1
|
Soulek DK, Mastascusa NJ, Martin ME, Graves SA. Practical Considerations for Implementation of 177Lu-DOTATATE Neuroendocrine Tumor Treatment Programs. J Nucl Med Technol 2022; 50:jnmt.122.263813. [PMID: 35701215 DOI: 10.2967/jnmt.122.263813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The 2018 FDA approval of 177Lu-DOTATATE for the treatment of somatostatin receptor-positive (SSTR) neuroendocrine tumors (NETs) represents a paradigm shifting approach to cancer treatments around the globe. Gastroenteropancreatic (GEP) NETs overexpress the somatostatin subtype receptor 2, which is now exploited for receptor-based imaging and therapy, thus generating significant progress in the diagnosis and treatment of this orphan disease. The recent FDA approval of receptor-based PET radiopharmaceuticals and a new peptide receptor radiopharmaceutical therapy (PRRT), 177Lu-DOTATATE, has dramatically impacted NET patient management. The focus of this paper is to review clinical considerations associated with implementing a 177Lu-DOTATATE program. We review receptor-based NET radiopharmaceuticals, 177Lu-DOTATATE patient selection criteria, administration methods, clinical, regulatory, and radiation safety considerations, technical factors, tissue dosimetry, and reimbursement guidelines.
Collapse
|
2
|
Fortunati E, Argalia G, Zanoni L, Fanti S, Ambrosini V. New PET Radiotracers for the Imaging of Neuroendocrine Neoplasms. Curr Treat Options Oncol 2022; 23:703-720. [PMID: 35325412 PMCID: PMC9001579 DOI: 10.1007/s11864-022-00967-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/18/2022]
Abstract
OPINION STATEMENT Neuroendocrine neoplasms (NEN) are a heterogeneous group of tumours derived from cells of neuroendocrine origin and can potentially arise everywhere in the human body. The diagnostic assessment of NEN can be performed using a variety of PET radiopharmaceuticals. Well-differentiated NEN (NET) present a high expression of SSTR (somatostatin receptors) and can therefore be studied with 68Ga-DOTA-peptides ([68Ga]Ga-DOTANOC, [68Ga]Ga-DOTATOC, [68Ga]Ga-DOTATATE). Current guidelines recommend the use of SSTR imaging to assess disease extension at staging/restaging, follow-up, assessment of response to therapy and selection of patients who may benefit from radionuclide therapy (PRRT). [18F]F-FDG is used for the assessment of high-grade tumours (high-grade G2, G3 and NEC) and in every case, there is one or more mismatched lesions between diagnostic CT (positive) and SSTR-PET/CT (negative). [18F]F-DOPA is currently used for the assessment of medullary thyroid carcinoma, neuroblastoma, primary pheochromocytoma and abdominal paraganglioma. In recent years, however, several new tracers were designed exploiting the many potential targets of the neuroendocrine cell and were employed in clinical trials for both imaging and therapy. Currently, the real-life clinical impact of these tracers is still mostly not known; however, the favourable biodistribution (e.g. [68Ga]Ga-FAPI, SSTR antagonists) and the possibility to use new theranostic pairs may provide novel diagnostic as well as therapeutic options (e.g. [68Ga]Ga-PSMA, [64Cu]Cu-SARTATE, [68Ga]Ga-CXCR4) for NEN patients.
Collapse
Affiliation(s)
- Emilia Fortunati
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Giulia Argalia
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Valentina Ambrosini
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Ambrosini V, Zanoni L, Filice A, Lamberti G, Argalia G, Fortunati E, Campana D, Versari A, Fanti S. Radiolabeled Somatostatin Analogues for Diagnosis and Treatment of Neuroendocrine Tumors. Cancers (Basel) 2022; 14:1055. [PMID: 35205805 PMCID: PMC8870358 DOI: 10.3390/cancers14041055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are rare and heterogeneous tumors that require multidisciplinary discussion for optimal care. The theranostic approach (DOTA peptides labelled with 68Ga for diagnosis and with 90Y or 177Lu for therapy) plays a crucial role in the management of NENs to assess disease extension and as a criteria for peptide receptor radionuclide therapy (PRRT) eligibility based on somatostatin receptor (SSTR) expression. On the diagnostic side, [68Ga]Ga-DOTA peptides PET/CT (SSTR PET/CT) is the gold standard for imaging well-differentiated SSTR-expressing neuroendocrine tumors (NETs). [18F]FDG PET/CT is useful in higher grade NENs (NET G2 with Ki-67 > 10% and NET G3; NEC) for more accurate disease characterization and prognostication. Promising emerging radiopharmaceuticals include somatostatin analogues labelled with 18F (to overcome the limits imposed by 68Ga), and SSTR antagonists (for both diagnosis and therapy). On the therapeutic side, the evidence gathered over the past two decades indicates that PRRT is to be considered as an effective and safe treatment option for SSTR-expressing NETs, and is currently included in the therapeutic algorithms of the main scientific societies. The positioning of PRRT in the treatment sequence, as well as treatment personalization (e.g., tailored dosimetry, re-treatment, selection criteria, and combination with other alternative treatment options), is warranted in order to improve its efficacy while reducing toxicity. Although very preliminary (being mostly hampered by lack of methodological standardization, especially regarding feature selection/extraction) and often including small patient cohorts, radiomic studies in NETs are also presented. To date, the implementation of radiomics in clinical practice is still unclear. The purpose of this review is to offer an overview of radiolabeled SSTR analogues for theranostic use in NENs.
Collapse
Affiliation(s)
- Valentina Ambrosini
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Angelina Filice
- Nuclear Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.F.); (A.V.)
| | - Giuseppe Lamberti
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giulia Argalia
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
| | - Emilia Fortunati
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
| | - Davide Campana
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.F.); (A.V.)
| | - Stefano Fanti
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|