1
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Schon KR, O'Donovan DG, Briggs M, Rowe JB, Wijesekera L, Chinnery PF, van den Ameele J. Multisystem pathology in McLeod syndrome. Neuropathology 2024; 44:109-114. [PMID: 37438874 DOI: 10.1111/neup.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
We present a comprehensive characterization of clinical, neuropathological, and multisystem features of a man with genetically confirmed McLeod neuroacanthocytosis syndrome, including video and autopsy findings. A 61-year-old man presented with a movement disorder and behavioral change. Examination showed dystonic choreiform movements in all four limbs, reduced deep-tendon reflexes, and wide-based gait. He had oromandibular dyskinesia causing severe dysphagia. Elevated serum creatinine kinase (CK) was first noted in his thirties, but investigations, including muscle biopsy at that time, were inconclusive. Brain magnetic resonance imaging showed white matter volume loss, atrophic basal ganglia, and chronic small vessel ischemia. Despite raised CK, electromyography did not show myopathic changes. Exome gene panel testing was negative, but targeted genetic analysis revealed a hemizygous pathogenic variant in the XK gene c.895C > T p.(Gln299Ter), consistent with a diagnosis of McLeod syndrome. The patient died of sepsis, and autopsy showed astrocytic gliosis and atrophy of the basal ganglia, diffuse iron deposition in the putamen, and mild Alzheimer's pathology. Muscle pathology was indicative of mild chronic neurogenic atrophy without overt myopathic features. He had non-specific cardiomyopathy and splenomegaly. McLeod syndrome is an ultra-rare neurodegenerative disorder caused by X-linked recessive mutations in the XK gene. Diagnosis has management implications since patients are at risk of severe transfusion reactions and cardiac complications. When a clinical diagnosis is suspected, candidate genes should be interrogated rather than solely relying on exome panels.
Collapse
Affiliation(s)
- Katherine R Schon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Dominic G O'Donovan
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mayen Briggs
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Lokesh Wijesekera
- Department of Clinical Neurophysiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Yeow D, Rudaks LI, Siow SF, Davis RL, Kumar KR. Genetic Testing of Movements Disorders: A Review of Clinical Utility. Tremor Other Hyperkinet Mov (N Y) 2024; 14:2. [PMID: 38222898 PMCID: PMC10785957 DOI: 10.5334/tohm.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
Currently, pathogenic variants in more than 500 different genes are known to cause various movement disorders. The increasing accessibility and reducing cost of genetic testing has resulted in increasing clinical use of genetic testing for the diagnosis of movement disorders. However, the optimal use case(s) for genetic testing at a patient level remain ill-defined. Here, we review the utility of genetic testing in patients with movement disorders and also highlight current challenges and limitations that need to be considered when making decisions about genetic testing in clinical practice. Highlights The utility of genetic testing extends across multiple clinical and non-clinical domains. Here we review different aspects of the utility of genetic testing for movement disorders and the numerous associated challenges and limitations. These factors should be weighed on a case-by-case basis when requesting genetic tests in clinical practice.
Collapse
Affiliation(s)
- Dennis Yeow
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurology, Prince of Wales Hospital, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Laura I. Rudaks
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Sue-Faye Siow
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ryan L. Davis
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Neurogenetics Research Group, Kolling Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Kishore R. Kumar
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Carrington G, Hau A, Kosta S, Dugdale HF, Muntoni F, D’Amico A, Van den Bergh P, Romero NB, Malfatti E, Vilchez JJ, Oldfors A, Pajusalu S, Õunap K, Giralt-Pujol M, Zanoteli E, Campbell KS, Iwamoto H, Peckham M, Ochala J. Human skeletal myopathy myosin mutations disrupt myosin head sequestration. JCI Insight 2023; 8:e172322. [PMID: 37788100 PMCID: PMC10721271 DOI: 10.1172/jci.insight.172322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Myosin heavy chains encoded by MYH7 and MYH2 are abundant in human skeletal muscle and important for muscle contraction. However, it is unclear how mutations in these genes disrupt myosin structure and function leading to skeletal muscle myopathies termed myosinopathies. Here, we used multiple approaches to analyze the effects of common MYH7 and MYH2 mutations in the light meromyosin (LMM) region of myosin. Analyses of expressed and purified MYH7 and MYH2 LMM mutant proteins combined with in silico modeling showed that myosin coiled coil structure and packing of filaments in vitro are commonly disrupted. Using muscle biopsies from patients and fluorescent ATP analog chase protocols to estimate the proportion of myosin heads that were super-relaxed, together with x-ray diffraction measurements to estimate myosin head order, we found that basal myosin ATP consumption was increased and the myosin super-relaxed state was decreased in vivo. In addition, myofiber mechanics experiments to investigate contractile function showed that myofiber contractility was not affected. These findings indicate that the structural remodeling associated with LMM mutations induces a pathogenic state in which formation of shutdown heads is impaired, thus increasing myosin head ATP demand in the filaments, rather than affecting contractility. These key findings will help design future therapies for myosinopathies.
Collapse
Affiliation(s)
- Glenn Carrington
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Abbi Hau
- Centre of Human and Applied Physiological Sciences and
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, United Kingdom
| | - Sarah Kosta
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hannah F. Dugdale
- Centre of Human and Applied Physiological Sciences and
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Adele D’Amico
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Peter Van den Bergh
- Neuromuscular Reference Center, Neurology Department, University Hospital Saint-Luc, Brussels, Belgium
| | - Norma B. Romero
- Neuromuscular Morphology Unit, Institute of Myology, Myology Research Centre INSERM, Sorbonne University, Hôpital Pitié-Salpêtrière, Paris, France
| | - Edoardo Malfatti
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Inserm U955, Creteil, France
- U1179 UVSQ-INSERM Handicap Neuromuscular: Physiology, Biotherapy and Applied Pharmacology, UFR Simone Veil-Santé, Université Versailles Saint Quentin en Yvelines, Paris-Saclay, France
| | - Juan Jesus Vilchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sander Pajusalu
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Marta Giralt-Pujol
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Edmar Zanoteli
- Universidade de São Paulo, Hospital das Clínicas, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Neurology, São Paulo SP, Brazil
| | - Kenneth S. Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Michelle Peckham
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Pecoraro C, Fioretti T, Perruno A, Klain A, Cioffi D, Ambrosio A, Passaro D, Annicchiarico Petruzzelli L, Di Domenico C, de Girolamo D, Vallone S, Cattaneo F, Ammendola R, Esposito G. De Novo Large Deletions in the PHEX Gene Caused X-Linked Hypophosphataemic Rickets in Two Italian Female Infants Successfully Treated with Burosumab. Diagnostics (Basel) 2023; 13:2552. [PMID: 37568915 PMCID: PMC10417872 DOI: 10.3390/diagnostics13152552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Pathogenic variants in the PHEX gene cause rare and severe X-linked dominant hypophosphataemia (XLH), a form of heritable hypophosphatemic rickets (HR) characterized by renal phosphate wasting and elevated fibroblast growth factor 23 (FGF23) levels. Burosumab, the approved human monoclonal anti-FGF23 antibody, is the treatment of choice for XLH. The genetic and phenotypic heterogeneity of HR often delays XLH diagnoses, with critical effects on disease course and therapy. We herein report the clinical and genetic features of two Italian female infants with sporadic HR who successfully responded to burosumab. Their diagnoses were based on clinical and laboratory findings and physical examinations. Next-generation sequencing (NGS) of the genes associated with inherited HR and multiple ligation probe amplification (MLPA) analysis of the PHEX and FGF23 genes were performed. While a conventional analysis of the NGS data did not reveal pathogenic or likely pathogenic small nucleotide variants (SNVs) in the known HR-related genes, a quantitative analysis identified two different heterozygous de novo large intragenic deletions in PHEX, and this was confirmed by MLPA. Our molecular data indicated that deletions in the PHEX gene can be the cause of a significant fraction of XLH; hence, their presence should be evaluated in SNV-negative female patients. Our patients successfully responded to burosumab, demonstrating the efficacy of this drug in the treatment of XLH. In conclusion, the execution of a phenotype-oriented genetic test, guided by known types of variants, including the rarest ones, was crucial to reach the definitive diagnoses and ensure our patients of long-term therapy administration.
Collapse
Affiliation(s)
- Carmine Pecoraro
- Paediatric Nephrology, Dialysis and Renal Transplantation Unit, Santobono Pausilipon Children’s Hospital, 80129 Naples, Italy;
| | - Tiziana Fioretti
- CEINGE—Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (D.P.); (C.D.D.); (D.d.G.)
| | - Assunta Perruno
- Primary Care Pediatrician, ASL NA2 North, 80027 Naples, Italy;
| | - Antonella Klain
- Pediatric Endocrinology Unit, Santobono Pausilipon Children’s Hospital, 80129 Naples, Italy; (A.K.); (D.C.)
| | - Daniela Cioffi
- Pediatric Endocrinology Unit, Santobono Pausilipon Children’s Hospital, 80129 Naples, Italy; (A.K.); (D.C.)
| | - Adelaide Ambrosio
- CEINGE—Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (D.P.); (C.D.D.); (D.d.G.)
| | - Diego Passaro
- CEINGE—Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (D.P.); (C.D.D.); (D.d.G.)
| | - Luigi Annicchiarico Petruzzelli
- Paediatric Nephrology, Dialysis and Renal Transplantation Unit, Santobono Pausilipon Children’s Hospital, 80129 Naples, Italy;
| | - Carmela Di Domenico
- CEINGE—Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (D.P.); (C.D.D.); (D.d.G.)
| | - Domenico de Girolamo
- CEINGE—Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (D.P.); (C.D.D.); (D.d.G.)
| | - Sabrina Vallone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (S.V.); (F.C.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (S.V.); (F.C.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (S.V.); (F.C.); (R.A.)
| | - Gabriella Esposito
- CEINGE—Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (D.P.); (C.D.D.); (D.d.G.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (S.V.); (F.C.); (R.A.)
| |
Collapse
|
6
|
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years. Life (Basel) 2022; 12:life12030402. [PMID: 35330153 PMCID: PMC8948690 DOI: 10.3390/life12030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.
Collapse
|