1
|
Agarwal S, Mistry LN, Kamath S, Thorat R, Gupta B, Kondkari S. Pioneering the Future of Oral Healthcare: Bioprinting and Its Transformative Clinical Potential in Dentistry. Cureus 2025; 17:e79030. [PMID: 40104473 PMCID: PMC11914852 DOI: 10.7759/cureus.79030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Bioprinting is revolutionizing the field of dentistry by enabling the fabrication of complex dental tissues using advanced techniques like inkjet, extrusion-based, and laser-assisted bioprinting. These methods allow for the precise placement of cells and materials to regenerate dental pulp, periodontal tissues, alveolar bone, and temporomandibular joint structures. Hydrogels, composite bioinks, and cell-laden bioinks play a crucial role in scaffold formation and improving cell viability. Preclinical models have demonstrated the potential of bioprinting for tissue regeneration and dental implants, with early clinical trials showing promising results. However, challenges remain, including scalability, material selection, immune response, and regulatory approval. Future advancements in multi-material bioprinting, real-time monitoring, and personalized treatment approaches will expand clinical applications of bioprinting, driving innovation in oral healthcare and improving patient outcomes.
Collapse
Affiliation(s)
- Sumeet Agarwal
- Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Laresh N Mistry
- Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Shamika Kamath
- Dentistry, NAMO Medical Education and Research Institute (MERI), Silvassa, IND
| | - Rohit Thorat
- Prosthodontics and Crown & Bridge and Implantology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, IND
| | - Bharat Gupta
- Periodontology, MGM Dental College and Hospital, Navi Mumbai, IND
| | - Saba Kondkari
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| |
Collapse
|
2
|
Alnasser M, Alshammari AH, Siddiqui AY, Alothmani OS, Issrani R, Iqbal A, Khattak O, Prabhu N. Tissue Regeneration on Rise: Dental Hard Tissue Regeneration and Challenges-A Narrative Review. SCIENTIFICA 2024; 2024:9990562. [PMID: 38690100 PMCID: PMC11057954 DOI: 10.1155/2024/9990562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Background As people live longer, there is an increasing need for hard tissue regeneration and whole-tooth regeneration. Despite the advancements in the field of medicine, the field of regenerative dentistry is still challenging due to the complexity of dental hard tissues. Cross-disciplinary collaboration among material scientists, cellular biologists, and odontologists aimed at developing strategies and uncovering solutions related to dental tissue regeneration. Methodology. A search of the literature was done for pertinent research. Consistent with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 Statement, the electronic databases looked at were PubMed, Science Direct, Scopus, and Google Scholar, with the keyword search "hard dental tissue regeneration." Results Database analysis yielded a total of 476 articles. 222 duplicate articles have been removed in total. Articles that have no connection to the directed regeneration of hard dental tissue were disregarded. The review concluded with the inclusion of four studies that were relevant to our research objective. Conclusion Current molecular signaling network investigations and novel viewpoints on cellular heterogeneity have made advancements in understanding of the kinetics of dental hard tissue regeneration possible. Here, we outline the fundamentals of stem hard dental tissue maintenance, regeneration, and repair, as well as recent advancements in the field of hard tissue regeneration. These intriguing findings help establish a framework that will eventually enable basic research findings to be utilized towards oral health-improving medicines.
Collapse
Affiliation(s)
- Muhsen Alnasser
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | | | - Amna Yusuf Siddiqui
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Shujaa Alothmani
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rakhi Issrani
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Azhar Iqbal
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Osama Khattak
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Namdeo Prabhu
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
3
|
Silver-dendrimer nanocomposite as emerging therapeutics in anti-bacteria and beyond. Drug Resist Updat 2023; 68:100935. [PMID: 36774747 DOI: 10.1016/j.drup.2023.100935] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
To develop next-generation nanomedicine, theranostic nanotherapeutic strategies are increasingly being emphasized. In recent years, it is observed that the effective lifetime of anti-bacterial and anti-cancer agent is diminishing, which undermines the economic incentives necessary for clinical development and therapeutic applications. Thus, novel formulations ought to not only kill drug resistant strains and cancerous cells but also inhibit their formation. Recently, metallic nanoparticles [for example- silver (Ag) nanoparticles] have been widely investigated for their biomedical applications. The so-called applications necessitate the inclusion of these nanoparticles inside polymeric matrices (for example- dendrimer) leading to chemical functionalization of the metallic nanoparticles. Silver and silver nanoparticles' antibacterial activity has already been well established over years. Dendrimers due to their homogeneous highly branched structure and uniform composition are perfectly suitable for the inclusion of silver nanoparticles [Ag NPs]. Recently, the increasing trend in the development of Ag-dendrimer nanocomposites is attributed to the excellent antibacterial activity of Ag as well as dendrimer's unique properties like variable functional terminal ends and potential antibacterial effect necessarily. This review provides an informative overview regarding the numerous aspects of bactericidal and other biomedical applications of Ag-dendrimer nanocomposites, particularly emphasizing analysis of existing research and prospective worth to the pharmaceutical sector in future.
Collapse
|
4
|
Tayanloo-Beik A, Nikkhah A, Roudsari PP, Aghayan H, Rezaei-Tavirani M, Nasli-Esfahani E, Mafi AR, Nikandish M, Shouroki FF, Arjmand B, Larijani B. Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:83-110. [PMID: 35999347 DOI: 10.1007/5584_2022_734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA- CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Contessi Negrini N, Angelova Volponi A, Higgins C, Sharpe P, Celiz A. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021; 10:100107. [PMID: 33889838 PMCID: PMC8050778 DOI: 10.1016/j.mtbio.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary research field aiming at the regeneration, restoration, or replacement of damaged tissues and organs. Classical TE approaches combine scaffolds, cells and soluble factors to fabricate constructs mimicking the native tissue to be regenerated. However, to date, limited success in clinical translations has been achieved by classical TE approaches, because of the lack of satisfactory biomorphological and biofunctional features of the obtained constructs. Developmental TE has emerged as a novel TE paradigm to obtain tissues and organs with correct biomorphology and biofunctionality by mimicking the morphogenetic processes leading to the tissue/organ generation in the embryo. Ectodermal appendages, for instance, develop in vivo by sequential interactions between epithelium and mesenchyme, in a process known as secondary induction. A fine artificial replication of these complex interactions can potentially lead to the fabrication of the tissues/organs to be regenerated. Successful developmental TE applications have been reported, in vitro and in vivo, for ectodermal appendages such as teeth, hair follicles and glands. Developmental TE strategies require an accurate selection of cell sources, scaffolds and cell culture configurations to allow for the correct replication of the in vivo morphogenetic cues. Herein, we describe and discuss the emergence of this TE paradigm by reviewing the achievements obtained so far in developmental TE 3D scaffolds for teeth, hair follicles, and salivary and lacrimal glands, with particular focus on the selection of biomaterials and cell culture configurations.
Collapse
Affiliation(s)
| | - A. Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - C.A. Higgins
- Department of Bioengineering, Imperial College London, London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - A.D. Celiz
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
6
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
7
|
Liu Z, Zeng G, Qin Q, Sun C, Tan L. Smad1/5 signal transduction regulates the ameloblastic differentiation of induced pluripotent stem cells. Braz Oral Res 2020; 34:e006. [PMID: 32022225 DOI: 10.1590/1807-3107bor-2020.vol34.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 11/21/2022] Open
Abstract
Induced pluripotent stem (iPS) cells could be induced into ameloblast-like cells by ameloblasts serum-free conditioned medium (ASF-CM), and bone morphogenetic proteins (BMPs) might be essential during the regulation of this process. The present study investigates the signal transduction that regulates the ameloblastic differentiation of iPS cells induced by ASF-CM. Mouse iPS cells were characterized and then cultured for 14 days in epithelial cell medium (control) or ASF-CM. Bone morphogenetic protein receptor II (BMPR-II) siRNA, inhibitor of Smad1/5 phosphorylation activated by activin receptor-like kinase (ALK) receptors, and inhibitors of mitogen-activated protein kinases (MAPKs) phosphorylation were used to treat the iPS cells in combination with ASF-CM. Real-time PCR, western blotting, and immunofluorescent staining were used to evaluate the expressions of ameloblast markers ameloblastin, enamelin, and cytokeratin-14. BMPR-II gene and protein levels increased markedly in ASF-CM-treated iPS cells compared with the controls, while the mRNA levels of Bmpr-Ia and Bmpr-Ib were similar between the ASF-CM and control groups. ASF-CM stimulation significantly increased the gene and protein expression of ameloblastin, enamelin and cytokeratin-14, and phosphorylated SMAD1/5, p38 MAPK, and ERK1/2 MAPK compared with the controls. Knockdown of BMPR-II and inhibition of Smad1/5 phosphorylation both could significantly reverse the increased expression of ameloblastin, enamelin, and cytokeratin-14 induced by ASF-CM, while neither inhibition of p38 nor ERK1/2 phosphorylation had significant reversing effects. We conclude that smad1/5 signaling transduction, activated by ALK receptors, regulates the ameloblastic differentiation of iPS cells induced by ameloblast-conditioned medium.
Collapse
Affiliation(s)
- Zhi Liu
- Xi'an Jiaotong University, The First Affiliated Hospital, Department of Oral Sciences, Xi'an, China
| | - Guang Zeng
- Forth Military Medical University, Tangdu Hospital, Department of Dentistry, Xi'an, China
| | - Qing Qin
- The 323rd Hospital of PLA 3Department of Dentistry, Xi'an, China
| | - Cong Sun
- Xi'an Jiaotong University, The First Affiliated Hospital, Department of Oral Sciences, Xi'an, China
| | - Lei Tan
- Xi'an Jiaotong University, The First Affiliated Hospital, Department of Oral Sciences, Xi'an, China
| |
Collapse
|
8
|
Firth FA, Farrar R, Farella M. Investigating orthodontic tooth movement: challenges and future directions. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1684957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fiona A. Firth
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Rachel Farrar
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Mauro Farella
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Abstract
Bioengineered dental tissues and whole teeth that exhibit features and properties of natural teeth can functionally surpass currently used artificial dental implants. However, no biologically based alternatives currently exist for clinical applications in dentistry. Here, we describe a newly established bioengineered tooth bud model for eventual applications in clinical dentistry. We also describe methods to fabricate and analyze bioengineered tooth tissues, including cell isolation, in vivo implantation, and post-harvest analyses.
Collapse
|
10
|
Wang F, Wu Z, Fan Z, Wu T, Wang J, Zhang C, Wang S. The cell re-association-based whole-tooth regeneration strategies in large animal, Sus scrofa. Cell Prolif 2018; 51:e12479. [PMID: 30028040 DOI: 10.1111/cpr.12479] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Whole-tooth regeneration for tooth loss has long been a goal of dentistry. There is also an increasing demand to carry out pre-clinical in vitro and in vivo research methods in large animal model similar to human. The miniature pig has proven to be an alternative as a large mammal model owing to its many similarities to human. However, whole-tooth regeneration in large animal remains a challenge. Here, we investigated the feasibility of cell re-association-based whole-tooth regeneration in miniature pigs. MATERIALS AND METHODS Single cells from the forth deciduous molar germs (p4) of pig were reconstituted to bioengineered tooth bud using different treatment for in vitro culture and in vivo transplantation in mouse subrenal capsules and jawbones. RESULTS The bioengineered tooth bud from re-aggregated epithelial to mesenchymal single cells with and without compartmentalization restored the morphogenesis, interactions or self-sorting between 2 cells in vitro culture. The pig bioengineered tooth bud transplanted in mouse subrenal capsules and jawbones restored odontogenesis and developed into large size tooth. CONCLUSIONS We characterized the morphogenesis and interaction of single-tooth germ cells in vitro, and first addressed efficient long-term survival and growth through transplantation of pig bioengineered tooth bud under mouse subrenal capsules or in mouse jawbones, where it can develop into large size tooth. Our study extends the feasibility of whole-tooth regeneration in large animal.
Collapse
Affiliation(s)
- Fu Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,School of Stomatology, Dalian Medical University, Liaoning, China
| | - Zhifang Wu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Tingting Wu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Smith EE, Angstadt S, Monteiro N, Zhang W, Khademhosseini A, Yelick PC. Bioengineered Tooth Buds Exhibit Features of Natural Tooth Buds. J Dent Res 2018; 97:1144-1151. [PMID: 29879370 DOI: 10.1177/0022034518779075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tooth loss is a significant health issue currently affecting millions of people worldwide. Artificial dental implants, the current gold standard tooth replacement therapy, do not exhibit many properties of natural teeth and can be associated with complications leading to implant failure. Here we propose bioengineered tooth buds as a superior alternative tooth replacement therapy. We describe improved methods to create highly cellularized bioengineered tooth bud constructs that formed hallmark features that resemble natural tooth buds such as the dental epithelial stem cell niche, enamel knot signaling centers, transient amplifying cells, and mineralized dental tissue formation. These constructs were composed of postnatal dental cells encapsulated within a hydrogel material that were implanted subcutaneously into immunocompromised rats. To our knowledge, this is the first report describing the use of postnatal dental cells to create bioengineered tooth buds that exhibit evidence of these features of natural tooth development. We propose future bioengineered tooth buds as a promising, clinically relevant tooth replacement therapy.
Collapse
Affiliation(s)
- E E Smith
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School Medicine, Boston, MA, USA
| | - S Angstadt
- 2 Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - N Monteiro
- 2 Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - W Zhang
- 2 Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - A Khademhosseini
- 3 Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - P C Yelick
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School Medicine, Boston, MA, USA.,2 Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|