1
|
Attico E, Galaverni G, Torello A, Bianchi E, Bonacorsi S, Losi L, Manfredini R, Lambiase A, Rama P, Pellegrini G. Comparison between Cultivated Oral Mucosa and Ocular Surface Epithelia for COMET Patients Follow-Up. Int J Mol Sci 2023; 24:11522. [PMID: 37511281 PMCID: PMC10380900 DOI: 10.3390/ijms241411522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Total bilateral Limbal Stem Cell Deficiency is a pathologic condition of the ocular surface due to the loss of corneal stem cells. Cultivated oral mucosa epithelial transplantation (COMET) is the only autologous successful treatment for this pathology in clinical application, although abnormal peripheric corneal vascularization often occurs. Properly characterizing the regenerated ocular surface is needed for a reliable follow-up. So far, the univocal identification of transplanted oral mucosa has been challenging. Previously proposed markers were shown to be co-expressed by different ocular surface epithelia in a homeostatic or perturbated environment. In this study, we compared the transcriptome profile of human oral mucosa, limbal and conjunctival cultured holoclones, identifying Paired Like Homeodomain 2 (PITX2) as a new marker that univocally distinguishes the transplanted oral tissue from the other epithelia. We validated PITX2 at RNA and protein levels to investigate 10-year follow-up corneal samples derived from a COMET-treated aniridic patient. Moreover, we found novel angiogenesis-related factors that were differentially expressed in the three epithelia and instrumental in explaining the neovascularization in COMET-treated patients. These results will support the follow-up analysis of patients transplanted with oral mucosa and provide new tools to understand the regeneration mechanism of transplanted corneas.
Collapse
Affiliation(s)
- Eustachio Attico
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Galaverni
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Torello
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Holostem Terapie Avanzate s.r.l., 41125 Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Susanna Bonacorsi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lorena Losi
- Unit of Pathology, Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Paolo Rama
- SC Ophathalmology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Holostem Terapie Avanzate s.r.l., 41125 Modena, Italy
| |
Collapse
|
2
|
Lu J, Xu L, Wei W, He W. Advanced therapy medicinal products in China: Regulation and development. MedComm (Beijing) 2023; 4:e251. [PMID: 37125239 PMCID: PMC10133728 DOI: 10.1002/mco2.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) have shown dramatic efficacy in addressing serious diseases over the past decade. With the acceleration and deepening of China's drug regulatory reforms, the country sees a continuous introduction of policies that encourage drug innovation. The capacity and efficiency of the Center for Drug Evaluation (CDE), National Medical Products Administration have significantly improved, where substantial resources have been allocated to ATMPs with major innovations and outstanding clinical values that satisfy urgent clinical needs. These changes have greatly stimulated the research and development of biological products in China, ushering in a period of explosive growth in the number of investigational new drug (IND) applications of ATMPs. Here, we described China's ATMP regulatory framework and analyzed data on IND applications for ATMPs submitted to CDE. The data show that China's ATMP industry is expanding dramatically, but lagging behind in terms of the innovative targets and the coverage of indications. However, in recent years, the diversity of product types, targets, and indications is growing. We discussed challenges and opportunities in ATMP regulation. Risk-based regulation and cross-discipline collaborations are encouraged to promote more ATMPs toward market authorization in China.
Collapse
Affiliation(s)
- Jiaqi Lu
- Center for Drug EvaluationNational Medical Products AdministrationBeijingChina
| | - Longchang Xu
- Center for Drug EvaluationNational Medical Products AdministrationBeijingChina
| | - Wei Wei
- Center for Drug EvaluationNational Medical Products AdministrationBeijingChina
| | - Wu He
- Center for Drug EvaluationNational Medical Products AdministrationBeijingChina
| |
Collapse
|
3
|
Adamo D, Attico E, Pellegrini G. Education for the translation of Advanced Therapy Medicinal Products. Front Med (Lausanne) 2023; 10:1125892. [PMID: 37081845 PMCID: PMC10110892 DOI: 10.3389/fmed.2023.1125892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Davide Adamo
- Centre for Regenerative Medicine “Stefano Ferrari”, Interdepartmental Center for Stem Cells and Regenerative Medicine (CIDSTEM), University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Davide Adamo
| | - Eustachio Attico
- Centre for Regenerative Medicine “Stefano Ferrari”, Interdepartmental Center for Stem Cells and Regenerative Medicine (CIDSTEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine “Stefano Ferrari”, Interdepartmental Center for Stem Cells and Regenerative Medicine (CIDSTEM), University of Modena and Reggio Emilia, Modena, Italy
- Holostem Terapie Avanzate s.r.l., Modena, Italy
- Graziella Pellegrini
| |
Collapse
|
4
|
de Kanter AFJ, Jongsma KR, Verhaar MC, Bredenoord AL. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:167-187. [PMID: 36112697 PMCID: PMC10122262 DOI: 10.1089/ten.teb.2022.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Tissue Engineering (TE) is a branch of Regenerative Medicine (RM) that combines stem cells and biomaterial scaffolds to create living tissue constructs to restore patients' organs after injury or disease. Over the last decade, emerging technologies such as 3D bioprinting, biofabrication, supramolecular materials, induced pluripotent stem cells, and organoids have entered the field. While this rapidly evolving field is expected to have great therapeutic potential, its development from bench to bedside presents several ethical and societal challenges. To make sure TE will reach its ultimate goal of improving patient welfare, these challenges should be mapped out and evaluated. Therefore, we performed a systematic review of the ethical implications of the development and application of TE for regenerative purposes, as mentioned in the academic literature. A search query in PubMed, Embase, Scopus, and PhilPapers yielded 2451 unique articles. After systematic screening, 237 relevant ethical and biomedical articles published between 2008 and 2021 were included in our review. We identified a broad range of ethical implications that could be categorized under 10 themes. Seven themes trace the development from bench to bedside: (1) animal experimentation, (2) handling human tissue, (3) informed consent, (4) therapeutic potential, (5) risk and safety, (6) clinical translation, and (7) societal impact. Three themes represent ethical safeguards relevant to all developmental phases: (8) scientific integrity, (9) regulation, and (10) patient and public involvement. This review reveals that since 2008 a significant body of literature has emerged on how to design clinical trials for TE in a responsible manner. However, several topics remain in need of more attention. These include the acceptability of alternative translational pathways outside clinical trials, soft impacts on society and questions of ownership over engineered tissues. Overall, this overview of the ethical and societal implications of the field will help promote responsible development of new interventions in TE and RM. It can also serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. Impact statement To our knowledge, this is the first time that the ethical implications of Tissue Engineering (TE) have been reviewed systematically. By gathering existing scholarly work and identifying knowledge gaps, this review facilitates further research into the ethical and societal implications of TE and Regenerative Medicine (RM) and other emerging biomedical technologies. Moreover, it will serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. As such, our review may promote successful and responsible development of new strategies in TE and RM.
Collapse
Affiliation(s)
- Anne-Floor J. de Kanter
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
de Jongh D, Massey EK, Cronin AJ, Schermer MHN, Bunnik EM. Early-Phase Clinical Trials of Bio-Artificial Organ Technology: A Systematic Review of Ethical Issues. Transpl Int 2022; 35:10751. [PMID: 36388425 PMCID: PMC9659568 DOI: 10.3389/ti.2022.10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
Regenerative medicine has emerged as a novel alternative solution to organ failure which circumvents the issue of organ shortage. In preclinical research settings bio-artificial organs are being developed. It is anticipated that eventually it will be possible to launch first-in-human transplantation trials to test safety and efficacy in human recipients. In early-phase transplantation trials, however, research participants could be exposed to serious risks, such as toxicity, infections and tumorigenesis. So far, there is no ethical guidance for the safe and responsible design and conduct of early-phase clinical trials of bio-artificial organs. Therefore, research ethics review committees will need to look to related adjacent fields of research, including for example cell-based therapy, for guidance. In this systematic review, we examined the literature on early-phase clinical trials in these adjacent fields and undertook a thematic analysis of relevant ethical points to consider for early-phase clinical trials of transplantable bio-artificial organs. Six themes were identified: cell source, risk-benefit assessment, patient selection, trial design, informed consent, and oversight and accountability. Further empirical research is needed to provide insight in patient perspectives, as this may serve as valuable input in determining the conditions for ethically responsible and acceptable early clinical development of bio-artificial organs.
Collapse
Affiliation(s)
- Dide de Jongh
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands,Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands,*Correspondence: Dide de Jongh,
| | - Emma K. Massey
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Antonia J. Cronin
- Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom,King’s College, London, United Kingdom
| | - Maartje H. N. Schermer
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Eline M. Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
6
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
7
|
Frese L, Darwiche SE, Gunning ME, Hoerstrup SP, von Rechenberg B, Giovanoli P, Calcagni M. Optimizing large-scale autologous human keratinocyte sheets for major burns-Toward an animal-free production and a more accessible clinical application. Health Sci Rep 2022; 5:e449. [PMID: 35028432 PMCID: PMC8738975 DOI: 10.1002/hsr2.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Aims Autologous keratinocyte sheets constitute an important component of the burn wound treatment toolbox available to a surgeon and can be considered a life‐saving procedure for patients with severe burns over 50% of their total body surface area. Large‐scale keratinocyte sheet cultivation still fundamentally relies on the use of animal components such as inactivated murine 3T3 fibroblasts as feeders, animal‐derived enzymes such as trypsin, as well as media components such as fetal bovine serum (FBS). This study was therefore aimed to optimize autologous keratinocyte sheets by comparing various alternatives to critical components in their production. Methods Human skin samples were retrieved from remnant operative tissues. Cell isolation efficiency and viability were investigated by comparing the efficacy of porcine‐derived trypsin and animal‐free enzymes (Accutase and TrypLESelect). The subsequent expansion of the cells and the keratinocyte sheet formation was analyzed, comparing various cell culture substrates (inactivated murine 3T3 fibroblasts, inactivated human fibroblasts, Collagen I or plain tissue culture plastic), as well as media containing serum or chemically defined animal‐free media. Results The cell isolation step showed clear cell yield advantages when using porcine‐derived trypsin, compared to animal‐free alternatives. The keratinocyte sheets produced using animal‐free serum were similar to those produced using 3T3 feeder layer and FBS‐containing medium, particularly in mechanical integrity as all grafts were liftable. In addition, sheets grown on collagen in an animal‐free medium showed indications of advantages in homogeneity, speed, reduced variability, and differentiation status compared to the other growth conditions investigated. Most importantly, the procedure was compatible with the up‐scaling requirements of major burn wound treatments. Conclusion This study demonstrated that animal‐free components could be used successfully to reduce the risk profile of large‐scale autologous keratinocyte sheet production, and thereby increase clinical accessibility.
Collapse
Affiliation(s)
- Laura Frese
- Institute for Regenerative Medicine (IREM) University of Zurich Zurich Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland.,La Colline Sion Switzerland
| | - Salim Elias Darwiche
- Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland.,Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Myrna Elisabeth Gunning
- Department of Plastic and Reconstructive Surgery University Hospital Zurich Zurich Switzerland
| | - Simon Philipp Hoerstrup
- Institute for Regenerative Medicine (IREM) University of Zurich Zurich Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland
| | - Brigitte von Rechenberg
- Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland.,Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Pietro Giovanoli
- Department of Plastic and Reconstructive Surgery University Hospital Zurich Zurich Switzerland
| | - Maurizio Calcagni
- Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland.,Department of Plastic and Reconstructive Surgery University Hospital Zurich Zurich Switzerland
| |
Collapse
|
8
|
Zayed M, Iohara K. Immunomodulation and Regeneration Properties of Dental Pulp Stem Cells: A Potential Therapy to Treat Coronavirus Disease 2019. Cell Transplant 2020; 29:963689720952089. [PMID: 32830527 PMCID: PMC7443577 DOI: 10.1177/0963689720952089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, originating from Wuhan, China, is known to cause severe acute respiratory symptoms. The occurrence of a cytokine storm in the lungs is a critical step in the disease pathogenesis, as it causes pathological lesions, pulmonary edema, and acute respiratory distress syndrome, potentially resulting in death. Currently, there is no effective treatment that targets the cytokine storm and helps regenerate the damaged tissue. Mesenchymal stem cells (MSCs) are known to act as anti-inflammatory/immunomodulatory candidates and activate endogenous regeneration. As a result, MSC therapy is a potential treatment approach for COVID-19. Intravenous injection of clinical-grade MSCs into COVID-19 patients can induce an immunomodulatory response along with improved lung function. Dental pulp stem cells (DPSCs) are considered a potential source of MSCs for immunomodulation, tissue regeneration, and clinical application. Although some current clinical trials have treated COVID-19 patients with DPSCs, this therapy has not been approved. Here, we review the potential use of DPSCs and their significance in the development of a therapy for COVID-19.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, Egypt
- Mohammed Zayed, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi 474-8511, Japan.
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
| |
Collapse
|
9
|
Ehlicke F, Berndt J, Marichikj N, Steinmüller-Nethl D, Walles H, Berndt EU, Hansmann J. Biomimetic in vitro test system for evaluation of dental implant materials. Dent Mater 2020; 36:1059-1070. [PMID: 32546398 DOI: 10.1016/j.dental.2020.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Before application in dental practice, novel dental materials are tested in vitro and in vivo to ensure safety and functionality. However, transferability between preclinical and clinical results is often limited. To increase the predictive power of preclinical testing, a biomimetic in vitro test system that mimics the wound niche after implantation was developed. METHODS First, predetermined implant materials were treated with human blood plasma, M2 macrophages and bone marrow stromal stem cells. Thereby, the three-dimensional wound niche was simulated. Samples were cultured for 28 days, and subsequently analyzed for metabolic activity and biomineralization. Second test level involved a cell-infiltrated bone substitute material for an osseointegration assay to measure mechanical bonding between dental material and bone. Standard and novel dental materials validated the developed test approach. RESULTS The developed test system for dental implant materials allowed quantification of biomineralization on implant surface and assessment of the functional stability of mineralized biomaterial-tissue interface. Human blood plasma, M2 macrophages and bone marrow stromal stem cells proved to be crucial components for predictive assessment of implant materials in vitro. Biocompatibility was demonstrated for all tested materials, whereas the degree of deposited mineralized extracellular matrix and mechanical stability differed between the tested materials. Highest amount of functional biomineralization was determined to be on carbon-coated implant surface. SIGNIFICANCE As an ethical alternative to animal testing, the established in vitro dental test system provides an economic and mid-throughput evaluation of novel dental implant materials or modifications thereof, by applying two successive readout levels: biomineralization and osseointegration.
Collapse
Affiliation(s)
- Franziska Ehlicke
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Jonathan Berndt
- Natural Dental Implants AG, Edisonstrasse 63, 12459 Berlin, Germany.
| | - Nina Marichikj
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany.
| | | | - Heike Walles
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Roentgenring 11, 97070 Wuerzburg, Germany.
| | | | - Jan Hansmann
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Roentgenring 11, 97070 Wuerzburg, Germany.
| |
Collapse
|
10
|
Mukherjee S, Darzi S, Rosamilia A, Kadam V, Truong Y, Werkmeister JA, Gargett CE. Blended Nanostructured Degradable Mesh with Endometrial Mesenchymal Stem Cells Promotes Tissue Integration and Anti-Inflammatory Response in Vivo for Pelvic Floor Application. Biomacromolecules 2018; 20:454-468. [DOI: 10.1021/acs.biomac.8b01661] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
| | - Anna Rosamilia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton 3168, Australia
| | - Vinod Kadam
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Yen Truong
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|