1
|
Ultrasound-Assisted Extraction of Cannabinoids from Cannabis Sativa for Medicinal Purpose. Pharmaceutics 2022; 14:pharmaceutics14122718. [PMID: 36559212 PMCID: PMC9785504 DOI: 10.3390/pharmaceutics14122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over the past 20 years, the interest in Cannabis oily extracts for medicinal use compounded in pharmacy has consistently grown, along with the need to have preparations of adequate quality. Hot maceration (M) is the most frequently used method to compound oily solutions. In this work, we systematically studied the possibility of using an ultrasonic homogenizer and a sonotrode (US) as an alternative extraction method. Oily solutions were prepared using two available varieties of Cannabis for medicinal use, called FM2 and Bedrocan. All preparations resulted with an equivalent content in CBD and THC, with the advantage of a faster process using US. In particular, 10 min sonication at the amplitude optimized for the sonotrode used (2 or 7 mm) provides not statistically different total Δ9-tetrahydrocannabinol (M-FM2: 0.26 ± 0.02 % w/w; US-FM2: 0.19 ± 0.004 % w/w; M-Bedrocan: 1.83 ± 0.17 % w/w; US-Bedrocan: 1.98 ± 0.01 % w/w) and total cannabidiol (M-FM2: 0.59 ± 0.04 % w/w; US-FM2: 0.58 ± 0.01 % w/w) amounts extracted in refined olive oil. It can therefore be confirmed that sonotrode is an efficient and fast extraction technique and its use is without negative consequence on the solvent properties. Despite DSC evidencing that both maceration and sonication modify the Tonset and enthalpy of the event at about -10 °C, the qualitative characteristics of the oil remained constant for the two treatments and similar to the starting material.
Collapse
|
2
|
Kaur S, Sharma N, Roy A. Role of cannabinoids in various diseases: A review. Curr Pharm Biotechnol 2021; 23:1346-1358. [PMID: 34951355 DOI: 10.2174/1389201023666211223164656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant, Cannabis sativa is heavily explored and researched with many industrial and pharmaceutical applications. The medicinal and therapeutic role of cannabis Sativa has been summarized in the paper, citing its mechanism of action and influence on the human body. Diseases like metabolic disorders, infectious diseases, and psychological disorders pose negative and long-term drastic effects on the body like neurodegeneration and other chronic system failures. Several existing literature has proved its effectiveness against such diseases. OBJECTIVES This review aims to provide an overview of the role of cannabinoids in various diseases like metabolic disorders, infectious diseases, and psychological disorders. METHOD Various e-resources like Pubmed, Science Direct, and Google Scholar were thoroughly searched and read to form a well-informed and information-heavy manuscript. Here we tried to summaries the therapeutic aspect of Cannabis sativa and its bioactive compound cannabinoids in various diseases. RESULT This review highlights the various constituents which are present in Cannabis sativa, the Endocannabinoid system, and the role of cannabinoids in various diseases Conclusion: Recent research on Cannabis has suggested its role in neurodegenerative diseases, inflammation, sleep disorders, pediatric diseases, and their analgesic nature. Therefore, the authors majorly focus on the therapeutic aspect of Cannabis sativa in various diseases. The focus is also on the endocannabinoid system (ECS) and its role in fighting or preventing bacterial, parasitic, fungal, and viral infections.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biotechnology, Delhi Technological University. India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
3
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
4
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
5
|
Huang T, Xu T, Wang Y, Zhou Y, Yu D, Wang Z, He L, Chen Z, Zhang Y, Davidson D, Dai Y, Hang C, Liu X, Yan C. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy 2021; 17:3592-3606. [PMID: 33629929 DOI: 10.1080/15548627.2021.1885203] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioma is the most common primary malignant brain tumor with poor survival and limited therapeutic options. The non-psychoactive phytocannabinoid cannabidiol (CBD) has been shown to be effective against glioma; however, the molecular target and mechanism of action of CBD in glioma are poorly understood. Here we investigated the molecular mechanisms underlying the antitumor effect of CBD in preclinical models of human glioma. Our results showed that CBD induced autophagic rather than apoptotic cell death in glioma cells. We also showed that CBD induced mitochondrial dysfunction and lethal mitophagy arrest, leading to autophagic cell death. Mechanistically, calcium flux induced by CBD through TRPV4 (transient receptor potential cation channel subfamily V member 4) activation played a key role in mitophagy initiation. We further confirmed TRPV4 levels correlated with both tumor grade and poor survival in glioma patients. Transcriptome analysis and other results demonstrated that ER stress and the ATF4-DDIT3-TRIB3-AKT-MTOR axis downstream of TRPV4 were involved in CBD-induced mitophagy in glioma cells. Lastly, CBD and temozolomide combination therapy in patient-derived neurosphere cultures and mouse orthotopic models showed significant synergistic effect in both controlling tumor size and improving survival. Altogether, these findings showed for the first time that the antitumor effect of CBD in glioma is caused by lethal mitophagy and identified TRPV4 as a molecular target and potential biomarker of CBD in glioma. Given the low toxicity and high tolerability of CBD, we therefore propose CBD should be tested clinically for glioma, both alone and in combination with temozolomide.Abbreviations: 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATF4: activating transcription factor 4; Baf-A1: bafilomycin A1; CANX: calnexin; CASP3: caspase 3; CAT: catalase; CBD: cannabidiol; CQ: chloroquine; DDIT3: DNA damage inducible transcript 3; ER: endoplasmic reticulum; GBM: glioblastoma multiforme; GFP: green fluorescent protein; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PARP1: poly(ADP-ribose) polymerase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; SLC8A1: solute carrier family 8 member A1; SQSTM1: sequestosome 1; TCGA: The cancer genome atlas; TEM: transmission electron microscopy; TMZ: temozolomide; TRIB3: tribbles pseudokinase 3; TRPC: transient receptor potential cation channel subfamily C; TRPV4: transient receptor potential cation channel subfamily V member 4.
Collapse
Affiliation(s)
- Tengfei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Tianqi Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yangfan Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Dandan Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Linfang He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhangpeng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yaliang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | | | - Yuyuan Dai
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Chunhua Hang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiangyu Liu
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.,Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China
| |
Collapse
|
6
|
Lal S, Shekher A, Puneet, Narula AS, Abrahamse H, Gupta SC. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol Res 2020; 163:105302. [PMID: 33246167 DOI: 10.1016/j.phrs.2020.105302] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/03/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Cannabis has long been used for healing and recreation in several regions of the world. Over 400 bioactive constituents, including more than 100 phytocannabinoids, have been isolated from this plant. The non-psychoactive cannabidiol (CBD) and the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC) are the major and widely studied constituents from this plant. Cannabinoids exert their effects through the endocannabinoid system (ECS) that comprises cannabinoid receptors (CB1, CB2), endogenous ligands, and metabolizing enzymes. Several preclinical studies have demonstrated the potential of cannabinoids against leukemia, lymphoma, glioblastoma, and cancers of the breast, colorectum, pancreas, cervix and prostate. Cannabis and its constituents can modulate multiple cancer related pathways such as PKB, AMPK, CAMKK-β, mTOR, PDHK, HIF-1α, and PPAR-γ. Cannabinoids can block cell growth, progression of cell cycle and induce apoptosis selectively in tumour cells. Cannabinoids can also enhance the efficacy of cancer therapeutics. These compounds have been used for the management of anorexia, queasiness, and pain in cancer patients. Cannabinoid based products such as dronabinol, nabilone, nabiximols, and epidyolex are now approved for medical use in cancer patients. Cannabinoids are reported to produce a favourable safety profile. However, psychoactive properties and poor bioavailability limit the use of some cannabinoids. The Academic Institutions across the globe are offering training courses on cannabis. How cannabis and its constituents exert anticancer activities is discussed in this article. We also discuss areas that require attention and more extensive research.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, 122413, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Puneet
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | | | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
7
|
Structural Insights into β-arrestin/CB1 Receptor Interaction: NMR and CD Studies on Model Peptides. Int J Mol Sci 2020; 21:ijms21218111. [PMID: 33143110 PMCID: PMC7662265 DOI: 10.3390/ijms21218111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Activation of the cannabinoid CB1 receptor induces different cellular signaling cascades through coupling to different effector proteins (G-proteins and β-arrestins), triggering numerous therapeutic effects. Conformational changes and rearrangements at the intracellular domain of this GPCR receptor that accompany ligand binding dictate the signaling pathways. The GPCR-binding interface for G proteins has been extensively studied, whereas β-arrestin/GPCR complexes are still poorly understood. To gain knowledge in this direction, we designed peptides that mimic the motifs involved in the putative interacting region: β-arrestin1 finger loop and the transmembrane helix 7-helix 8 (TMH7-H8) elbow located at the intracellular side of the CB1 receptor. According to circular dichroism and NMR data, these peptides form a native-like, helical conformation and interact with each other in aqueous solution, in the presence of trifluoroethanol, and using zwitterionic detergent micelles as membrane mimics. These results increase our understanding of the binding mode of β-arrestin and CB1 receptor and validate minimalist approaches to structurally comprehend complex protein systems.
Collapse
|
8
|
Rapid Antibacterial Activity of Cannabichromenic Acid against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9080523. [PMID: 32824356 PMCID: PMC7460474 DOI: 10.3390/antibiotics9080523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has proven to be an imminent threat to public health, intensifying the need for novel therapeutics. Previous evidence suggests that cannabinoids harbour potent antibacterial activity. In this study, a group of previously inaccessible phytocannabinoids and synthetic analogues were examined for potential antibacterial activity. The minimum inhibitory concentrations and dynamics of bacterial inhibition, determined through resazurin reduction and time-kill assays, revealed the potent antibacterial activity of the phytocannabinoids against gram-positive antibiotic-resistant bacterial species, including MRSA. One phytocannabinoid, cannabichromenic acid (CBCA), demonstrated faster and more potent bactericidal activity than vancomycin, the currently recommended antibiotic for the treatment of MRSA infections. Such bactericidal activity was sustained against low-and high-dose inoculums as well as exponential- and stationary-phase MRSA cells. Further, mammalian cell viability was maintained in the presence of CBCA. Finally, microscopic evaluation suggests that CBCA may function through the degradation of the bacterial lipid membrane and alteration of the bacterial nucleoid. The results of the current study provide encouraging evidence that cannabinoids may serve as a previously unrecognised resource for the generation of novel antibiotics active against MRSA.
Collapse
|
9
|
Klahn P. Cannabinoids-Promising Antimicrobial Drugs orIntoxicants with Benefits? Antibiotics (Basel) 2020; 9:E297. [PMID: 32498408 PMCID: PMC7345649 DOI: 10.3390/antibiotics9060297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/03/2023] Open
Abstract
Novel antimicrobial drugs are urgently needed to counteract the increasing occurrence ofbacterial resistance. Extracts of Cannabis sativa have been used for the treatment of several diseasessince ancient times. However, its phytocannabinoid constituents are predominantly associated withpsychotropic effects and medical applications far beyond the treatment of infections. It has beendemonstrated that several cannabinoids show potent antimicrobial activity against primarily Grampositivebacteria including methicillin-resistant Staphylococcus aureus (MRSA). As first in vivoefficacy has been demonstrated recently, it is time to discuss whether cannabinoids are promisingantimicrobial drug candidates or overhyped intoxicants with benefits.
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30,D-38106 Braunschweig, Germany
| |
Collapse
|
10
|
Wang Y, Pan W, Wang Y, Yin Y. The GPR55 antagonist CID16020046 protects against ox-LDL-induced inflammation in human aortic endothelial cells (HAECs). Arch Biochem Biophys 2020; 681:108254. [PMID: 31904362 DOI: 10.1016/j.abb.2020.108254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022]
Abstract
Atherosclerosis is a commonplace cardiovascular disease which affects most people in old age. While its causes are currently poorly understood, continuous study is being performed in order to elucidate both the pathogenesis and treatment of this insidious disease. Atherosclerosis is presently thought to be linked to several factors such as endothelial dysfunction, monocyte adhesion to the intima of the artery, and increased oxidative stress. Oxidized low-density lipoprotein (ox-LDL), colloquially known as the "bad cholesterol", is known to play a critical role in the previously mentioned atherosclerotic processes. In this study, our goal was to elucidate the role of the lysophospholipid receptor G protein-coupled receptor 55 (GPR55) and its antagonist, the cannabinoid CID16020046, in endothelial dysfunction. While their existence and especially their role in atherosclerosis has only semi-recently been elucidated, a growing body of research has begun to link their interaction to antiatherosclerosis. In our research, we found CID16020046 to have distinct atheroprotective properties such as anti-inflammation, antioxidant, and inhibition of monocyte attachment to endothelial cells. While there was previously a small body of research regarding the potential of cannabinoids to treat or prevent atherosclerosis, studies on the treatment potential of CID16020046 were even fewer. Thus, this study is one of the first to explore the effects of cannabinoids in atherosclerosis. Our findings in the present study provide a strong argument for the use of CID16020046 in the treatment of atherosclerosis as well as a basis for further experimentation using cannabinoids as therapy against atherosclerosis.
Collapse
Affiliation(s)
- Yaowen Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China
| | - Wei Pan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China; Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, China.
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China.
| |
Collapse
|
11
|
Alam RM, Keating JJ. Adding more "spice" to the pot: A review of the chemistry and pharmacology of newly emerging heterocyclic synthetic cannabinoid receptor agonists. Drug Test Anal 2020; 12:297-315. [PMID: 31854124 DOI: 10.1002/dta.2752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) first appeared on the international recreational drug market in the early 2000s in the form of SCRA-containing herbal blends. Due to the cannabimimetic effects associated with the consumption of SCRAs, they have acquired an ill-informed reputation for being cheap, safe, and legal alternatives to illicit cannabis. Possessing high potency and affinity for the human cannabinoid receptor subtype-1 (CB1 ) and -2 (CB2 ), it is now understood that the recreational use of SCRAs can have severe adverse health consequences. The major public health problem arising from SCRA use has pressed legislators around the world to employ various control strategies to curb their recreational use. To circumvent legislative control measures, SCRA manufacturers have created a wide range of SCRA analogs that contain, more recently, previously unencountered azaindole, γ-carbolinone, or carbazole heterocyclic scaffolds. At present, little information is available regarding the chemical syntheses of these newly emerging classes of SCRA, from a clandestine perspective. When compared with previous generations of indole- and indazole-type SCRAs, current research suggests that many of these heterocyclic SCRA analogs maintain high affinity and efficacy at both CB1 and CB2 but largely evade legislative control. This review highlights the importance of continued research in the field of SCRA chemistry and pharmacology, as recreational SCRA use remains a global public health issue and represents a serious control challenge for law enforcement agencies.
Collapse
Affiliation(s)
- Ryan M Alam
- Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland.,School of Chemistry, University College Cork, Cork, Ireland
| | - John J Keating
- Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland.,School of Chemistry, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|