1
|
Loganathan T, Priya Doss C G. A comprehensive high-throughput screening approach for discovering inhibitors targeting the menin-MLL1 interaction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 143:69-95. [PMID: 39843145 DOI: 10.1016/bs.apcsb.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The prognosis for mixed-lineage leukemia (MLL), particularly in young children, remains a significant health concern due to the limited therapeutic options available. MLL refers to KMT2A chromosomal translocations that produce MLL fusion proteins. The protein menin, which is essential for the malignant potential of these MLL fusion proteins, offers novel targets for acute leukemia treatment. This study reports the identification of potential new inhibitors of MLL-mediated leukemia targeting menin through the screening of two distinct drug libraries and existing inhibitors. The 3D structure of the protein was retrieved from the Protein Data Bank (ID: 8IG0). The drug libraries, sourced from public repositories such as the 'Epigenetic Drug Library' and 'The FDA-anticancer Drug Library,' yielded top candidates like Tozaseritib and Panobinostat, which exhibited the highest binding energy scores in the Glide virtual screening module. Additionally, 31 known menin-MLL1 inhibitors were identified through PDB screening and subsequently docked with the menin protein. The top three inhibitors (M-525, M-808, and MI-89) were selected for further analysis. Five menin-ligand complexes were validated using molecular dynamics analysis and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations to verify the stability and binding mechanisms.These findings provide insights into the molecular mechanisms of these drugs and lay the groundwork for future clinical development aimed at improving outcomes for acute myeloid leukemia (AML) patients.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Hosseini MS, Sanaat Z, Akbarzadeh MA, Vaez-Gharamaleki Y, Akbarzadeh M. Histone deacetylase inhibitors for leukemia treatment: current status and future directions. Eur J Med Res 2024; 29:514. [PMID: 39456044 PMCID: PMC11515273 DOI: 10.1186/s40001-024-02108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Leukemia remains a major therapeutic challenge in clinical oncology. Despite significant advancements in treatment modalities, leukemia remains a significant cause of morbidity and mortality worldwide, as the current conventional therapies are accompanied by life-limiting adverse effects and a high risk of disease relapse. Histone deacetylase inhibitors have emerged as a promising group of antineoplastic agents due to their ability to modulate gene expression epigenetically. In this review, we explore these agents, their mechanisms of action, pharmacokinetics, safety and clinical efficacy, monotherapy and combination therapy strategies, and clinical challenges associated with histone deacetylase inhibitors in leukemia treatment, along with the latest evidence and ongoing studies in the field. In addition, we discuss future directions to optimize the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Ge P, Wang Z, Wang W, Gao Z, Li D, Guo H, Qiao S, Dang X, Yang H, Wu Y. Identifying drug candidates for pancreatic ductal adenocarcinoma based on integrative multiomics analysis. J Gastrointest Oncol 2024; 15:1265-1281. [PMID: 38989421 PMCID: PMC11231868 DOI: 10.21037/jgo-23-985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Background Due to a lack of early diagnosis methods and effective drugs, pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis. DNA methylation, transcriptome expression and gene copy number variation (CNV) have critical relationships with development and progression of various diseases. The purpose of the study was to screen reliable early diagnostic biomarkers and potential drugs based on integrative multiomics analysis. Methods We used methylation, transcriptome and CNV profiles to build a diagnostic model for PDAC. The protein expression of three model-related genes were externally validated using PDAC samples. Then, potential therapeutic drugs for PDAC were identified by interaction information related to existing drugs and genes. Results Four significant differentially methylated regions (DMRs) were selected from 589 common DMRs to build a high-performance diagnostic model for PDAC. Then, four hub genes, PHF12, FXYD3, PRKCB and ZNF582, were obtained. The external validation results showed that PHF12, FXYD3 and PRKCB protein expression levels were all upregulated in tumor tissues compared with adjacent normal tissues (P<0.05). Promising candidate drugs with activity against PDAC were screened and repurposed through gene expression analysis of online datasets. The five drugs, including topotecan, PD-0325901, panobinostat, paclitaxel and 17-AAG, with the highest activity among 27 PDAC cell lines were filtered. Conclusions Overall, the diagnostic model built based on four significant DMRs could accurately distinguish tumor and normal tissues. The five drug candidates might be repurposed as promising therapeutics for particular PDAC patients.
Collapse
Affiliation(s)
- Penglei Ge
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengfeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingyang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huahu Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shishi Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Dang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and PUMC, Beijing, China
| | - Yang Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Chatzikalil E, Stergiou IE, Papadakos SP, Konstantinidis I, Theocharis S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int J Mol Sci 2024; 25:3834. [PMID: 38612645 PMCID: PMC11011407 DOI: 10.3390/ijms25073834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
5
|
Zhang Z, Zhao X, Bindra M, Qiu P, Zhang X. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data. Nat Commun 2024; 15:912. [PMID: 38291052 PMCID: PMC10827746 DOI: 10.1038/s41467-024-45227-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) has been widely used for disease studies, where sample batches are collected from donors under different conditions including demographic groups, disease stages, and drug treatments. It is worth noting that the differences among sample batches in such a study are a mixture of technical confounders caused by batch effect and biological variations caused by condition effect. However, current batch effect removal methods often eliminate both technical batch effect and meaningful condition effect, while perturbation prediction methods solely focus on condition effect, resulting in inaccurate gene expression predictions due to unaccounted batch effect. Here we introduce scDisInFact, a deep learning framework that models both batch effect and condition effect in scRNA-seq data. scDisInFact learns latent factors that disentangle condition effect from batch effect, enabling it to simultaneously perform three tasks: batch effect removal, condition-associated key gene detection, and perturbation prediction. We evaluate scDisInFact on both simulated and real datasets, and compare its performance with baseline methods for each task. Our results demonstrate that scDisInFact outperforms existing methods that focus on individual tasks, providing a more comprehensive and accurate approach for integrating and predicting multi-batch multi-condition single-cell RNA-sequencing data.
Collapse
Affiliation(s)
- Ziqi Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xinye Zhao
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mehak Bindra
- School of Biological Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|
7
|
Klomp MJ, van den Brink L, van Koetsveld PM, de Ridder CMA, Stuurman DC, Löwik CWGM, Hofland LJ, Dalm SU. Applying HDACis to increase SSTR2 expression and radiolabeled DOTA-TATE uptake: from cells to mice. Life Sci 2023; 334:122173. [PMID: 37907154 DOI: 10.1016/j.lfs.2023.122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
AIMS The aim of our study was to determine the effect of histone deacetylase (HDAC) inhibitors (HDACis) on somatostatin type-2 receptor (SSTR2) expression and [111In]In-/[177Lu]Lu-DOTA-TATE uptake in vitro and in vivo. MATERIALS AND METHODS The human cell lines NCI-H69 (small-cell lung carcinoma) and BON-1 (pancreatic neuroendocrine tumor) were treated with HDACis (i.e. entinostat, mocetinostat (MOC), LMK-235, CI-994 or panobinostat (PAN)), and SSTR2 mRNA expression levels and [111In]In-DOTA-TATE uptake were measured. Furthermore, vehicle- and HDACi-treated NCI-H69 and BON-1 tumor-bearing mice were injected with radiolabeled DOTA-TATE followed by biodistribution studies. Additionally, SSTR2 and HDAC mRNA expression of xenografts, and of NCI-H69, BON-1, NCI-H727 (human pulmonary carcinoid) and GOT1 (human midgut neuroendocrine tumor) cells were determined. KEY FINDINGS HDACi treatment resulted in the desired effects in vitro. However, no significant increase in tumoral DOTA-TATE uptake was observed after HDACi treatment in NCI-H69 tumor-bearing animals, whereas tumoral SSTR2 mRNA and/or protein expression levels were significantly upregulated after treatment with MOC, CI-994 and PAN, i.e. a maximum of 2.1- and 1.3-fold, respectively. Analysis of PAN-treated BON-1 xenografts solely demonstrated increased SSTR2 mRNA expression levels. Comparison of HDACs and SSTR2 expression in BON-1 and NCI-H69 xenografts showed a significantly higher expression of 6/11 HDACs in BON-1 xenografts. Of these HDACs, a significant inverse correlation was found between HDAC3 and SSTR2 expression (Pearson r = -0.92) in the studied cell lines. SIGNIFICANCE To conclude, tumoral uptake levels of radiolabeled DOTA-TATE were not enhanced after HDACi treatment in vivo, but, depending on the applied inhibitor, increased SSTR2 expression levels were observed.
Collapse
Affiliation(s)
- Maria J Klomp
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands; Department of Internal Medicine, Division of Endocrinology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Lilian van den Brink
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Corrina M A de Ridder
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands; Department of Experimental Urology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Debra C Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands; Department of Experimental Urology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Clemens W G M Löwik
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Simone U Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Zhang Z, Zhao X, Qiu P, Zhang X. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538975. [PMID: 37205545 PMCID: PMC10187255 DOI: 10.1101/2023.05.01.538975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Single-cell RNA-sequencing (scRNA-seq) has been widely used for disease studies, where sample batches are collected from donors under different conditions including demographical groups, disease stages, and drug treatments. It is worth noting that the differences among sample batches in such a study are a mixture of technical confounders caused by batch effect and the biological variations caused by condition effect. However, current batch effect removal methods often eliminate both technical batch effects and meaningful condition effects, while perturbation prediction methods solely focus on condition effects, resulting in inaccurate gene expression predictions due to unaccounted batch effects. Here we introduce scDisInFact, a deep learning framework that models both batch effect and condition effect in scRNA-seq data. scDisInFact learns latent factors that disentangle condition effects from batch effects, enabling it to simultaneously perform three tasks: batch effect removal, condition-associated key gene detection, and perturbation prediction. We evaluated scDisInFact on both simulated and real datasets, and compared its performance to baseline methods for each task. Our results demonstrate that scDisInFact outperforms existing methods that focus on individual tasks, providing a more comprehensive and accurate approach for integrating and predicting multi-batch multi-condition single-cell RNA-sequencing data.
Collapse
Affiliation(s)
- Ziqi Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Xinye Zhao
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, United States
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, United States
| |
Collapse
|
10
|
Li L, Wang N, Wang J, Li J. Hsa_circRNA_001859 regulates pancreatic cancer progression and epithelial-mesenchymal transition through the miR-21-5p/SLC38A2 pathway. Cancer Biomark 2023; 37:39-52. [PMID: 37005877 DOI: 10.3233/cbm-220229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
OBJECTIVE: This study attempts to investigate whether hsa_circRNA_001859 (circ_001859) could regulate the proliferation and invasion of pancreatic cancer through the miR-21-5p/SLC38A2 pathway. METHODS: GSE79634 microarray was analyzed with R package. The expression of circ_001859 in pancreatic cancer tissues and cells was verified by qRT-PCR. After the overexpression of circ_001859, cell proliferation, cell migration and invasion were verified by colony formation and transwell assay. The targeting relationship between miR-21-5p and circ_001859 was predicted by TargetScan and was verified by dual luciferase reporter assay, RNA pull down and qRT-PCR. The effect of miR-21-5p on cell proliferation, migration and invasion were investigated by colony formation and transwell assay respectively. Similarly, the targeting relationship between miR-21-5p and SLC38A2 was predicted by TargetScan and was verified by dual luciferase reporter assay, western blot and qRT-PCR. The effect of SLC38A2 on cell proliferation was investigated by colony formation. RESULTS: Circ_001859 was lowly expressed in pancreatic cancer tissues and cells. In vitro assays showed that overexpression of circ_001859 could inhibit the proliferation, migration and invasion of pancreatic cancer. In addition, this effect was also confirmed in xenograft transplantation model. Circ_001859 could be bind to miR-21-5p and sponge its expression in pancreatic cancer cells. Overexpression of miR-21-5p enhanced the proliferation, migration and invasion ability of pancreatic cancer cells, while the inhibition of miR-21-5p expression suppressed these abilities. Moreover, miR-21-5p directly targeted at SLC38A2 and inhibited SLC38A2 expression levels while circ_001859 up-regulated SLC38A2 levels. SLC38A2 expression knockdown enhanced cell proliferation but SLC38A2 overexpression resulted in decreased proliferation, and effects of SLC38A2 could be rescued by miR-21-5p and circ_001859. In addition, both QRT-PCR and immunofluorescence confirmed that circ_001859 could regulate tumor epithelial-mesenchymal transition (EMT) through the miR-21-5p/SLC38A2 pathway. CONCLUSIONS: This study suggests that circ_001859 may inhibit the proliferation, invasion and EMT of pancreatic cancer through the miR-21-5p/SLC38A2 pathway.
Collapse
Affiliation(s)
- Liang Li
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Nan Wang
- Department of Pancreatic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jun Wang
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jiangang Li
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
11
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
12
|
Santaniello G, Nebbioso A, Altucci L, Conte M. Recent Advancement in Anticancer Compounds from Marine Organisms: Approval, Use and Bioinformatic Approaches to Predict New Targets. Mar Drugs 2022; 21:md21010024. [PMID: 36662197 PMCID: PMC9862894 DOI: 10.3390/md21010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies.
Collapse
Affiliation(s)
- Giovanna Santaniello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- BIOGEM, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino, Italy
- IEOS, Institute for Endocrinology and Experimental Oncology, CNR, Via Pansini 5, 80131 Napoli, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| |
Collapse
|
13
|
Franco Molina MA, Santamaría-Martínez EA, Santana Krimskaya SE, Zarate-Triviño DG, Kawas JR, Ramos Zayas Y, Palacios Estrada N, Prado García H, García Coronado PL, Rodríguez Padilla C. In vitro chemosensitivity of a canine tumor venereal transmissible cancer cell line. Front Vet Sci 2022; 9:972185. [PMID: 36061122 PMCID: PMC9433647 DOI: 10.3389/fvets.2022.972185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The canine transmissible venereal tumor (CTVT) is the most common malignity in dogs. Because there are reports that this tumor is resistant to vincristine sulfate, the chemotherapeutic options are scarce, and the development of new therapeutic approaches is necessary. In this study, we evaluated the cytotoxic activity of vincristine, doxorubicin, temozolomide, panobinostat, toceranib, gemcitabine, cisplatin, fluorouracil, cyclophosphamide, and methotrexate on a CTVT cell line, determining that all drugs decreased the viability in a dose-dependent manner. Furthermore, they inhibit cellular migration in a time- and drug-dependent manner, as evaluated by the wound healing assay. On the other hand, vincristine, panobinostat, gemcitabine, toceranib, cyclophosphamide, and methotrexate increased the percentage of cells in the subG1 phase, and doxorubicin, temozolomide, gemcitabine, toceranib, and methotrexate decreased the percentage of cells in the synthesis phase. To efficientize the use of vincristine, only toceranib increased the cytotoxic effect of vincristine in a synergistic manner. Our results confirm the use of vincristine as the gold standard for CTVT treatment as monotherapy and suggest the use of a combinatorial and sequential treatment with toceranib.
Collapse
Affiliation(s)
- Moisés Armides Franco Molina
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- *Correspondence: Moisés Armides Franco Molina
| | - Edson Antonio Santamaría-Martínez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Silvia Elena Santana Krimskaya
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Diana Ginette Zarate-Triviño
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Jorge R. Kawas
- Posgrado Conjunto Agronomía-Veterinaria, Universidad Autónoma de Nuevo León, Escobedo, NL, Mexico
| | - Yareellys Ramos Zayas
- Posgrado Conjunto Agronomía-Veterinaria, Universidad Autónoma de Nuevo León, Escobedo, NL, Mexico
| | - Natanael Palacios Estrada
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Heriberto Prado García
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de Mexico, Mexico
| | - Paola Leonor García Coronado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Cristina Rodríguez Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| |
Collapse
|
14
|
Huegel J, Dinh CT, Martinelli M, Bracho O, Rosario R, Hardin H, Estivill M, Griswold A, Gultekin S, Liu XZ, Fernandez-Valle C. CUDC907, a dual phosphoinositide-3 kinase/histone deacetylase inhibitor, promotes apoptosis of NF2 Schwannoma cells. Oncotarget 2022; 13:890-904. [PMID: 35875610 PMCID: PMC9295707 DOI: 10.18632/oncotarget.28254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Neurofibromatosis Type 2 (NF2) is a rare tumor disorder caused by pathogenic variants of the merlin tumor suppressor encoded by NF2. Patients develop vestibular schwannomas (VS), peripheral schwannomas, meningiomas, and ependymomas. There are no approved drug therapies for NF2. Previous work identified phosphoinositide-3 kinase (PI3K) as a druggable target. Here we screened PI3K pathway inhibitors for efficacy in reducing viability of human schwannoma cells. The lead compound, CUDC907, a dual histone deacetylase (HDAC)/PI3K inhibitor, was further evaluated for its effects on isolated and nerve-grafted schwannoma model cells, and primary VS cells. CUDC907 (3 nM IG50) reduced human merlin deficient Schwann cell (MD-SC) viability and was 5-100 fold selective for MD over WT-SCs. CUDC907 (10 nM) promoted cell cycle arrest and caspase-3/7 activation within 24 h in human MD-SCs. Western blots confirmed a dose-dependent increase in acetylated lysine and decreases in pAKT and YAP. CUDC907 decreased tumor growth rate by 44% in a 14-day treatment regimen, modulated phospho-target levels, and decreased YAP levels. In five primary VS, CUDC907 decreased viability, induced caspase-3/7 cleavage, and reduced YAP levels. Its efficacy correlated with basal phospho-HDAC2 levels. CUDC907 has cytotoxic activity in NF2 schwannoma models and primary VS cells and is a candidate for clinical trials.
Collapse
Affiliation(s)
- Julianne Huegel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Christine T. Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Martinelli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Olena Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rosa Rosario
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Haley Hardin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Michael Estivill
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anthony Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sakir Gultekin
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
15
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
16
|
King J, Patel M, Chandrasekaran S. Metabolism, HDACs, and HDAC Inhibitors: A Systems Biology Perspective. Metabolites 2021; 11:792. [PMID: 34822450 PMCID: PMC8620738 DOI: 10.3390/metabo11110792] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/15/2023] Open
Abstract
Histone deacetylases (HDACs) are epigenetic enzymes that play a central role in gene regulation and are sensitive to the metabolic state of the cell. The cross talk between metabolism and histone acetylation impacts numerous biological processes including development and immune function. HDAC inhibitors are being explored for treating cancers, viral infections, inflammation, neurodegenerative diseases, and metabolic disorders. However, how HDAC inhibitors impact cellular metabolism and how metabolism influences their potency is unclear. Discussed herein are recent applications and future potential of systems biology methods such as high throughput drug screens, cancer cell line profiling, single cell sequencing, proteomics, metabolomics, and computational modeling to uncover the interplay between metabolism, HDACs, and HDAC inhibitors. The synthesis of new systems technologies can ultimately help identify epigenomic and metabolic biomarkers for patient stratification and the design of effective therapeutics.
Collapse
Affiliation(s)
- Jacob King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.K.); (M.P.)
| | - Maya Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.K.); (M.P.)
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.K.); (M.P.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Omran Z, H. Dalhat M, Abdullah O, Kaleem M, Hosawi S, A Al-Abbasi F, Wu W, Choudhry H, Alhosin M. Targeting Post-Translational Modifications of the p73 Protein: A Promising Therapeutic Strategy for Tumors. Cancers (Basel) 2021; 13:1916. [PMID: 33921128 PMCID: PMC8071514 DOI: 10.3390/cancers13081916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor p73 is a member of the p53 family and is expressed as different isoforms with opposing properties. The TAp73 isoforms act as tumor suppressors and have pro-apoptotic effects, whereas the ΔNp73 isoforms lack the N-terminus transactivation domain and behave as oncogenes. The TAp73 protein has a high degree of similarity with both p53 function and structure, and it induces the regulation of various genes involved in the cell cycle and apoptosis. Unlike those of the p53 gene, the mutations in the p73 gene are very rare in tumors. Cancer cells have developed several mechanisms to inhibit the activity and/or expression of p73, from the hypermethylation of its promoter to the modulation of the ratio between its pro- and anti-apoptotic isoforms. The p73 protein is also decorated by a panel of post-translational modifications, including phosphorylation, acetylation, ubiquitin proteasomal pathway modifications, and small ubiquitin-related modifier (SUMO)ylation, that regulate its transcriptional activity, subcellular localization, and stability. These modifications orchestrate the multiple anti-proliferative and pro-apoptotic functions of TAp73, thereby offering multiple promising candidates for targeted anti-cancer therapies. In this review, we summarize the current knowledge of the different pathways implicated in the regulation of TAp73 at the post-translational level. This review also highlights the growing importance of targeting the post-translational modifications of TAp73 as a promising antitumor strategy, regardless of p53 status.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mahmood H. Dalhat
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mohammed Kaleem
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Salman Hosawi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Fahd A Al-Abbasi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Hani Choudhry
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Mahmoud Alhosin
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| |
Collapse
|
18
|
HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1449-1462. [PMID: 33420926 DOI: 10.1007/s11427-020-1855-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Genome-edited human induced pluripotent stem cells (iPSCs) hold great promise for therapeutic applications. However, low editing efficiency has hampered the applications of CRISPR-Cas9 technology in creating knockout and homology-directed repair (HDR)-edited iPSC lines, particularly for silent genes. This is partially due to chromatin compaction, inevitably limiting Cas9 access to the target DNA. Among the six HDAC inhibitors we examined, vorinostat, or suberoylanilide hydroxamic acid (SAHA), led to the highest HDR efficiency at both open and closed loci, with acceptable toxicity. HDAC inhibitors equally increased non-homologous end joining (NHEJ) editing efficiencies (∼50%) at both open and closed loci, due to the considerable HDAC inhibitor-mediated increase in Cas9 and sgRNA expression. However, we observed more substantial HDR efficiency improvement at closed loci relative to open chromatin (2.8 vs. 1.7-fold change). These studies provide a new strategy for HDR-editing of silent genes in iPSCs.
Collapse
|
19
|
Ahmed AA, Neidle S. A G-Quadruplex-Binding Small Molecule and the HDAC Inhibitor SAHA (Vorinostat) Act Synergistically in Gemcitabine-Sensitive and Resistant Pancreatic Cancer Cells. Molecules 2020; 25:molecules25225407. [PMID: 33227941 PMCID: PMC7699281 DOI: 10.3390/molecules25225407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
The stabilisation of G-quadruplexes (G4s) by small-molecule compounds is an effective approach for causing cell growth arrest, followed by cell death. Some of these compounds are currently being developed for the treatment of human cancers. We have previously developed a substituted naphthalene diimide G4-binding molecule (CM03) with selective potency for pancreatic cancer cells, including gemcitabine-resistant cells. We report here that CM03 and the histone deacetylase (HDAC) inhibitor SAHA (suberanilohydroxamic acid) have synergistic effects at concentrations close to and below their individual GI50 values, in both gemcitabine-sensitive and resistant pancreatic cancer cell lines. Immunoblot analysis showed elevated levels of γ-H2AX and cleaved PARP proteins upon drug combination treatment, indicating increased levels of DNA damage (double-strand break events: DSBs) and apoptosis induction, respectively. We propose that the mechanism of synergy involves SAHA relaxing condensed chromatin, resulting in higher levels of G4 formation. In turn, CM03 can stabilise a greater number of G4s, leading to the downregulation of more G4-containing genes as well as a higher incidence of DSBs due to torsional strain on DNA and chromatin structure.
Collapse
|
20
|
Jose G, Lu YJ, Hung JT, Yu AL, Chen JP. Co-Delivery of CPT-11 and Panobinostat with Anti-GD2 Antibody Conjugated Immunoliposomes for Targeted Combination Chemotherapy. Cancers (Basel) 2020; 12:3211. [PMID: 33142721 PMCID: PMC7692704 DOI: 10.3390/cancers12113211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
The consistent expression of disialoganglioside GD2 in neuroblastoma tumor cells and its restricted expression in normal tissues open the possibility to use it for molecularly targeted neuroblastoma therapy. On the other hand, immunoliposomes combining antibody-mediated tumor recognition with liposomal delivery of chemotherapeutics have been proved to enhance therapeutic efficacy in brain tumors. Therefore, we develop immunoliposomes (ImmuLipCP) conjugated with anti-GD2 antibody, for targeted co-delivery of CPT-11 and panobinostat in this study. U87MG human glioma cell line and its drug resistant variant (U87DR), which were confirmed to be associated with low and high expression of cell surface GD2, were employed to compare the targeting efficacy. From in vitro cytotoxicity assay, CPT-11 showed synergism drug interaction with panobinostat to support co-delivery of both drugs with ImmuLipCP for targeted synergistic combination chemotherapy. The molecular targeting mechanism was elucidated from intracellular uptake efficacy by confocal microscopy and flow cytometry analysis, where 6-fold increase in liposome and 1.8-fold increase in drug uptake efficiency was found using targeted liposomes. This enhanced intracellular trafficking for drug delivery endows ImmuLipCP with pronounced cytotoxicity toward U87DR cells in vitro, with 1.6-fold increase of apoptosis rate. Using xenograft nude mice model with subcutaneously implanted U87DR cells, we observe similar biodistribution profile but 5.1 times higher accumulation rate of ImmuLip from in vivo imaging system (IVIS) observation of Cy5.5-labelled liposomes. Taking advantage of this highly efficient GD-2 targeting, ImmuLipCP was demonstrated to be an effective cancer treatment modality to significantly enhance the anti-cancer therapeutic efficacy in U87DR tumors, shown from the significant reduced tumor size in and prolonged survival time of experiment animals as well as diminished expression of cell proliferation and enhanced expression of apoptosis marker proteins in tumor section.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan;
| | - Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (J.-T.H.); (A.L.Y.)
| | - Alice L. Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (J.-T.H.); (A.L.Y.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
21
|
Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers (Basel) 2020; 12:cancers12061664. [PMID: 32585896 PMCID: PMC7352721 DOI: 10.3390/cancers12061664] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Histones are the main structural proteins of eukaryotic chromatin. Histone acetylation/ deacetylation are the epigenetic mechanisms of the regulation of gene expression and are catalyzed by histone acetyltransferases (HAT) and histone deacetylases (HDAC). These epigenetic alterations of DNA structure influence the action of transcription factors which can induce or repress gene transcription. The HATs catalyze acetylation and the events related to gene transcription and are also responsible for transporting newly synthesized histones from the cytoplasm to the nucleus. The activity of HDACs is mainly involved in silencing gene expression and according to their specialized functions are divided into classes I, II, III and IV. The disturbance of the expression and mutations of HDAC genes causes the aberrant transcription of key genes regulating important cancer pathways such as cell proliferation, cell-cycle regulation and apoptosis. In view of their role in cancer pathways, HDACs are considered promising therapeutic targets and the development of HDAC inhibitors is a hot topic in the search for new anticancer drugs. The present review will focus on HDACs I, II and IV, the best known inhibitors and potential alternative inhibitors derived from natural and synthetic products which can be used to influence HDAC activity and the development of new cancer therapies.
Collapse
Affiliation(s)
- Flávia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
| | - Umashankar Das
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
| | - Jonathan R. Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Pharmaceutical Sciences School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| |
Collapse
|
22
|
Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: Shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity. Eur J Pharmacol 2020; 875:173050. [PMID: 32142770 DOI: 10.1016/j.ejphar.2020.173050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
Identification of the roles of epigenetic alterations in cancers has suggested that different molecules involved in this process are potentially therapeutic targets. Given the role of histone deacetylases (HDACs) enzymes in leukemogenesis, we designed a study to investigate the anti-leukemic property of panobinostat, a HDAC inhibitor, in acute lymphoblastic leukemia (ALL) cells. Our results showed that panobinostat decreased cell viability of pre-B ALL-derived cells. The favorable anti-leukemic effects of the inhibitor was further confirmed by cell cycle analysis, where we found that panobinostat prolonged the transition of the cells from G1 phase probably through c-Myc-mediated up-regulation of cyclin-dependent kinase inhibitors. Unlike the apoptotic effect of panobinostat on Nalm-6 cells, the expression of anti-apoptotic nuclear factor-kappa B (NF-κB) target genes remained unchanged. Accordingly, we found that the inhibition of NF-κB pathway using bortezomib boosted the effect of panobinostat, indicating that panobinostat-induced apoptosis could be attenuated through the activation of the NF-κB pathway. The results of the present study reflected another aspect of autophagy in leukemic cells, as we showed that although Nalm-6 cells could exploit autophagy to override the anti-survival effect of HDAC inhibition, the presence of an autophagy inhibitor could alter the compensatory circumstance to induce cell death. Beyond panobinostat cytotoxicity as a single agent, synergistic experiments outlined that pharmaceutical targeting of HDACs could amplify the cytotoxicity of vincristine in ALL cells, delineating that panobinostat, either as a single agent or in a combined modality, possesses novel promising potentials for the treatment of ALL.
Collapse
|
23
|
Emdadi A, Eslahchi C. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization. Front Genet 2020; 11:75. [PMID: 32174963 PMCID: PMC7056895 DOI: 10.3389/fgene.2020.00075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to predict the drug response for cancer disease based on genomics information is an essential problem in modern oncology, leading to personalized treatment. By predicting accurate anticancer responses, oncologists achieve a complete understanding of the effective treatment for each patient. In this paper, we present DSPLMF (Drug Sensitivity Prediction using Logistic Matrix Factorization) approach based on Recommender Systems. DSPLMF focuses on discovering effective features of cell lines and drugs for computing the probability of the cell lines are sensitive to drugs by logistic matrix factorization approach. Since similar cell lines and similar drugs may have similar drug responses and incorporating similarities between cell lines and drugs can potentially improve the drug response prediction, gene expression profile, copy number alteration, and single-nucleotide mutation information are used for cell line similarity and chemical structures of drugs are used for drug similarity. Evaluation of the proposed method on CCLE and GDSC datasets and comparison with some of the state-of-the-art methods indicates that the result of DSPLMF is significantly more accurate and more efficient than these methods. To demonstrate the ability of the proposed method, the obtained latent vectors are used to identify subtypes of cancer of the cell line and the predicted IC50 values are used to depict drug-pathway associations. The source code of DSPLMF method is available in https://github.com/emdadi/DSPLMF.
Collapse
Affiliation(s)
- Akram Emdadi
- Department of Computer Sciences, Faculty of Mathematics, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer Sciences, Faculty of Mathematics, Shahid Beheshti University, Tehran, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
24
|
Ling X, Li Y, Qiu F, Lu X, Yang L, Chen J, Li T, Wu D, Xiong H, Su W, Huang D, Chen J, Yang B, Zhao H, Xie C, Zhou Y, Lu J. Down expression of lnc-BMP1-1 decreases that of Caveolin-1 is associated with the lung cancer susceptibility and cigarette smoking history. Aging (Albany NY) 2020; 12:462-480. [PMID: 31901898 PMCID: PMC6977698 DOI: 10.18632/aging.102633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Lnc-BMP1-1 is a lncRNA transcribed from SFTPC (surfactant associated protein C), a lung tissue specific gene encoding pulmonary-associated surfactant protein C (SPC) that is solely secreted by alveolar typeⅡ epithelial cells, among which the ones with SFTPC+ might be transformed into lung adenocarcinoma cells. Caveolin-1 (Cav-1) is a candidate tumor suppressor gene and is vital for coping with oxidative stress induced by cigarette smoke. When comparing lung cancer tissues with their adjacent normal tissues, the expression of lnc-BMP1-1 were decreased, especially in patients with cigarette smoking history (P=0.027), and positively associated with the expression of Cav-1 (P<0.001). When comparing to A549 cells transfected with empty vector (A549-NC cells), the expression level of Cav-1 in A549 cells with over-expressed lnc-BMP1-1 (A549-BMP cells) was increased along with the decreased level of HDAC2 protein. The drug sensitivity of A549-BMP cells to Doxorubicin hydrochloride (DOX) was increased; the growth and migration capability of A549-BMP cells were inhibited along with the decreased protein level of Bcl-2 and DNMT3a; the growth of tumor in nude mice injected with A549-BMP cells were inhibited, too. Furthermore, the lnc-BMP1-1 and Cav-1 expression was also down-regulated in the human bronchial epithelial (16HBE) cells treated with cigarette smoke extract (CSE).
Collapse
Affiliation(s)
- Xiaoxuan Ling
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute of Environmental and Health of Dongguan Key Laboratory, Guangdong Medical University, Dongguan, China
| | - Yinyan Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Xiaoxiao Lu
- Department of English and American Studies, Faculty of Languages and Literatures, Ludwig Maximilian University (LMU), Munich, Germany
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Tiegang Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Huali Xiong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Wenpeng Su
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Dongsheng Huang
- Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Jiansong Chen
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Binyao Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Hongjun Zhao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Chenli Xie
- The Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Xinzao, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Role of Natural Products in Modulating Histone Deacetylases in Cancer. Molecules 2019; 24:molecules24061047. [PMID: 30884859 PMCID: PMC6471757 DOI: 10.3390/molecules24061047] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that can control transcription by modifying chromatin conformation, molecular interactions between the DNA and the proteins as well as the histone tail, through the catalysis of the acetyl functional sites removal of proteins from the lysine residues. Also, HDACs have been implicated in the post transcriptional process through the regulation of the proteins acetylation, and it has been found that HDAC inhibitors (HDACi) constitute a promising class of pharmacological drugs to treat various chronic diseases, including cancer. Indeed, it has been demonstrated that in several cancers, elevated HDAC enzyme activities may be associated with aberrant proliferation, survival and metastasis. Hence, the discovery and development of novel HDACi from natural products, which are known to affect the activation of various oncogenic molecules, has attracted significant attention over the last decade. This review will briefly emphasize the potential of natural products in modifying HDAC activity and thereby attenuating initiation, progression and promotion of tumors.
Collapse
|
26
|
Patel P, Patel VK, Singh A, Jawaid T, Kamal M, Rajak H. Identification of Hydroxamic Acid Based Selective HDAC1 Inhibitors: Computer Aided Drug Design Studies. Curr Comput Aided Drug Des 2019; 15:145-166. [DOI: 10.2174/1573409914666180502113135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 11/22/2022]
Abstract
Background:
Overexpression of Histone deacetylase 1 (HDAC1) is responsible for carcinogenesis
by promoting epigenetic silence of tumour suppressor genes. Thus, HDAC1 inhibitors have
emerged as the potential therapeutic leads against multiple human cancers, as they can block the activity
of particular HDACs, renovate the expression of several tumour suppressor genes and bring about
cell differentiation, cell cycle arrest and apoptosis.
Methods:
The present research work comprises atom-based 3D-QSAR, docking, molecular dynamic
simulations and DFT (density functional theory) studies on a diverse series of hydroxamic acid derivatives
as selective HDAC1 inhibitors. Two pharmacophoric models were generated and validated by
calculating the enrichment factors with the help of the decoy set. The Four different 3D-QSAR models
i.e., PLS (partial least square) model, MLR (multiple linear regression) model, Field-based model and
GFA (Genetic function approximation) model were developed using ‘PHASE’ v3.4 (Schrödinger) and
Discovery Studio (DS) 4.1 software and validated using different statistical parameters like internal
and external validation.
Results and Discussion:
The results showed that the best PLS model has R2=0.991 and Q2=0.787, the
best MLR model has R2= 0.993 and Q2= 0.893, the best Field-based model has R2= 0.974 and Q2=
0.782 and the best GFA model has R2= 0.868 and Q2= 0.782. Cross-validated coefficients, (rcv
2) of 0.967, 0.926, 0.966 and 0.829 was found for PLS model, MLR, Field based and GFA model, respectively,
indicated the satisfactory correlativity and prediction. The docking studies were accomplished
to find out the conformations of the molecules and their essential binding interactions with the target
protein. The trustworthiness of the docking results was further confirmed by molecular dynamics (MD)
simulations studies. Density Functional Theory (DFT) study was performed which promptly optimizes
the geometry, stability and reactivity of the molecule during receptor-ligand interaction.
Conclusion:
Thus, the present research work provides spatial fingerprints which would be beneficial
for the development of potent HDAC1 inhibitors.
Collapse
Affiliation(s)
- Preeti Patel
- Medicinal Chemistry Research Laboratory, Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur- 495 009, (C.G.), India
| | - Vijay K. Patel
- Medicinal Chemistry Research Laboratory, Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur- 495 009, (C.G.), India
| | - Avineesh Singh
- Medicinal Chemistry Research Laboratory, Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur- 495 009, (C.G.), India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Dar Al Uloom University, Al Mizan St, Al Falah, Riyadh-13314, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Harish Rajak
- Medicinal Chemistry Research Laboratory, Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur- 495 009, (C.G.), India
| |
Collapse
|
27
|
Patel P, Rajak H. Development of hydroxamic acid derivatives as anticancer agent with the application of 3D-QSAR, docking and molecular dynamics simulations studies. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Choi SY, Kee HJ, Jin L, Ryu Y, Sun S, Kim GR, Jeong MH. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat. Biomed Pharmacother 2018; 101:145-154. [DOI: 10.1016/j.biopha.2018.02.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
|