating genetic variants in HbSS and HbSA Mexican subjects. We studied 39 individuals (HbSS = 24, 61%, HbSA = 15, 39%) from Chiapas (67%) and Guerrero (33%), peripheral blood was collected in ethylenediamine tetraacetic acid (EDTA) for molecular and hematological studies, DNA was isolated by salting-out technic and genotyping was performed through allelic discrimination by real time polymerase chain reaction (RT-PCR) using Taqman® probes for 15 SNV (in BCL11A: rs6706648, rs7557939, rs4671393, rs11886868, rs766432, rs7599488, rs1427407; HBS1L-MYB: rs28384513, rs7776054, rs9399137, rs4895441, rs9402686, rs1320963; HBG2: rs7482144; and HBBP1: rs10128556). The obtained data were analyzed using IMB SPSS v.22.0 software. All minor alleles were observed in frequencies over 0.05, the most frequent was rs9402686 (0.82), while the less frequent was rs101028556 (0.08). In HbSS group, the mean fetal hemoglobin was 11.9 ± 5.9% and was significantly elevated in BCL11A rs11886868 wildtype homozygotes and in carriers of HBS1L-MYB intergenic region rs7776054 (p = 0.04 and p = 0.03, respectively). In conclusion, in HbSS Mexican patients, two SNVs were observed related to increased HbF; BCL11A rs11886868 and HBS1L-MYB rs7776054.
Collapse
Affiliation(s)
- L C Rizo-de la Torre
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - F J Borrayo-López
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico.,Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara, Jalisco, Mexico.,División de Genética, CIBO, IMSS, Guadalajara, Jalisco, Mexico
| | - F J Perea-Díaz
- División de Genética, CIBO, IMSS, Guadalajara, Jalisco, Mexico
| | - E Aquino
- Departamento de Hematología, Hospital de Especialidades Pediátricas, Secretaría de Salud, Tuxtla Gutiérrez, Chiapas, Mexico
| | - M Venegas
- Departamento de Hematología, Hospital Regional, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Acapulco, Guerrero, Mexico
| | - C Hernández-Carbajal
- Departamento de Hematología, Hospital General Regional No. 1, IMSS, Acapulco, Guerrero, Mexico
| | - L L Espinoza-Mata
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico.,División de Genética, CIBO, IMSS, Guadalajara, Jalisco, Mexico
| | - B Ibarra-Cortés
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" CUCS, UDG, Guadalajara, Jalisco, Mexico
| |
Collapse
|
14
|
Single Nucleotide Polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and Their Relation to High Fetal Hemoglobin Levels That Alleviate Anemia. Diagnostics (Basel) 2022; 12:diagnostics12061374. [PMID: 35741184 PMCID: PMC9221560 DOI: 10.3390/diagnostics12061374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Anemia is a condition in which red blood cells and/or hemoglobin (Hb) concentrations are decreased below the normal range, resulting in a lack of oxygen being transported to tissues and organs. Those afflicted with this condition may feel lethargic and weak, which reduces their quality of life. The condition may be manifested in inherited blood disorders, such as thalassemia and sickle cell disease, whereas acquired disorders include aplastic anemia, chronic disease, drug toxicity, pregnancy, and nutritional deficiency. The augmentation of fetal hemoglobin (HbF) results in the reduction in clinical symptoms in beta-hemoglobinopathies. Several transcription factors as well as medications such as hydroxyurea may help red blood cells produce more HbF. HbF expression increases with the downregulation of three main quantitative trait loci, namely, the XMN1-HBG2, HBS1L-MYB, and BCL11A genes. These genes contain single nucleotide polymorphisms (SNPs) that modulate the expression of HbF differently in various populations. Allele discrimination is important in SNP genotyping and is widely applied in many assays. In conclusion, the expression of HbF with a genetic modifier is crucial in determining the severity of anemic diseases, and genetic modification of HbF expression may offer clinical benefits in diagnosis and disease management.
Collapse
|
15
|
Serjeant GR. Phenotypic variation in sickle cell disease: the role of beta globin haplotype, alpha thalassaemia and fetal haemoglobin in HbSS. Expert Rev Hematol 2022; 15:107-116. [PMID: 35143361 DOI: 10.1080/17474086.2022.2040984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The haematological and clinical feature vary markedly between the different genotypes of sickle cell disease. Even within the single genotype of homozygous sickle cell disease (HbSS), there is marked variability which is presumed to result from interacting genetic and environmental factors. AREAS COVERED The classification of the different genotypes of sickle cell disease with approximate prevalence at birth in different communities and some of the major clinical and haematological differences. This assessment includes three potential genetic factors influencing haematology and clinical outcome in HbSS, the beta globin haplotype, alpha thalassaemia and persistence of fetal haemoglobin (HbF). EXPERT OPINION The author is a clinician with experience of sickle cell disease primarily in Jamaica but also in Greece, Uganda, Saudi Arabia and India. It is therefore necessarily an account of clinical data and does not address current debates on molecular mechanisms. Most data derive from Jamaica where efforts have been made to reduce any symptomatic bias by long term follow-up of patients all over the island and further reduced by a cohort study based on newborn screening which has been in operation for over 48 years.
Collapse
Affiliation(s)
- Graham R Serjeant
- University of the West Indies, Kingston, Jamaica, lately Chairman, Sickle Cell Trust Jamaica
| |
Collapse
|
16
|
Esoh K, Wonkam-Tingang E, Wonkam A. Sickle cell disease in sub-Saharan Africa: transferable strategies for prevention and care. Lancet Haematol 2021; 8:e744-e755. [PMID: 34481550 DOI: 10.1016/s2352-3026(21)00191-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Sickle cell disease can be life-threatening or chronically debilitating for both children and adults. Worldwide, more than 300 000 children are born with sickle cell disease every year, over 75% of whom in sub-Saharan Africa. Increased awareness and early interventions, such as neonate screening and comprehensive care, have led to considerable reductions in mortality in children younger than 5 years in high-income countries. However, sickle cell disease prevention and care have largely been neglected in Africa. Without intervention, 50-90% of affected children in many sub-Saharan African countries die before their fifth birthday. Fortunately, increasing initiatives in sub-Saharan Africa are piloting interventions such as neonate screening and comprehensive care, and as mortality declines, quality of life and increased life expectancy become major targets for interventions. Hydroxyurea (hydroxycarbamide) and haematopoietic stem-cell transplantation have already been shown to be effective therapies in high-income countries, but are either not widely accessible or too expensive for most African populations. These challenges are being alleviated by numerous networks evolving through international collaborations that are positively changing the outlook of sickle cell disease management in sub-Saharan Africa. In this Series paper, we describe the epidemiology, pathophysiology, clinicobiological profile, and psychosocial effects of sickle cell disease in sub-Saharan Africa. We highlight transferable strategies already used for the successful management of the condition and key strategies and recommendations for affordable and comprehensive care on the continent. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Kevin Esoh
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa; Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
17
|
Adeyemo TA, Ojewunmi OO, Oyetunji IA, Kalejaiye OO, Menzel S. Fetal-haemoglobin enhancing genotype at BCL11A reduces HbA 2 levels in patients with sickle cell anaemia. EJHAEM 2021; 2:459-461. [PMID: 35844678 PMCID: PMC9175773 DOI: 10.1002/jha2.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022]
Abstract
Understanding the interplay of genetic factors with haemoglobin expression and pathological processes in sickle cell disease is important for pharmacological and gene-therapeutic interventions. In our nascent study cohort of Nigerian patients, we found that three major disease-modifying factors, HbF levels, α-thalassaemia deletion and BCL11A genotype, had expected beneficial haematological effects. A key BCL11A variant, while improving HbF levels (5.7%-9.0%), also led to a small, but significant decrease in HbA2. We conclude that in general, interventions boosting HbF are likely to reduce HbA2 in patients' erythroid cells and that such therapeutic strategies might benefit from a parallel stimulation of HbA2 through independent mechanisms.
Collapse
Affiliation(s)
- Titilope A. Adeyemo
- Department of Haematology and Blood Transfusion, College of MedicineUniversity of LagosIdi‐ArabaLagosNigeria
| | - Oyesola O. Ojewunmi
- Sickle Cell Foundation NigeriaIdi‐ArabaLagosNigeria
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonUK
| | | | - Olufunto Olufela Kalejaiye
- Haematology/Oncology Unit, Department of Medicine, College of MedicineUniversity of LagosIdi‐ArabaLagosNigeria
| | - Stephan Menzel
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonUK
| |
Collapse
|
18
|
Drysdale CM, Nassehi T, Gamer J, Yapundich M, Tisdale JF, Uchida N. Hematopoietic-Stem-Cell-Targeted Gene-Addition and Gene-Editing Strategies for β-hemoglobinopathies. Cell Stem Cell 2021; 28:191-208. [PMID: 33545079 DOI: 10.1016/j.stem.2021.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sickle cell disease (SCD) is caused by a well-defined point mutation in the β-globin gene and therefore is an optimal target for hematopoietic stem cell (HSC) gene-addition/editing therapy. In HSC gene-addition therapy, a therapeutic β-globin gene is integrated into patient HSCs via lentiviral transduction, resulting in long-term phenotypic correction. State-of-the-art gene-editing technology has made it possible to repair the β-globin mutation in patient HSCs or target genetic loci associated with reactivation of endogenous γ-globin expression. With both approaches showing signs of therapeutic efficacy in patients, we discuss current genetic treatments, challenges, and technical advances in this field.
Collapse
Affiliation(s)
- Claire M Drysdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tina Nassehi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jackson Gamer
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Morgan Yapundich
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
19
|
Delgadinho M, Ginete C, Santos B, Miranda A, Brito M. Genotypic Diversity among Angolan Children with Sickle Cell Anemia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105417. [PMID: 34069401 PMCID: PMC8158763 DOI: 10.3390/ijerph18105417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
Background. Sickle cell anemia (SCA) is an inherited blood disorder that affects over 300,000 newborns worldwide every year, being particularly prevalent in Sub-Saharan Africa. Despite being a monogenic disease, SCA shows a remarkably high clinical heterogeneity. Several studies have already demonstrated the existence of some polymorphisms that can provide major clinical benefits, producing a mild phenotype. Moreover, the existence of distinct haplotypes can also influence the phenotype patterns of certain populations, leading to different clinical manifestations. Our aim was to assess the association between polymorphisms in genes previously related to SCA disease severity in an Angolan pediatric population. Methods. This study analyzed clinical and biological data collected from 192 Angolan children. Using NGS data, we classified the HBB haplotypes based on four previously described SNPs (rs3834466, rs28440105, rs10128556, and rs968857) and the genotype for the SNPs in HBG2 (rs7482144), BCL11A (rs4671393, rs11886868, rs1427407, rs7557939), HBS1L-MYB (rs66650371) and BGLT3 (rs7924684) genes. Results. The CAR haplotype was undoubtedly the most common HBB haplotype in our population. The HbF values and the ratio of gamma chains were statistically significant for almost all of the variants studied. We reported for the first time an association between rs7924684 in the BGLT3 gene and gamma chains ratio. Conclusions. The current findings emphasize the importance personalized medicine would have if applied to SCA patient care, since some of the variants studied might predict the phenotype and the overall response to treatment.
Collapse
Affiliation(s)
- Mariana Delgadinho
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (C.G.)
| | - Catarina Ginete
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (C.G.)
| | - Brígida Santos
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Angola;
- Hospital Pediátrico David Bernardino (HPDB), Luanda 3067, Angola
| | - Armandina Miranda
- Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal;
| | - Miguel Brito
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (C.G.)
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Angola;
- Correspondence: ; Tel.: +351-218980400
| |
Collapse
|
20
|
Esoh K, Wonkam A. Evolutionary history of sickle-cell mutation: implications for global genetic medicine. Hum Mol Genet 2021; 30:R119-R128. [PMID: 33461216 PMCID: PMC8117455 DOI: 10.1093/hmg/ddab004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Resistance afforded by the sickle-cell trait against severe malaria has led to high frequencies of the sickle-cell mutation [HBB; c.20T>A, p.Glu6Val; OMIM: 141900 (HBB-βS)] in most parts of Africa. High-coverage sequencing and genotype data have now confirmed the single African origin of the sickle-cell gene variant [HBB; c.20T>A, p.Glu6Val; OMIM: 141900 (HBB-βS)]. Nevertheless, the classical HBB-like genes cluster haplotypes remain a rich source of HBB-βS evolutionary information. The overlapping distribution of HBB-βS and other disease-associated variants means that their evolutionary genetics must be investigated concurrently. In this review: (1) we explore the evolutionary history of HBB-βS and its implications in understanding human migration within and out of Africa: e.g. HBB haplotypes and recent migration paths of the Bantu expansion, occurrence of ~7% of the Senegal haplotype in Angola reflecting changes in population/SCD dynamics, and existence of all five classical HBB haplotype in Cameroon and Egypt suggesting a much longer presence of HBB-βS in these regions; (2) we discuss the time estimates of the emergence of HBB-βS in Africa and finally, (3) we discuss implications for genetic medicine in understanding complex epistatic interactions between HBB-βS and other gene variants selected under environmental pressure in Africa e.g. variants in HBB, HBA, G6PD, APOL1, APOE, OSBPL10 and RXRA.
Collapse
Affiliation(s)
- Kevin Esoh
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Papasavva PL, Papaioannou NY, Patsali P, Kurita R, Nakamura Y, Sitarou M, Christou S, Kleanthous M, Lederer CW. Distinct miRNA Signatures and Networks Discern Fetal from Adult Erythroid Differentiation and Primary from Immortalized Erythroid Cells. Int J Mol Sci 2021; 22:3626. [PMID: 33807258 PMCID: PMC8037168 DOI: 10.3390/ijms22073626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs crucial for post-transcriptional and translational regulation of cellular and developmental pathways. The study of miRNAs in erythropoiesis elucidates underlying regulatory mechanisms and facilitates related diagnostic and therapy development. Here, we used DNA Nanoball (DNB) small RNA sequencing to comprehensively characterize miRNAs in human erythroid cell cultures. Based on primary human peripheral-blood-derived CD34+ (hCD34+) cells and two influential erythroid cell lines with adult and fetal hemoglobin expression patterns, HUDEP-2 and HUDEP-1, respectively, our study links differential miRNA expression to erythroid differentiation, cell type, and hemoglobin expression profile. Sequencing results validated by reverse-transcription quantitative PCR (RT-qPCR) of selected miRNAs indicate shared differentiation signatures in primary and immortalized cells, characterized by reduced overall miRNA expression and reciprocal expression increases for individual lineage-specific miRNAs in late-stage erythropoiesis. Despite the high similarity of same-stage hCD34+ and HUDEP-2 cells, differential expression of several miRNAs highlighted informative discrepancies between both cell types. Moreover, a comparison between HUDEP-2 and HUDEP-1 cells displayed changes in miRNAs, transcription factors (TFs), target genes, and pathways associated with globin switching. In resulting TF-miRNA co-regulatory networks, major therapeutically relevant regulators of globin expression were targeted by many co-expressed miRNAs, outlining intricate combinatorial miRNA regulation of globin expression in erythroid cells.
Collapse
Affiliation(s)
- Panayiota L. Papasavva
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Nikoletta Y. Papaioannou
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan; (R.K.); (Y.N.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan; (R.K.); (Y.N.)
| | - Maria Sitarou
- Thalassemia Clinic Larnaca, Larnaca General Hospital, Larnaca 6301, Cyprus;
| | - Soteroulla Christou
- Thalassemia Clinic Nicosia, Archbishop Makarios III Hospital, Nicosia 1474, Cyprus;
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
22
|
Alpha thalassemia, but not β S-globin haplotypes, influence sickle cell anemia clinical outcome in a large, single-center Brazilian cohort. Ann Hematol 2021; 100:921-931. [PMID: 33586016 DOI: 10.1007/s00277-021-04450-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Alpha thalassemia and beta-globin haplotype are considered classical genetic disease modifiers in sickle cell anemia (SCA) causing clinical heterogeneity. Nevertheless, their functional impact on SCA disease emergence and progression remains elusive. To better understand the role of alpha thalassemia and beta-globin haplotype in SCA, we performed a retrospective study evaluating the clinical manifestations of 614 patients. The univariate analysis showed that the presence of alpha-thalassemia -3.7-kb mutation (αα/-α and -α/-α) decreased the risk of stroke development (p = 0.046), priapism (p = 0.033), and cholelithiasis (p = 0.021). Furthermore, the cumulative incidence of stroke (p = 0.023) and cholelithiasis (p = 0.006) was also significantly lower for patients carrying the alpha thalassemia -3.7-kb mutation. No clinical effects were associated with the beta-globin haplotype analysis, which could be explained by the relatively homogeneous haplotype composition in our cohort. Our results reinforce that alpha thalassemia can provide protective functions against hemolysis-related symptoms in SCA. Although, several genetic modifiers can impact the inflammatory state of SCA patients, the alpha thalassemia mutation remains one of the most recurrent genetic aberration and should therefore always be considered first.
Collapse
|
23
|
When basic science reaches into rational therapeutic design: from historical to novel leads for the treatment of β-globinopathies. Curr Opin Hematol 2021; 27:141-148. [PMID: 32167946 DOI: 10.1097/moh.0000000000000577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW β-hemoglobinopathies, such as β-Thalassemias (β-Thal) and sickle cell disease (SCD) are among the most common inherited genetic disorders in humans worldwide. These disorders are characterized by a quantitative (β-Thal) or qualitative (SCD) defects in adult hemoglobin production, leading to anemia, ineffective erythropoiesis and severe secondary complications. Reactivation of the fetal globin genes (γ-globin), making-up fetal hemoglobin (HbF), which are normally silenced in adults, represents a major strategy to ameliorate anemia and disease severity. RECENT FINDINGS Following the identification of the first 'switching factors' for the reactivation of fetal globin gene expression more than 10 years ago, a multitude of novel leads have recently been uncovered. SUMMARY Recent findings provided invaluable functional insights into the genetic and molecular networks controlling globin genes expression, revealing that complex repression systems evolved in erythroid cells to maintain HbF silencing in adults. This review summarizes these unique and exciting discoveries of the regulatory factors controlling the globin switch. New insights and novel leads for therapeutic strategies based on the pharmacological induction of HbF are discussed. This represents a major breakthrough for rational drug design in the treatment of β-Thal and SCD.
Collapse
|
24
|
Adekile A. The Genetic and Clinical Significance of Fetal Hemoglobin Expression in Sickle Cell Disease. Med Princ Pract 2021; 30:201-211. [PMID: 32892201 PMCID: PMC8280415 DOI: 10.1159/000511342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) is phenotypically heterogeneous. One major genetic modifying factor is the patient's fetal hemoglobin (HbF) level. The latter is determined by the patient's β-globin gene cluster haplotype and cis- and trans-acting single nucleotide polymorphisms (SNPs) at other distant quantitative trait loci (QTL). The Arab/India haplotype is associated with persistently high HbF levels and also a relatively mild phenotype. This haplotype carries the Xmn1 (C/T) SNP, rs7482144, in the HBG2 locus. The major identified trans-acting QTL contain SNPs residing in the BCL11A on chromosome 2 and the HMIP locus on chromosome 6. These collectively account for 15-30% of HbF expression in different world populations and in patients with SCD or β-thalassemia. Patients with SCD in Kuwait and Eastern Saudi Arabia uniformly carry the Arab/India haplotype, but despite this, the HbF and clinical phenotypes show considerable heterogeneity. Pain episodes and avascular necrosis of the femoral head are particularly common, but severe bacterial infections, stroke, priapism, and leg ulcers are uncommon. Moreover, the HbF modifiers appear to be different; the reported BCL11A and HMIP SNPs appear to play insignificant roles. There are probably novel modifiers to be discovered in this population. This review examines the common clinical phenotypes in Kuwaiti patients with elevated HbF and the available information on HbF modifiers. The response of the patients to hydroxyurea is discussed. The presentation of patients with other sickle compound heterozygotes (Sβthal and HbSD), vis-à-vis their HbF levels, is also addressed critically.
Collapse
Affiliation(s)
- Adekunle Adekile
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,
| |
Collapse
|
25
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|
26
|
Barbanera Y, Arcioni F, Lancioni H, La Starza R, Cardinali I, Matteucci C, Nofrini V, Roetto A, Piga A, Grammatico P, Caniglia M, Mecucci C, Gorello P. Comprehensive analysis of mitochondrial and nuclear DNA variations in patients affected by hemoglobinopathies: A pilot study. PLoS One 2020; 15:e0240632. [PMID: 33091040 PMCID: PMC7581000 DOI: 10.1371/journal.pone.0240632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
The hemoglobin disorders are the most common single gene disorders in the world. Previous studies have suggested that they are deeply geographically structured and a variety of genetic determinants influences different clinical phenotypes between patients inheriting identical β-globin gene mutations. In order to get new insights into the heterogeneity of hemoglobin disorders, we investigated the molecular variations on nuclear genes (i.e. HBB, HBG2, BCL11A, HBS1L and MYB) and mitochondrial DNA control region. This pilot study was carried out on 53 patients belonging to different continents and molecularly classified in 4 subgroup: β-thalassemia (β+/β+, β0/β0 and β+/β0)(15), sickle cell disease (HbS/HbS)(20), sickle cell/β-thalassemia (HbS/β+ or HBS/β0)(10), and non-thalassemic compound heterozygous (HbS/HbC, HbO-Arab/HbC)(8). This comprehensive phylogenetic analysis provided a clear separation between African and European patients either in nuclear or mitochondrial variations. Notably, informing on the phylogeographic structure of affected individuals, this accurate genetic stratification, could help to optimize the diagnostic algorithm for patients with uncertain or unknown origin.
Collapse
Affiliation(s)
- Ylenia Barbanera
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Francesco Arcioni
- Pediatric Oncohematology, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberta La Starza
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Caterina Matteucci
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Valeria Nofrini
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Turin, Hospital San Luigi Gonzaga, Turin, Italy
| | - Antonio Piga
- Department of Clinical and Biological Sciences, University of Turin, Hospital San Luigi Gonzaga, Turin, Italy
| | - Paola Grammatico
- Department of Molecular Medicine, Laboratory of Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Maurizio Caniglia
- Pediatric Oncohematology, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Cristina Mecucci
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Paolo Gorello
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
27
|
HbF Levels in Sickle Cell Disease Are Associated with Proportion of Circulating Hematopoietic Stem and Progenitor Cells and CC-Chemokines. Cells 2020; 9:cells9102199. [PMID: 33003401 PMCID: PMC7650715 DOI: 10.3390/cells9102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
The concentration of circulating hematopoietic stem and progenitor cells has not been studied longitudinally. Here, we report that the proportions of Lin-CD34+38- hematopoietic multipotent cells (HMCs) and of Lin-CD34+CD38+ hematopoietic progenitors cells (HPCs) are highly variable between individuals but stable over long periods of time, in both healthy individuals and sickle cell disease (SCD) patients. This suggests that these proportions are regulated by genetic polymorphisms or by epigenetic mechanisms. We also report that in SCD patients treated with hydroxyurea, the proportions of circulating HMCs and HPCs show a strong positive and negative correlation with fetal hemoglobin (HbF) levels, respectively. Titration of 65 cytokines revealed that the plasma concentration of chemokines CCL2, CCL11, CCL17, CCL24, CCL27, and PDGF-BB were highly correlated with the proportion of HMCs and HPCs and that a subset of these cytokines were also correlated with HbF levels. A linear model based on four of these chemokines could explain 80% of the variability in the proportion of circulating HMCs between individuals. The proportion of circulating HMCs and HPCs and the concentration of these chemokines might therefore become useful biomarkers for HbF response to HU in SCD patients. Such markers might become increasingly clinically relevant, as alternative treatment modalities for SCD are becoming available.
Collapse
|
28
|
Tepakhan W, Kanjanaopas S, Srewaradachpisal K. Association Between Genetic Polymorphisms and Hb F Levels in Heterozygous β-Thalassemia 3.5 kb Deletions. Hemoglobin 2020; 44:338-343. [PMID: 32878504 DOI: 10.1080/03630269.2020.1811117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in several genetic modifying factors have been related to Hb F levels, including Gγ XmnI polymorphism, B-cell lymphoma/leukemia 11 A (BCL11A), HBS1L-MYB intergenic polymorphism (HMIP) and a mutation in the Krüppel-like factor 1 (KLF1). This study aimed to determine whether genetic variability of these modifying factors affects Hb F levels in heterozygous β-thalassemia (β-thal) 3.5 kb deletion (NC_000011.10: g.5224302-5227791del13490bp). A total of 111 β-thal 3.5 kb deletion carriers with Hb F levels ranging from 0.9 to 18.4% was recruited for this study. Genotyping of SNPs including HBG2 rs7482144, HMIP rs4895441 and rs9399137, BCL11A rs4671393 and KLF1 rs2072596 was identified. Multiple regression analyses showed that only two SNPs (HMIP rs4895441 and rs9399137) influenced Hb F levels. Interestingly, a combination of these two SNPs was associated with higher Hb F levels. Our study is the first to demonstrate that the rs4895441, rs9399137 of HMIP are associated with elevated Hb F levels in the heterozygous β-thal 3.5 kb deletion.
Collapse
Affiliation(s)
- Wanicha Tepakhan
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sataron Kanjanaopas
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Korntip Srewaradachpisal
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
29
|
Alaoui-Ismaili FZ, Laghmich A, Ghailani-Nourouti N, Barakat A, Bennani-Mechita M. XmnI Polymorphism in Sickle Cell Disease in North Morocco. Hemoglobin 2020; 44:190-194. [PMID: 32508152 DOI: 10.1080/03630269.2020.1772284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sickle cell disease is one of the most common severe monogenic disorders in the world. The -158 XmnI polymorphism (C>T) of the Gγ-globin gene promoter is known to be associated with increased expression of the Gγ-globin gene, thus, higher production of Hb F and lesser clinical severity. This study aims to determine the frequency of the XmnI polymorphism and its association with Hb F levels as a modulating factor of sickle cell disease severity in north Moroccan patients. Three hundred and eight subjects carrying the sickle cell mutation and 160 healthy individuals were recruited at the regional hospital of Larache, Morocco. The complete blood count and the Hb F levels were analyzed. The XmnI polymorphism was determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and statistical analysis were done using the Statistical Package for Social Sciences software version 20. Our results estimated the allelic frequency of the XmnI polymorphism in our population at 15.8%. Out of 468 samples, 7.6% were homozygous [+/+] and 16.4% were heterozygous [+/-] for the XmnI polymorphism. This polymorphism was revealed at 20.6% in SS patients, 24.2% in AS carriers, 28.6% in Hb S (HBB: c.20A>T)/β-thalassemia (β-thal) patients and 22.5% in AA subjects. The north Moroccan sickle cell disease patients have shown a low frequency of the XmnI polymorphism. This was later found to be associated with high Hb F levels and mild clinical severity.
Collapse
Affiliation(s)
- Fatima-Zahra Alaoui-Ismaili
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, Tangier, Morocco
| | - Achraf Laghmich
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, Tangier, Morocco
| | - Naima Ghailani-Nourouti
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, Tangier, Morocco
| | - Amina Barakat
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, Tangier, Morocco
| | - Mohcine Bennani-Mechita
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, Tangier, Morocco
| |
Collapse
|
30
|
Bogdanova A, Kaestner L, Simionato G, Wickrema A, Makhro A. Heterogeneity of Red Blood Cells: Causes and Consequences. Front Physiol 2020; 11:392. [PMID: 32457644 PMCID: PMC7221019 DOI: 10.3389/fphys.2020.00392] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Mean values of hematological parameters are currently used in the clinical laboratory settings to characterize red blood cell properties. Those include red blood cell indices, osmotic fragility test, eosin 5-maleimide (EMA) test, and deformability assessment using ektacytometry to name a few. Diagnosis of hereditary red blood cell disorders is complemented by identification of mutations in distinct genes that are recognized "molecular causes of disease." The power of these measurements is clinically well-established. However, the evidence is growing that the available information is not enough to understand the determinants of severity of diseases and heterogeneity in manifestation of pathologies such as hereditary hemolytic anemias. This review focuses on an alternative approach to assess red blood cell properties based on heterogeneity of red blood cells and characterization of fractions of cells with similar properties such as density, hydration, membrane loss, redox state, Ca2+ levels, and morphology. Methodological approaches to detect variance of red blood cell properties will be presented. Causes of red blood cell heterogeneity include cell age, environmental stress as well as shear and metabolic stress, and multiple other factors. Heterogeneity of red blood cell properties is also promoted by pathological conditions that are not limited to the red blood cells disorders, but inflammatory state, metabolic diseases and cancer. Therapeutic interventions such as splenectomy and transfusion as well as drug administration also impact the variance in red blood cell properties. Based on the overview of the studies in this area, the possible applications of heterogeneity in red blood cell properties as prognostic and diagnostic marker commenting on the power and selectivity of such markers are discussed.
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Greta Simionato
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Asya Makhro
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Stephanou C, Tamana S, Minaidou A, Papasavva P, Kleanthous M, Kountouris P. Genetic Modifiers at the Crossroads of Personalised Medicine for Haemoglobinopathies. J Clin Med 2019; 8:E1927. [PMID: 31717530 PMCID: PMC6912721 DOI: 10.3390/jcm8111927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Haemoglobinopathies are common monogenic disorders with diverse clinical manifestations, partly attributed to the influence of modifier genes. Recent years have seen enormous growth in the amount of genetic data, instigating the need for ranking methods to identify candidate genes with strong modifying effects. Here, we present the first evidence-based gene ranking metric (IthaScore) for haemoglobinopathy-specific phenotypes by utilising curated data in the IthaGenes database. IthaScore successfully reflects current knowledge for well-established disease modifiers, while it can be dynamically updated with emerging evidence. Protein-protein interaction (PPI) network analysis and functional enrichment analysis were employed to identify new potential disease modifiers and to evaluate the biological profiles of selected phenotypes. The most relevant gene ontology (GO) and pathway gene annotations for (a) haemoglobin (Hb) F levels/Hb F response to hydroxyurea included urea cycle, arginine metabolism and vascular endothelial growth factor receptor (VEGFR) signalling, (b) response to iron chelators included xenobiotic metabolism and glucuronidation, and (c) stroke included cytokine signalling and inflammatory reactions. Our findings demonstrate the capacity of IthaGenes, together with dynamic gene ranking, to expand knowledge on the genetic and molecular basis of phenotypic variation in haemoglobinopathies and to identify additional candidate genes to potentially inform and improve diagnosis, prognosis and therapeutic management.
Collapse
Affiliation(s)
| | | | | | | | - Marina Kleanthous
- Correspondence: (M.K.); (P.K.); Tel.:+357-2239-2652 (M.K.); +357-2239-2623 (P.K.)
| | - Petros Kountouris
- Correspondence: (M.K.); (P.K.); Tel.:+357-2239-2652 (M.K.); +357-2239-2623 (P.K.)
| |
Collapse
|
32
|
Theranostics of Genetic Diseases. Mol Diagn Ther 2019; 23:153-154. [DOI: 10.1007/s40291-019-00395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|