1
|
Wang HL, Lei T, Wang XW, Cameron S, Navas-Castillo J, Liu YQ, Maruthi MN, Omongo CA, Delatte H, Lee KY, Krause-Sakate R, Ng J, Seal S, Fiallo-Olivé E, Bushley K, Colvin J, Liu SS. A comprehensive framework for the delimitation of species within the Bemisia tabaci cryptic complex, a global pest-species group. INSECT SCIENCE 2025; 32:321-342. [PMID: 38562016 DOI: 10.1111/1744-7917.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.
Collapse
Affiliation(s)
- Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Teng Lei
- College of Life Sciences, Taizhou University, Taizhou, Zhejiang Province, China
| | - Xiao-Wei Wang
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Stephen Cameron
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Malaga, Spain
| | - Yin-Quan Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Kent, UK
| | | | - Hélène Delatte
- CIRAD, UMR PVBMT CIRAD, Pôle de Protection des Plantes, Saint-Pierre, France
| | - Kyeong-Yeoll Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | - James Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Malaga, Spain
| | - Kathryn Bushley
- USDA Agricultural Research Service, 17123, Emerging Pests and Pathogens Research Unit, Ithaca, NY, USA
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Shu-Sheng Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Perret C, Proust C, Esslinger U, Ader F, Haas J, Pruny JF, Isnard R, Richard P, Trégouët DA, Charron P, Cambien F, Villard E. DNA-pools targeted-sequencing as a robust cost-effective method to detect rare variants: Application to dilated cardiomyopathy genetic diagnosis. Clin Genet 2024; 105:185-189. [PMID: 37904629 DOI: 10.1111/cge.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 11/01/2023]
Abstract
Dilated cardiomyopathy (DCM) is a heart disease characterized by left ventricular dilatation and systolic dysfunction. In 30% of cases, pathogenic variants, essentially private to each patient, are identified in at least one of almost 50 reported genes. Thus, while costly, exons capture-based Next Generation Sequencing (NGS) of a targeted gene panel appears as the best strategy to genetically diagnose DCM. Here, we report a NGS strategy applied to pools of 8 DNAs from DCM patients and validate its robustness for rare variants detection at 4-fold reduced cost. Our pipeline uses Freebayes to detect variants with the expected 1/16 allele frequency. From the whole set of detected rare variants in 96 pools we set the variants quality parameters optimizing true positives calling. When compared to simplex DNA sequencing in a shared subset of 50 DNAs, 96% of SNVs/InsDel were accurately identified in pools. Extended to the 384 DNAs included in the study, we detected 100 variants (ACMG class 4 and 5), mostly in well-known morbid gene causing DCM such as TTN, MYH7, FLNC, and TNNT2. To conclude, we report an original pool-sequencing NGS method accurately detecting rare variants. This innovative approach is cost-effective for genetic diagnostic in rare diseases.
Collapse
Affiliation(s)
- Claire Perret
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Carole Proust
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
| | - Ulrike Esslinger
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
| | - Flavie Ader
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
- APHP, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jean-François Pruny
- APHP, Centre de Référence Maladies Cardiaques Héréditaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Richard Isnard
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
- APHP, Cardiology Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Pascale Richard
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
- APHP, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - David-Alexandre Trégouët
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
| | - Philippe Charron
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
- APHP, Centre de Référence Maladies Cardiaques Héréditaires, Hôpital Pitié-Salpêtrière, Paris, France
- APHP, Cardiology Department, Pitié-Salpêtrière Hospital, Paris, France
| | - François Cambien
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
| | - Eric Villard
- Sorbonne Université, INSERM, UMR-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| |
Collapse
|
3
|
NGUYEN HT, HONGSRICHAN N, INTUYOD K, PINLAOR P, YINGKLANG M, CHAIDEE A, SENGTHONG C, PONGKING T, DANGTAKOT R, BANJONG D, ANUTRAKULCHAI S, CHA’ON U, PINLAOR S. Investigation of gut microbiota and short-chain fatty acids in <i>Strongyloides stercoralis</i>-infected patients in a rural community. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:121-129. [PMID: 35854692 PMCID: PMC9246423 DOI: 10.12938/bmfh.2021-054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Hai Thi NGUYEN
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nuttanan HONGSRICHAN
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kitti INTUYOD
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip PINLAOR
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Manachai YINGKLANG
- Department of Fundamentals of Public Health, Faculty of Public Health, Burapha University, Chonburi 20131, Thailand
| | - Apisit CHAIDEE
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchawan SENGTHONG
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong PONGKING
- Science Program in Biomedical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rungthiwa DANGTAKOT
- Department of Medical Technology, Faculty of Allied Health Sciences, Nakhonratchasima college, Nakhon Ratchasima, 30000, Thailand
| | - Ditsayathan BANJONG
- Science Program in Biomedical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirirat ANUTRAKULCHAI
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ubon CHA’ON
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai PINLAOR
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Čižikovienė U, Skorniakov V. On a couple of unresolved group testing conjectures. COMMUN STAT-THEOR M 2021. [DOI: 10.1080/03610926.2021.1953531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ugnė Čižikovienė
- Institute of Applied Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
| | - Viktor Skorniakov
- Institute of Applied Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Zhang T, Foreman R, Wollman R. Identifying chromatin features that regulate gene expression distribution. Sci Rep 2020; 10:20566. [PMID: 33239733 PMCID: PMC7688950 DOI: 10.1038/s41598-020-77638-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Gene expression variability, differences in the number of mRNA per cell across a population of cells, is ubiquitous across diverse organisms with broad impacts on cellular phenotypes. The role of chromatin in regulating average gene expression has been extensively studied. However, what aspects of the chromatin contribute to gene expression variability is still underexplored. Here we addressed this problem by leveraging chromatin diversity and using a systematic investigation of randomly integrated expression reporters to identify what aspects of chromatin microenvironment contribute to gene expression variability. Using DNA barcoding and split-pool decoding, we created a large library of isogenic reporter clones and identified reporter integration sites in a massive and parallel manner. By mapping our measurements of reporter expression at different genomic loci with multiple epigenetic profiles including the enrichment of transcription factors and the distance to different chromatin states, we identified new factors that impact the regulation of gene expression distributions.
Collapse
Affiliation(s)
- Thanutra Zhang
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, USA
| | - Robert Foreman
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, USA
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, USA.
- Departments of Integrative Biology and Physiology and Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Zhang T, Pilko A, Wollman R. Loci specific epigenetic drug sensitivity. Nucleic Acids Res 2020; 48:4797-4810. [PMID: 32246716 PMCID: PMC7229858 DOI: 10.1093/nar/gkaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic targeting of epigenetic modulators offers a novel approach to the treatment of multiple diseases. The cellular consequences of chemical compounds that target epigenetic regulators (epi-drugs) are complex. Epi-drugs affect global cellular phenotypes and cause local changes to gene expression due to alteration of a gene chromatin environment. Despite increasing use in the clinic, the mechanisms responsible for cellular changes are unclear. Specifically, to what degree the effects are a result of cell-wide changes or disease related locus specific effects is unknown. Here we developed a platform to systematically and simultaneously investigate the sensitivity of epi-drugs at hundreds of genomic locations by combining DNA barcoding, unique split-pool encoding, and single cell expression measurements. Internal controls are used to isolate locus specific effects separately from any global consequences these drugs have. Using this platform we discovered wide-spread loci specific sensitivities to epi-drugs for three distinct epi-drugs that target histone deacetylase, DNA methylation and bromodomain proteins. By leveraging ENCODE data on chromatin modification, we identified features of chromatin environments that are most likely to be affected by epi-drugs. The measurements of loci specific epi-drugs sensitivities will pave the way to the development of targeted therapy for personalized medicine.
Collapse
Affiliation(s)
- Thanutra Zhang
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Anna Pilko
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
- Departments of Integrative Biology and Physiology and Chemistry and Biochemistry, University of California UCLA, CA, USA
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
- Departments of Integrative Biology and Physiology and Chemistry and Biochemistry, University of California UCLA, CA, USA
| |
Collapse
|
7
|
Andermann T, Torres Jiménez MF, Matos-Maraví P, Batista R, Blanco-Pastor JL, Gustafsson ALS, Kistler L, Liberal IM, Oxelman B, Bacon CD, Antonelli A. A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project. Front Genet 2020; 10:1407. [PMID: 32153629 PMCID: PMC7047930 DOI: 10.3389/fgene.2019.01407] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Maria Fernanda Torres Jiménez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Romina Batista
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, PPG GCBEv–Instituto Nacional de Pesquisas da Amazônia—INPA Campus II, Manaus, Brazil
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - José L. Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Isabel M. Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond-Surrey, United Kingdom
| |
Collapse
|
8
|
Wang HL, Lei T, Wang XW, Maruthi MN, Zhu DT, Cameron SL, Rao Q, Shan HW, Colvin J, Liu YQ, Liu SS. A newly recorded Rickettsia of the Torix group is a recent intruder and an endosymbiont in the whitefly Bemisia tabaci. Environ Microbiol 2020; 22:1207-1221. [PMID: 31997547 DOI: 10.1111/1462-2920.14927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 11/30/2022]
Abstract
The bacterium Rickettsia is found widely in phytophagous insects and often exerts profound effects on the phenotype and fitness of its hosts. Here, we decrypt a new, independent, phylogenetically ancient Torix Rickettsia endosymbiont found constantly in a laboratory line of an economically important insect Asia II 7, a putative species of the Bemisia tabaci whitefly complex (Hemiptera: Aleyrodidae), and occasionally in field whitefly populations. This new Rickettsia distributes throughout the body of its whitefly host. Genetically, compared to Rickettsia_bellii_MEAM1 found earlier in whiteflies, the new Rickettsia species has more gene families and pathways, which may be important factors in shaping specific symbiotic relationships. We propose the name 'Candidatus Rickettsia_Torix_Bemisia_tabaci (RiTBt)' for this new endosymbiont associated with whiteflies. Comparative genomic analyses indicate that RiTBi may be a relatively recent intruder in whiteflies given its low abundance in the field and relatively larger genome compared to Rickettsia_bellii_MEAM1.
Collapse
Affiliation(s)
- Hua-Ling Wang
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Teng Lei
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Dan-Tong Zhu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Stephen L Cameron
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN, 479074, USA
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China
| | - Hong-Wei Shan
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Yin-Quan Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shu-Sheng Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
9
|
Malinovsky Y, Albert PS. Revisiting Nested Group Testing Procedures: New Results, Comparisons, and Robustness. AM STAT 2018; 73:117-125. [PMID: 31814627 DOI: 10.1080/00031305.2017.1366367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Group testing has its origin in the identification of syphilis in the U.S. army during World War II. Much of the theoretical framework of group testing was developed starting in the late 1950s, with continued work into the 1990s. Recently, with the advent of new laboratory and genetic technologies, there has been an increasing interest in group testing designs for cost saving purposes. In this article, we compare different nested designs, including Dorfman, Sterrett and an optimal nested procedure obtained through dynamic programming. To elucidate these comparisons, we develop closed-form expressions for the optimal Sterrett procedure and provide a concise review of the prior literature for other commonly used procedures. We consider designs where the prevalence of disease is known as well as investigate the robustness of these procedures, when it is incorrectly assumed. This article provides a technical presentation that will be of interest to researchers as well as from a pedagogical perspective. Supplementary material for this article available online.
Collapse
Affiliation(s)
- Yaakov Malinovsky
- Department of Mathematics and Statistics University of Maryland, Baltimore County, Baltimore, MD
| | - Paul S Albert
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Rockville, MD
| |
Collapse
|
10
|
|
11
|
Golestan Hashemi FS, Razi Ismail M, Rafii Yusop M, Golestan Hashemi MS, Nadimi Shahraki MH, Rastegari H, Miah G, Aslani F. Intelligent mining of large-scale bio-data: Bioinformatics applications. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1364977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Farahnaz Sadat Golestan Hashemi
- Plant Genetics, AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liege, Liege, Belgium
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Razi Ismail
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Rafii Yusop
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mahboobe Sadat Golestan Hashemi
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Hossein Nadimi Shahraki
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Hamid Rastegari
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
| | - Gous Miah
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Efficient identification of SNPs in pooled DNA samples using a dual mononucleotide addition-based sequencing method. Mol Genet Genomics 2017; 292:1069-1081. [PMID: 28612167 PMCID: PMC5594057 DOI: 10.1007/s00438-017-1332-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/02/2017] [Indexed: 11/18/2022]
Abstract
Identifying single nucleotide polymorphism (SNPs) from pooled samples is critical for many studies and applications. SNPs determined by next-generation sequencing results may suffer from errors in both base calling and read mapping. Taking advantage of dual mononucleotide addition-based pyrosequencing, we present Epds, a method to efficiently identify SNPs from pooled DNA samples. On the basis of only five patterns of non-synchronistic extensions between the wild and mutant sequences using dual mononucleotide addition-based pyrosequencing, we employed an enumerative algorithm to infer the mutant locus and estimate the proportion of mutant sequence. According to the profiles resulting from three runs with distinct dual mononucleotide additions, Epds could recover the mutant bases. Results showed that our method had a false-positive rate of less than 3%. Series of simulations revealed that Epds outperformed the current method (PSM) in many situations. Finally, experiments based on profiles produced by real sequencing proved that our method could be successfully applied for the identification of mutants from pooled samples. The software for implementing this method and the experimental data are available at http://bioinfo.seu.edu.cn/Epds.
Collapse
|