1
|
Wang F, Chen X, Bo B, Zhang T, Liu K, Jiang J, Wang Y, Xie H, Liang Z, Guan JS. State-dependent memory retrieval: insights from neural dynamics and behavioral perspectives. Learn Mem 2023; 30:325-337. [PMID: 38114331 PMCID: PMC10750866 DOI: 10.1101/lm.053893.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Memory retrieval is strikingly susceptible to external states (environment) and internal states (mood states and alcohol), yet we know little about the underlying mechanisms. We examined how internally generated states influence successful memory retrieval using the functional magnetic resonance imaging (fMRI) of laboratory mice during memory retrieval. Mice exhibited a strong tendency to perform memory retrieval correctly only in the reinstated mammillary body-inhibited state, in which mice were trained to discriminate auditory stimuli in go/no-go tasks. fMRI revealed that distinct auditory cues engaged differential brain regions, which were primed by internal state. Specifically, a cue associated with a reward activated the lateral amygdala, while a cue signaling no reward predominantly activated the postsubiculum. Modifying these internal states significantly altered the neural activity balance between these regions. Optogenetic inhibition of those regions in the precue period blocked the retrieval of type-specific memories. Our findings suggest that memory retrieval is under the control of two interrelated neural circuits underlying the neural basis of state-dependent memory retrieval.
Collapse
Affiliation(s)
- Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Cerebrovascular Disease Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xu Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Binshi Bo
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianfu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kaiyuan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Life of Science, Tsinghua University, Beijing 100084, China
| | - Jun Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Headache Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hong Xie
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
The Molecular Genetics of Dissociative Symptomatology: A Transdiagnostic Literature Review. Genes (Basel) 2022; 13:genes13050843. [PMID: 35627228 PMCID: PMC9141026 DOI: 10.3390/genes13050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Dissociative disorders are a common and frequently undiagnosed group of psychiatric disorders, characterized by disruptions in the normal integration of awareness, personality, emotion and behavior. The available evidence suggests that these disorders arise from an interaction between genetic vulnerability and stress, particularly traumatic stress, but the attention paid to the underlying genetic diatheses has been sparse. In this paper, the existing literature on the molecular genetics of dissociative disorders, as well as of clinically significant dissociative symptoms not reaching the threshold of a disorder, is reviewed comprehensively across clinical and non-clinical samples. Association studies suggest a link between dissociative symptoms and genes related to serotonergic, dopaminergic and peptidergic transmission, neural plasticity and cortisol receptor sensitivity, particularly following exposure to childhood trauma. Genome-wide association studies have identified loci of interest related to second messenger signaling and synaptic integration. Though these findings are inconsistent, they suggest biologically plausible mechanisms through which traumatic stress can lead to pathological dissociation. However, methodological concerns related to phenotype definition, study power, and correction for the confounding factors limit the value of these findings, and they require replication and extension in studies with better design.
Collapse
|
3
|
Solntseva SV, Nikitin VP, Kozyrev SA, Nikitin PV. The Role of DNA Methylation and Activity of Neurotransmitter Receptors in the Mechanisms of Specific Anterograde Amnesia and Memory Recovery. Bull Exp Biol Med 2022; 172:528-533. [DOI: 10.1007/s10517-022-05426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/25/2022]
|
4
|
Radulovic J, Lee R, Ortony A. State-Dependent Memory: Neurobiological Advances and Prospects for Translation to Dissociative Amnesia. Front Behav Neurosci 2018; 12:259. [PMID: 30429781 PMCID: PMC6220081 DOI: 10.3389/fnbeh.2018.00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
In susceptible individuals, overwhelming traumatic stress often results in severe abnormalities of memory processing, manifested either as the uncontrollable emergence of memories (flashbacks) or as an inability to remember events (dissociative amnesia, DA) that are usually, but not necessarily, related to the stressful experience. These memory abnormalities are often the source of debilitating psychopathologies such as anxiety, depression and social dysfunction. The question of why memory for some traumatic experiences is compromised while other comparably traumatic experiences are remembered perfectly well, both within and across individuals, has puzzled clinicians for decades. In this article, we present clinical, cognitive, and neurobiological perspectives on memory research relevant to DA. In particular, we examine the role of state dependent memory (wherein memories are difficult to recall unless the conditions at encoding and recall are similar), and discuss how advances in the neurobiology of state-dependent memory (SDM) gleaned from animal studies might be translated to humans.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States
| | - Andrew Ortony
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|