1
|
Hu X, Sun H, Shan L, Ma C, Quan H, Zhang Y, Zhang J, Fan Z, Tang Y, Deng L. Unraveling Disease-Associated PIWI-Interacting RNAs with a Contrastive Learning Methods. J Chem Inf Model 2025. [PMID: 40263714 DOI: 10.1021/acs.jcim.5c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small, non-coding RNAs predominantly expressed in the germ cells of animals and play a crucial role in maintaining genomic integrity, mediating transposon suppression, and ensuring gene stability. Beyond their functions in reproductive cells, piRNAs also play roles in various human diseases, including cancer, suggesting their potential as significant biomarkers critical for disease diagnosis and treatment. Wet-lab methods to identify piRNA-disease associations require substantial resources and are often hit-or-miss. With advancements in computational technologies, an increasing number of researchers are employing computational methods to efficiently predict potential piRNA-disease associations. The sparsity of data in piRNA-disease association studies significantly limits model performance improvement. In this study, we propose a novel computational model, iPiDA_CL, to predict potential piRNA-disease associations through contrastive learning methods, which do not require negative samples. The model represents piRNA-disease association pairs as a bipartite graph and computes the initial embeddings of piRNAs and diseases using Gaussian kernel similarity, with features updated via LightGCN. Based on the siamese network framework, iPiDA_CL constructs online and target networks and employs data augmentation in the target network to build a contrastive learning objective that optimizes model parameters without introducing negative samples. Finally, cross-prediction methods are used to calculate specific piRNA-disease association scores. A series of experimental results demonstrate that iPiDA_CL surpasses state-of-the-art methods in both performance and computational efficiency. The application of iPiDA_CL to the miRNA-disease association dataset underscores its versatility across various ncRNA-disease association task. Furthermore, a case study highlights iPiDA_CL as an efficient and promising tool for predicting piRNA-disease associations.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Hao Sun
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Linchao Shan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Chenxi Ma
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Hanming Quan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Yuanpeng Zhang
- School of software, Xinjiang University, Urumqi 830049, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92161, United States
| | - Ziyu Fan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Yongjun Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410083, China
| | - Lei Deng
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| |
Collapse
|
2
|
Hou J, Wei H, Liu B. iPiDA-SWGCN: Identification of piRNA-disease associations based on Supplementarily Weighted Graph Convolutional Network. PLoS Comput Biol 2023; 19:e1011242. [PMID: 37339125 DOI: 10.1371/journal.pcbi.1011242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Accurately identifying potential piRNA-disease associations is of great importance in uncovering the pathogenesis of diseases. Recently, several machine-learning-based methods have been proposed for piRNA-disease association detection. However, they are suffering from the high sparsity of piRNA-disease association network and the Boolean representation of piRNA-disease associations ignoring the confidence coefficients. In this study, we propose a supplementarily weighted strategy to solve these disadvantages. Combined with Graph Convolutional Networks (GCNs), a novel predictor called iPiDA-SWGCN is proposed for piRNA-disease association prediction. There are three main contributions of iPiDA-SWGCN: (i) Potential piRNA-disease associations are preliminarily supplemented in the sparse piRNA-disease network by integrating various basic predictors to enrich network structure information. (ii) The original Boolean piRNA-disease associations are assigned with different relevance confidence to learn node representations from neighbour nodes in varying degrees. (iii) The experimental results show that iPiDA-SWGCN achieves the best performance compared with the other state-of-the-art methods, and can predict new piRNA-disease associations.
Collapse
Affiliation(s)
- Jialu Hou
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Hang Wei
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
3
|
Wang YT, Li L, Ji CM, Zheng CH, Ni JC. ILPMDA: Predicting miRNA-Disease Association Based on Improved Label Propagation. Front Genet 2021; 12:743665. [PMID: 34659364 PMCID: PMC8514753 DOI: 10.3389/fgene.2021.743665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have been demonstrated to be related to numerous complex human diseases. Considerable studies have suggested that miRNAs affect many complicated bioprocesses. Hence, the investigation of disease-related miRNAs by utilizing computational methods is warranted. In this study, we presented an improved label propagation for miRNA-disease association prediction (ILPMDA) method to observe disease-related miRNAs. First, we utilized similarity kernel fusion to integrate different types of biological information for generating miRNA and disease similarity networks. Second, we applied the weighted k-nearest known neighbor algorithm to update verified miRNA-disease association data. Third, we utilized improved label propagation in disease and miRNA similarity networks to make association prediction. Furthermore, we obtained final prediction scores by adopting an average ensemble method to integrate the two kinds of prediction results. To evaluate the prediction performance of ILPMDA, two types of cross-validation methods and case studies on three significant human diseases were implemented to determine the accuracy and effectiveness of ILPMDA. All results demonstrated that ILPMDA had the ability to discover potential miRNA-disease associations.
Collapse
Affiliation(s)
- Yu-Tian Wang
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Lei Li
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Cun-Mei Ji
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Chun-Hou Zheng
- School of Artificial Intelligence, Anhui University, Hefei, China
| | - Jian-Cheng Ni
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| |
Collapse
|
4
|
Roth M, Jain P, Koo J, Chaterji S. Simultaneous learning of individual microRNA-gene interactions and regulatory comodules. BMC Bioinformatics 2021; 22:237. [PMID: 33971820 PMCID: PMC8111732 DOI: 10.1186/s12859-021-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) function in post-transcriptional regulation of gene expression by binding to target messenger RNAs (mRNAs). Because of the key part that miRNAs play, understanding the correct regulatory role of miRNAs in diverse patho-physiological conditions is of great interest. Although it is known that miRNAs act combinatorially to regulate genes, precise identification of miRNA-gene interactions and their specific functional roles in regulatory comodules remains a challenge. We developed THEIA, an effective method for simultaneously predicting miRNA-gene interactions and regulatory comodules, which group functionally related miRNAs and genes via non-negative matrix factorization (NMF). RESULTS We apply THEIA to RNA sequencing data from breast invasive carcinoma samples and demonstrate its effectiveness in discovering biologically significant regulatory comodules that are significantly enriched in spatial miRNA clusters, biological pathways, and various cancers. CONCLUSIONS THEIA is a theoretically rigorous optimization algorithm that simultaneously predicts the strength and direction (i.e., up-regulation or down-regulation) of the effect of modules of miRNAs on a gene. We posit that if THEIA is capable of recovering known clusters of genes and miRNA, then the clusters found by our method not previously identified by literature are also likely to have biological significance. We believe that these novel regulatory comodules found by our method will be a springboard for further research into the specific functional roles of these new functional ensembles of miRNAs and genes,especially those related to diseases like breast cancer.
Collapse
Affiliation(s)
| | - Pranjal Jain
- Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Somali Chaterji
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Lei X, Mudiyanselage TB, Zhang Y, Bian C, Lan W, Yu N, Pan Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief Bioinform 2020; 22:6042241. [PMID: 33341893 DOI: 10.1093/bib/bbaa350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
The studies on relationships between non-coding RNAs and diseases are widely carried out in recent years. A large number of experimental methods and technologies of producing biological data have also been developed. However, due to their high labor cost and production time, nowadays, calculation-based methods, especially machine learning and deep learning methods, have received a lot of attention and been used commonly to solve these problems. From a computational point of view, this survey mainly introduces three common non-coding RNAs, i.e. miRNAs, lncRNAs and circRNAs, and the related computational methods for predicting their association with diseases. First, the mainstream databases of above three non-coding RNAs are introduced in detail. Then, we present several methods for RNA similarity and disease similarity calculations. Later, we investigate ncRNA-disease prediction methods in details and classify these methods into five types: network propagating, recommend system, matrix completion, machine learning and deep learning. Furthermore, we provide a summary of the applications of these five types of computational methods in predicting the associations between diseases and miRNAs, lncRNAs and circRNAs, respectively. Finally, the advantages and limitations of various methods are identified, and future researches and challenges are also discussed.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | | | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Wei Lan
- School of Computer, Electronics and Information at Guangxi University, Nanning, China
| | - Ning Yu
- Department of Computing Sciences at the College at Brockport, State University of New York, Rochester, NY, USA
| | - Yi Pan
- Computer Science Department at Georgia State University, Atlanta, GA, USA
| |
Collapse
|