1
|
Shi M, Yang Y, Huang N, Zeng D, Mo Z, Wang J, Zhang X, Liu R, Wang C, Rong X, Wu Z, Huang Q, Shang H, Tang J, Wang Z, Cai J, Huang G, Guan Y, Guo J, Mu Q, Wang J, Liao W. Genetic and microenvironmental evolution of colorectal liver metastases under chemotherapy. Cell Rep Med 2024; 5:101838. [PMID: 39631402 PMCID: PMC11722126 DOI: 10.1016/j.xcrm.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Drug resistance limits the efficacy of chemotherapy for colorectal cancer liver metastasis (CRLM). However, the evolution of CRLM during drug treatment remains poorly elucidated. Multi-omics and treatment response data from 115 samples of 49 patients with CRLM undergoing bevacizumab (BVZ)-based chemotherapy show little difference in genomic alterations in 92% of cases, while remarkable differences are observed at the transcriptomic level. By decoupling intrinsic and acquired resistance, we find that hepatocyte and myeloid cell infiltration contribute to 38.5% and 23.1% of acquired resistance, respectively. Importantly, SMAD4 mutations and chr20q copy-number gain are associated with intrinsic chemoresistance. Gene interference experiments suggest that SMAD4R361H/C mutations confer BVZ and 5-fluorouracil (5-FU) resistance through STAT3 signaling. Notably, supplementing BVZ and 5-FU with the STAT3 inhibitor GB201 restores therapeutic efficacy in SMAD4R361H/C cancer cells. Our study uncovers the evolutionary dynamics of CRLM and its microenvironment during treatment and offers strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Zongchao Mo
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiao Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaomeng Zhang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ran Liu
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chunlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenzhen Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Shang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jihong Tang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhaojun Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianan Cai
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Genjie Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yijin Guan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, P.R. China.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| |
Collapse
|
2
|
Mu Q, Chai R, Pang B, Yang Y, Liu H, Zhao Z, Bao Z, Song D, Zhu Z, Yan M, Jiang B, Mo Z, Tang J, Sa JK, Cho HJ, Chang Y, Chan KHY, Loi DSC, Tam SST, Chan AKY, Wu AR, Liu Z, Poon WS, Ng HK, Chan DTM, Iavarone A, Nam DH, Jiang T, Wang J. Identifying predictors of glioma evolution from longitudinal sequencing. Sci Transl Med 2023; 15:eadh4181. [PMID: 37792958 DOI: 10.1126/scitranslmed.adh4181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Clonal evolution drives cancer progression and therapeutic resistance. Recent studies have revealed divergent longitudinal trajectories in gliomas, but early molecular features steering posttreatment cancer evolution remain unclear. Here, we collected sequencing and clinical data of initial-recurrent tumor pairs from 544 adult diffuse gliomas and performed multivariate analysis to identify early molecular predictors of tumor evolution in three diffuse glioma subtypes. We found that CDKN2A deletion at initial diagnosis preceded tumor necrosis and microvascular proliferation that occur at later stages of IDH-mutant glioma. Ki67 expression at diagnosis was positively correlated with acquiring hypermutation at recurrence in the IDH-wild-type glioma. In all glioma subtypes, MYC gain or MYC-target activation at diagnosis was associated with treatment-induced hypermutation at recurrence. To predict glioma evolution, we constructed CELLO2 (Cancer EvoLution for LOngitudinal data version 2), a machine learning model integrating features at diagnosis to forecast hypermutation and progression after treatment. CELLO2 successfully stratified patients into subgroups with distinct prognoses and identified a high-risk patient group featured by MYC gain with worse post-progression survival, from the low-grade IDH-mutant-noncodel subtype. We then performed chronic temozolomide-induction experiments in glioma cell lines and isogenic patient-derived gliomaspheres and demonstrated that MYC drives temozolomide resistance by promoting hypermutation. Mechanistically, we demonstrated that, by binding to open chromatin and transcriptionally active genomic regions, c-MYC increases the vulnerability of key mismatch repair genes to treatment-induced mutagenesis, thus triggering hypermutation. This study reveals early predictors of cancer evolution under therapy and provides a resource for precision oncology targeting cancer dynamics in diffuse gliomas.
Collapse
Affiliation(s)
- Quanhua Mu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518045, China
| | - Ruichao Chai
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bo Pang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Hanjie Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhaoshi Bao
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Dong Song
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zhihan Zhu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Mengli Yan
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Biaobin Jiang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zongchao Mo
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Jihong Tang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
| | - Yuzhou Chang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kaitlin Hao Yi Chan
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Danson Shek Chun Loi
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Sindy Sing Ting Tam
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Aden Ka Yin Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wai Sang Poon
- CUHK Otto Wong Brain Tumour Centre, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ho Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Danny Tat Ming Chan
- CUHK Otto Wong Brain Tumour Centre, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 110745, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 110745, Korea
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing 100070, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518045, China
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, SAR 999077, China
| |
Collapse
|
3
|
Oldrini B, Vaquero-Siguero N, Mu Q, Kroon P, Zhang Y, Galán-Ganga M, Bao Z, Wang Z, Liu H, Sa JK, Zhao J, Kim H, Rodriguez-Perales S, Nam DH, Verhaak RGW, Rabadan R, Jiang T, Wang J, Squatrito M. MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat Commun 2020; 11:3883. [PMID: 32753598 PMCID: PMC7403430 DOI: 10.1038/s41467-020-17717-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 07/16/2020] [Indexed: 12/21/2022] Open
Abstract
Temozolomide (TMZ) is an oral alkylating agent used for the treatment of glioblastoma and is now becoming a chemotherapeutic option in patients diagnosed with high-risk low-grade gliomas. The O-6-methylguanine-DNA methyltransferase (MGMT) is responsible for the direct repair of the main TMZ-induced toxic DNA adduct, the O6-Methylguanine lesion. MGMT promoter hypermethylation is currently the only known biomarker for TMZ response in glioblastoma patients. Here we show that a subset of recurrent gliomas carries MGMT genomic rearrangements that lead to MGMT overexpression, independently from changes in its promoter methylation. By leveraging the CRISPR/Cas9 technology we generated some of these MGMT rearrangements in glioma cells and demonstrated that the MGMT genomic rearrangements contribute to TMZ resistance both in vitro and in vivo. Lastly, we showed that such fusions can be detected in tumor-derived exosomes and could potentially represent an early detection marker of tumor recurrence in a subset of patients treated with TMZ.
Collapse
Affiliation(s)
- Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Nuria Vaquero-Siguero
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Quanhua Mu
- Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Paula Kroon
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Ying Zhang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China
| | - Marcos Galán-Ganga
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Zhaoshi Bao
- Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.,Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China
| | - Hanjie Liu
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China
| | - Jason K Sa
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06531, Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06531, Korea
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China.
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain.
| |
Collapse
|