1
|
Rokicki J, Campbell ML, van der Meer D, Sartorius AI, Tesli N, Jahołkowski P, Shadrin A, Andreassen O, Westlye LT, Quintana DS, Haukvik UK. Brain-based gene expression and corresponding behavioural relevance of risk genes for broad antisocial behaviour. Neuroimage 2025; 311:121198. [PMID: 40216214 DOI: 10.1016/j.neuroimage.2025.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
Antisocial behaviour (ASB) involves persistent irresponsible, delinquent activities violating rights and safety of others. A meta-analysis of genome-wide association studies revealed significant genetic associations with ASB, yet their brain expression patterns and behavioural relevance remain unclear. Our investigation of fifteen genes associated with ASB examined their biological role and distribution across tissues, integrating post-mortem brain sample data from the Allen-Human-Brain Atlas and the Genotype-Tissue Expression project. We found that these genes were differentially expressed in the brain, particularly in regions like the cerebellum, putamen, and caudate, and were notably downregulated in the pancreas. Single cell type expression analysis revealed that ASB-associated genes had strong correlations with ductal and endothelial cells in the pancreas, indicating a possible metabolic influence on ASB. Certain genes like NTN1, SMAD5, NCAM2, and CDC42EP3 displayed specificity for cognitive terms including chronic pain, heart rate, and aphasia. These expression patterns aligned with neurocognitive domains related to thinking, and learning, distress, motor skills, as determined by fMRI analysis. This study connects specific brain gene expression with potential genetic and metabolic factors in ASB, offering novel insights into its biological basis and possible interdisciplinary approaches to understanding and addressing aggressive behaviours.
Collapse
Affiliation(s)
- Jaroslav Rokicki
- Centre of Research and Education in Forensic Psychiatry (SIFER), Oslo University Hospital, Oslo, Norway.
| | - Megan L Campbell
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Global Initiative for Neuropsychiatric Genetics Education in Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, , Netherlands
| | - Alina I Sartorius
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Natalia Tesli
- Centre of Research and Education in Forensic Psychiatry (SIFER), Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Piotr Jahołkowski
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Daniel S Quintana
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway
| | - Unn K Haukvik
- Centre of Research and Education in Forensic Psychiatry (SIFER), Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Mental health and addiction, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
2
|
Modestino EJ, Blum K, Dennen CA, Downs BW, Bagchi D, Llanos-Gomez L, Elman I, Baron D, Thanos PK, Badgaiyan RD, Braverman ER, Gupta A, Gold MS, Bowirrat A. Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing. J Pers Med 2022; 12:1946. [PMID: 36556167 PMCID: PMC9784939 DOI: 10.3390/jpm12121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Scientific studies have provided evidence that there is a relationship between violent and aggressive behaviors and addictions. Genes involved with the reward system, specifically the brain reward cascade (BRC), appear to be associated with various addictions and impulsive, aggressive, and violent behaviors. In our previous research, we examined the Taq A1 allele (variant D2 dopamine receptor gene) and the DAT-40 base repeat (a variant of the dopamine transporter gene) in 11 Caucasian boys at the Brown School in San Marcus, Texas, diagnosed with intermittent explosive disorder. Thirty supernormal controls were screened to exclude several reward-deficit behaviors, including pathological violence, and genotyped for the DRD2 gene. Additionally, 91 controls were screened to exclude ADHD, pathological violence, alcoholism, drug dependence, and tobacco abuse, and their results were compared with DAT1 genotype results. In the schoolboys vs. supercontrols, there was a significant association with the D2 variant and a trend with the dopamine transporter variant. Results support our hypothesis and the involvement of at least two gene risk alleles with adolescent violent/aggressive behaviors. This study and the research presented in this paper suggest that violent/aggressive behaviors are associated with a greater risk of addiction, mediated via various genes linked to the BRC. This review provides a contributory analysis of how gene polymorphisms, especially those related to the brain reward circuitry, are associated with violent behaviors.
Collapse
Affiliation(s)
- Edward Justin Modestino
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Department of Psychology, Curry College, Milton, MA 02360, USA
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care, Western University Health Sciences, Pomona, CA 91766, USA
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX 78283, USA
- Institute of Psychology, ELTE Eötvös Loránd University, H-1053 Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Molecular Biology and Adelson, School of Medicine, Ariel University, Ariel 40700, Israel
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 08033, USA
| | - B. William Downs
- Division of Nutrigenomics, Victory Nutrition International, Lederach, PA 19438, USA
| | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International, Lederach, PA 19438, USA
- Department of Pharmacy and Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Luis Llanos-Gomez
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
| | - Igor Elman
- Department of Psychiatry, Harvard Medical School, Boston, MA 02139, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care, Western University Health Sciences, Pomona, CA 91766, USA
| | - Panayotis K. Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson, School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
3
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
4
|
The use of buprenorphine/naloxone to treat borderline personality disorder: a case report. Borderline Personal Disord Emot Dysregul 2022; 9:9. [PMID: 35287724 PMCID: PMC8920565 DOI: 10.1186/s40479-022-00181-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Using traditional pharmacotherapy to treat Borderline Personality Disorder (BPD) such as mood stabilizers and second-generation antipsychotics has a lack of supporting evidence. Buprenorphine/Naloxone (BUP/N), a combination medication consisting of a partial opioid agonist, and a full opioid antagonist, is an effective treatment for opioid use disorder. It has also been found effective for treatment-resistant mood disorders. Previous studies suggest a relationship between BPD and endogenous opioids, therefore our case report investigates the effect of BUP/N on a patient diagnosed with BPD. CASE PRESENTATION A 26-year-old female diagnosed with BPD, having recurrent visits to the emergency department (ED) for self-harm/suicidality was treated with BUP/N. Usage of crisis services, ED visits, and hospital admissions were tracked from 15 months prior to BUP/N to 15 months after using BUP/N. Since starting BUP/N, the length and frequency of mental health-related hospital admissions decreased drastically, as did the number of times that she reached out to community crisis services. Since the dosing adjustment to 6 mg in Oct 2020, there have been no calls to the community crisis lines. CONCLUSIONS We suggest pharmacological treatment targeting BPD as a disorder of distress tolerance and self-soothing mediated by the opioid system is an effective individual healing attempt. An important note is that this patient did not use opioids prior to BUP/N and had never been diagnosed with an opioid use disorder. However, she exhausted multiple other pharmacologic therapies and was open to trying whatever was available to improve her quality of life.
Collapse
|
5
|
Wagels L, Habel U, Raine A, Clemens B. Neuroimaging, hormonal and genetic biomarkers for pathological aggression — success or failure? Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Elton A, Garbutt JC, Boettiger CA. Risk and resilience for alcohol use disorder revealed in brain functional connectivity. NEUROIMAGE-CLINICAL 2021; 32:102801. [PMID: 34482279 PMCID: PMC8416942 DOI: 10.1016/j.nicl.2021.102801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/15/2021] [Accepted: 08/18/2021] [Indexed: 01/22/2023]
Abstract
A family history of alcoholism (FH) increases risk for alcohol use disorder (AUD), yet many at-risk individuals never develop alcohol use problems. FH is associated with intermediate levels of risk phenotypes, whereas distinct, compensatory brain changes likely promote resilience. Although several cognitive, behavioral, and personality factors have been associated with AUD, the relative contributions of these processes and their neural underpinnings to risk or resilience processes remains less clear. We examined whole-brain resting-state functional connectivity (FC) and behavioral metrics from 841 young adults from the Human Connectome Project, including healthy controls, individuals with AUD, and their unaffected siblings. First, we identified functional connections in which unaffected siblings were intermediate between controls and AUD, indicating AUD risk, and those in which siblings diverged, indicating resilience. Canonical correlations relating brain risk and resilience FC to behavioral patterns revealed AUD risk and resilience phenotypes. Risk phenotypes primarily implicated frontal-parietal networks corresponding with executive function, impulsivity, externalizing behaviors, and social-emotional intelligence. Conversely, resilience-related phenotypes were underpinned by networks of medial prefrontal, striatal, temporal, brainstem and cerebellar connectivity, which associated with high trait attention and low antisocial behavior. Additionally, we calculated "polyphenotypic" risk and resilience scores, to investigate how the relative load of risk and resilience phenotypes influenced the probability of an AUD diagnosis. Polyphenotypic scores predicted AUD in a dose-dependent manner. Moreover, resilience phenotypes interacted with risk phenotypes, reducing their effects. The hypothesis-generating results revealed interpretable AUD-related phenotypes and offer brain-informed targets for developing more effective interventions.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - James C Garbutt
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Charlotte A Boettiger
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Marshall JN, Lopez AI, Pfaff AL, Koks S, Quinn JP, Bubb VJ. Variable number tandem repeats - Their emerging role in sickness and health. Exp Biol Med (Maywood) 2021; 246:1368-1376. [PMID: 33794697 PMCID: PMC8239992 DOI: 10.1177/15353702211003511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms regulating tissue specific and stimulus inducible
regulation is at the heart of understanding human biology and how this
translates to wellbeing, the ageing process, and disease progression.
Polymorphic DNA variation is superimposed as an extra layer of complexity in
such processes which underpin our individuality and are the focus of
personalized medicine. This review focuses on the role and action of repetitive
DNA, specifically variable number tandem repeats and
SINE-VNTR-Alu domains, highlighting their role in
modification of gene structure and gene expression in addition to their
polymorphic nature being a genetic modifier of disease risk and progression.
Although the literature focuses on their role in disease, it illustrates their
potential to be major contributors to normal physiological function. To date,
these elements have been under-reported in genomic analysis due to the
difficulties in their characterization with short read DNA sequencing methods.
However, recent advances in long read sequencing methods should resolve these
problems allowing for a greater understanding of their contribution to a host of
genomic and functional mechanisms underlying physiology and disease.
Collapse
Affiliation(s)
- Jack Ng Marshall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ana Illera Lopez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
8
|
Mentis AFA, Dardiotis E, Katsouni E, Chrousos GP. From warrior genes to translational solutions: novel insights into monoamine oxidases (MAOs) and aggression. Transl Psychiatry 2021; 11:130. [PMID: 33602896 PMCID: PMC7892552 DOI: 10.1038/s41398-021-01257-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The pervasive and frequently devastating nature of aggressive behavior calls for a collective effort to understand its psychosocial and neurobiological underpinnings. Regarding the latter, diverse brain areas, neural networks, neurotransmitters, hormones, and candidate genes have been associated with antisocial and aggressive behavior in humans and animals. This review focuses on the role of monoamine oxidases (MAOs) and the genes coding for them, in the modulation of aggression. During the past 20 years, a substantial number of studies using both pharmacological and genetic approaches have linked the MAO system with aggressive and impulsive behaviors in healthy and clinical populations, including the recent discovery of MAALIN, a long noncoding RNA (lncRNA) regulating the MAO-A gene in the human brain. Here, we first provide an overview of the MAOs and their physiological functions, we then summarize recent key findings linking MAO-related enzymatic and gene activity and aggressive behavior, and, finally, we offer novel insights into the mechanisms underlying this association. Using the existing experimental evidence as a foundation, we discuss the translational implications of these findings in clinical practice and highlight what we believe are outstanding conceptual and methodological questions in the field. Ultimately, we propose that unraveling the specific role of MAO in aggression requires an integrated approach, where this question is pursued by combining psychological, radiological, and genetic/genomic assessments. The translational benefits of such an approach include the discovery of novel biomarkers of aggression and targeting the MAO system to modulate pathological aggression in clinical populations.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - Eleni Katsouni
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece.
- UNESCO Chair on Adolescent Health Care, Athens, Greece.
| |
Collapse
|
9
|
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Prog Neurobiol 2020; 194:101875. [PMID: 32574581 PMCID: PMC7609507 DOI: 10.1016/j.pneurobio.2020.101875] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over the past two decades, research has revealed that genetic factors shape the propensity for aggressive, antisocial, and violent behavior. The best-documented gene implicated in aggression is MAOA (Monoamine oxidase A), which encodes the key enzyme for the degradation of serotonin and catecholamines. Congenital MAOA deficiency, as well as low-activity MAOA variants, has been associated with a higher risk for antisocial behavior (ASB) and violence, particularly in males with a history of child maltreatment. Indeed, the interplay between low MAOA genetic variants and early-life adversity is the best-documented gene × environment (G × E) interaction in the pathophysiology of aggression and ASB. Additional evidence indicates that low MAOA activity in the brain is strongly associated with a higher propensity for aggression; furthermore, MAOA inhibition may be one of the primary mechanisms whereby prenatal smoke exposure increases the risk of ASB. Complementary to these lines of evidence, mouse models of Maoa deficiency and G × E interactions exhibit striking similarities with clinical phenotypes, proving to be valuable tools to investigate the neurobiological mechanisms underlying antisocial and aggressive behavior. Here, we provide a comprehensive overview of the current state of the knowledge on the involvement of MAOA in aggression, as defined by preclinical and clinical evidence. In particular, we show how the convergence of human and animal research is proving helpful to our understanding of how MAOA influences antisocial and violent behavior and how it may assist in the development of preventative and therapeutic strategies for aggressive manifestations.
Collapse
Affiliation(s)
- Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| |
Collapse
|
10
|
Zhang M, Liu N, Chen H, Zhang N. Oxytocin receptor gene, childhood maltreatment and borderline personality disorder features among male inmates in China. BMC Psychiatry 2020; 20:332. [PMID: 32580785 PMCID: PMC7315490 DOI: 10.1186/s12888-020-02710-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Borderline personality disorder (BPD) is caused by a variety of biological and environmental factors. Accumulating evidence suggests that childhood maltreatment is a risk environmental factor in the development of BPD, but research on the genetic pathology of BPD is still in its early stages, and very little is known about the oxytocin receptor (OXTR) gene. The purpose of this study is to further explore the interactive effects between OXTR gene polymorphisms and childhood maltreatment on BPD risk. METHODS Among the 1804 Chinese Han male inmates, 765 inmates who had BPD or antisocial personality disorder (ASPD) or highly impulsive or violent crime were considered as high-risk inmates and included in this study. Childhood maltreatment, BPD, antisocial personality disorder (ASPD) and impulsivity were measured by self-reported questionnaires. Peripheral venous blood was collected for the genotype test. RESULTS Analyses revealed that the BP group (inmates with BPD features) had higher rs53576 AA genotype frequency and rs237987 AA genotype frequency than the non-BP group, while the statistical significances were lost after Bonferroni correction. Total childhood maltreatment score, emotional abuse and neglect could positively predict BPD risk. Among the high-risk samples, rs53576 GG genotype carriers had higher BPD scores at higher levels of physical abuse and sexual abuse and had lower BPD scores at lower levels of physical abuse and sexual abuse. CONCLUSIONS The findings suggest that the interaction between OXTR gene variations and childhood maltreatment is an important mechanism for the development of BPD. The moderating role of the OXTR gene provides evidence for gene plasticity.
Collapse
Affiliation(s)
- Min Zhang
- grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210000 China ,grid.452645.40000 0004 1798 8369Medical Psychology Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210000 China
| | - Na Liu
- Medical Psychology Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210000, China.
| | - Haocheng Chen
- grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210000 China ,grid.452645.40000 0004 1798 8369Medical Psychology Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210000 China ,grid.89957.3a0000 0000 9255 8984The Forth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000 China
| | - Ning Zhang
- grid.452645.40000 0004 1798 8369Medical Psychology Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210000 China
| |
Collapse
|
11
|
Deibel SH, McDonald RJ, Kolla NJ. Are Owls and Larks Different When it Comes to Aggression? Genetics, Neurobiology, and Behavior. Front Behav Neurosci 2020; 14:39. [PMID: 32256322 PMCID: PMC7092663 DOI: 10.3389/fnbeh.2020.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the contribution of circadian rhythms to aggression with a multifaceted approach incorporating genetics, neural networks, and behavior. We explore the hypothesis that chronic circadian misalignment is contributing to increased aggression. Genes involved in both circadian rhythms and aggression are discussed as a possible mechanism for increased aggression that might be elicited by circadian misalignment. We then discuss the neural networks underlying aggression and how dysregulation in the interaction of these networks evoked by circadian rhythm misalignment could contribute to aggression. The last section of this review will present recent human correlational data demonstrating the association between chronotype and/or circadian misalignment with aggression. With circadian rhythms and aggression being a burgeoning area of study, we hope that this review initiates more interest in this promising and topical area.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert J McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, AL, Canada
| | - Nathan J Kolla
- Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Johanson M, Vaurio O, Tiihonen J, Lähteenvuo M. A Systematic Literature Review of Neuroimaging of Psychopathic Traits. Front Psychiatry 2019; 10:1027. [PMID: 32116828 PMCID: PMC7016047 DOI: 10.3389/fpsyt.2019.01027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Core psychopathy is characterized by grandiosity, callousness, manipulativeness, and lack of remorse, empathy, and guilt. It is often comorbid with conduct disorder and antisocial personality disorder (ASPD). Psychopathy is present in forensic as well as prison and general populations. In recent years, an increasing amount of neuroimaging studies has been conducted in order to elucidate the obscure neurobiological etiology of psychopathy. The studies have yielded heterogenous results, and no consensus has been reached. AIMS This study systematically reviewed and qualitatively summarized functional and structural neuroimaging studies conducted on individuals with psychopathic traits. Furthermore, this study aimed to evaluate whether the findings from different MRI modalities could be reconciled from a neuroanatomical perspective. MATERIALS AND METHODS After the search and auditing processes, 118 neuroimaging studies were included in this systematic literature review. The studies consisted of structural, functional, and diffusion tensor MRI studies. RESULTS Psychopathy was associated with numerous neuroanatomical abnormalities. Structurally, gray matter anomalies were seen in frontotemporal, cerebellar, limbic, and paralimbic regions. Associated gray matter volume (GMV) reductions were most pronounced particularly in most of the prefrontal cortex, and temporal gyri including the fusiform gyrus. Also decreased GMV of the amygdalae and hippocampi as well the cingulate and insular cortices were associated with psychopathy, as well as abnormal morphology of the hippocampi, amygdala, and nucleus accumbens. Functionally, psychopathy was associated with dysfunction of the default mode network, which was also linked to poor moral judgment as well as deficient metacognitive and introspective abilities. Second, reduced white matter integrity in the uncinate fasciculus and dorsal cingulum were associated with core psychopathy. Third, emotional detachment was associated with dysfunction of the posterior cerebellum, the human mirror neuron system and the Theory of Mind denoting lack of empathy and persistent failure in integrating affective information into cognition. CONCLUSIONS Structural and functional aberrancies involving the limbic and paralimbic systems including reduced integrity of the uncinate fasciculus appear to be associated with core psychopathic features. Furthermore, this review points towards the idea that ASPD and psychopathy might stem from divergent biological processes.
Collapse
Affiliation(s)
- Mika Johanson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Olli Vaurio
- Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland.,Department of Forensic Psychiatry, University of Eastern Finland, Kuopio, Finland
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland.,Department of Forensic Psychiatry, University of Eastern Finland, Kuopio, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland
| |
Collapse
|
13
|
Takahashi K, Hosoya T, Onoe K, Takashima T, Tanaka M, Ishii A, Nakatomi Y, Tazawa S, Takahashi K, Doi H, Wada Y, Watanabe Y. Association between aromatase in human brains and personality traits. Sci Rep 2018; 8:16841. [PMID: 30442903 PMCID: PMC6237866 DOI: 10.1038/s41598-018-35065-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022] Open
Abstract
Aromatase, an enzyme that converts androgens to estrogens, has been reported to be involved in several brain functions, including synaptic plasticity, neurogenesis, neuroprotection, and regulation of sexual and emotional behaviours in rodents, pathophysiology of Alzheimer's disease and autism spectrum disorders in humans. Aromatase has been reported to be involved in aggressive behaviours in genetically modified mice and in personality traits by genotyping studies on humans. However, no study has investigated the relationship between aromatase in living brains and personality traits including aggression. We performed a positron emission tomography (PET) study in 21 healthy subjects using 11C-cetrozole, which has high selectivity and affinity for aromatase. Before performing PET scans, subjects answered the Buss-Perry Aggression Questionnaire and Temperament and Character Inventory to measure their aggression and personality traits, respectively. A strong accumulation of 11C-cetrozole was detected in the thalamus, hypothalamus, amygdala, and medulla. Females showed associations between aromatase levels in subcortical regions, such as the amygdala and supraoptic nucleus of the hypothalamus, and personality traits such as aggression, novelty seeking, and self-transcendence. In contrast, males exhibited associations between aromatase levels in the cortices and harm avoidance, persistence, and self-transcendence. The association of aromatase levels in the thalamus with cooperativeness was common to both sexes. The present study suggests that there might exist associations between aromatase in the brain and personality traits. Some of these associations may differ between sexes, while others are likely common to both.
Collapse
Affiliation(s)
- Kayo Takahashi
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-cho, Abeno-ku, Osaka, 545-8585, Japan
| | - Takamitsu Hosoya
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kayo Onoe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Tadayuki Takashima
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Masaaki Tanaka
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-cho, Abeno-ku, Osaka, 545-8585, Japan
| | - Akira Ishii
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-cho, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuhito Nakatomi
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-cho, Abeno-ku, Osaka, 545-8585, Japan.,Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-cho, Abeno-ku, Osaka, 545-8585, Japan
| | - Shusaku Tazawa
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Kazuhiro Takahashi
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hisashi Doi
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-cho, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-cho, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
14
|
Kolla NJ, Dunlop K, Meyer JH, Downar J. Corticostriatal Connectivity in Antisocial Personality Disorder by MAO-A Genotype and Its Relationship to Aggressive Behavior. Int J Neuropsychopharmacol 2018; 21:725-733. [PMID: 29746646 PMCID: PMC6070029 DOI: 10.1093/ijnp/pyy035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/01/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The influence of genetic variation on resting-state neural networks represents a burgeoning line of inquiry in psychiatric research. Monoamine oxidase A, an X-linked gene, is one example of a molecular target linked to brain activity in psychiatric illness. Monoamine oxidase A genetic variants, including the high and low variable nucleotide tandem repeat polymorphisms, have been shown to differentially affect brain functional connectivity in healthy humans. However, it is currently unknown whether these same polymorphisms influence resting-state brain activity in clinical conditions. Given its high burden on society and strong connection to violent behavior, antisocial personality disorder is a logical condition to study, since in vivo markers of monoamine oxidase A brain enzyme are reduced in key affect-modulating regions, and striatal levels of monoamine oxidase A show a relation with the functional connectivity of this same region. METHODS We utilized monoamine oxidase A genotyping and seed-to-voxel-based functional connectivity to investigate the relationship between genotype and corticostriatal connectivity in 21 male participants with severe antisocial personality disorder and 19 male healthy controls. RESULTS Dorsal striatal connectivity to the frontal pole and anterior cingulate gyrus differentiated antisocial personality disorder subjects and healthy controls by monoamine oxidase A genotype. Furthermore, the linear relationship of proactive aggression to superior ventral striatal-angular gyrus functional connectivity differed by monoamine oxidase A genotype in the antisocial personality disorder groups. CONCLUSIONS These results suggest that monoamine oxidase A genotype may affect corticostriatal connectivity in antisocial personality disorder and that these functional connections may also underlie use of proactive aggression in a genotype-specific manner.
Collapse
Affiliation(s)
- Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, Ontario, Canada,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, Ontario, Canada,Correspondence: Nathan Kolla, MD, PhD, Centre for Addiction and Mental Health, 250 College Street, Room 626, Toronto, Ontario, Canada, M5T 1R8 ()
| | - Katharine Dunlop
- Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey H Meyer
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, Ontario, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Association of monoamine oxidase-A genetic variants and amygdala morphology in violent offenders with antisocial personality disorder and high psychopathic traits. Sci Rep 2017; 7:9607. [PMID: 28851912 PMCID: PMC5575239 DOI: 10.1038/s41598-017-08351-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/11/2017] [Indexed: 01/18/2023] Open
Abstract
Violent offending is elevated among individuals with antisocial personality disorder (ASPD) and high psychopathic traits (PP). Morphological abnormalities of the amygdala and orbitofrontal cortex (OFC) are present in violent offenders, which may relate to the violence enacted by ASPD + PP. Among healthy males, monoamine oxidase-A (MAO-A) genetic variants linked to low in vitro transcription (MAOA-L) are associated with structural abnormalities of the amygdala and OFC. However, it is currently unknown whether amygdala and OFC morphology in ASPD relate to MAO-A genetic polymorphisms. We studied 18 ASPD males with a history of violent offending and 20 healthy male controls. Genomic DNA was extracted from peripheral leukocytes to determine MAO-A genetic polymorphisms. Subjects underwent a T1-weighted MRI anatomical brain scan that provided vertex-wise measures of amygdala shape and surface area and OFC cortical thickness. We found that ASPD + PP subjects with MAOA-L exhibited decreased surface area in the right basolateral amygdala nucleus and increased surface area in the right anterior cortical amygdaloid nucleus versus healthy MAOA-L carriers. This study is the first to describe genotype-related morphological differences of the amygdala in a population marked by high aggression. Deficits in emotional regulation that contribute to the violence of ASPD + PP may relate to morphological changes of the amygdala under genetic control.
Collapse
|