1
|
Chauhan K, Rao A. Clean-label alternatives for food preservation: An emerging trend. Heliyon 2024; 10:e35815. [PMID: 39247286 PMCID: PMC11379619 DOI: 10.1016/j.heliyon.2024.e35815] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Consumer demand for natural or 'clean-label' food ingredients has risen over the past 50 years and continues growing. Consumers have become more aware of their health and, therefore, insist on transparency in the list of ingredients. Preservatives are the most crucial food additives, ensuring food safety and security. Despite tremendous technological advancements, food preservation remains a significant challenge worldwide, primarily because most are synthetic and non-biodegradable. As a result, the food industry is placing more value on microbiota and other natural sources for bio-preservation, leading to the substitution of conventional processing and chemical preservatives with natural alternatives to ensure 'clean-label.' General Standard for Food Additives (GSFA) includes some of these 'clean-label' options in its list of additives. However, they are very rarely capable of replacing a synthetic preservative on a 'one-for-one' basis, putting pressure on researchers to decipher newer, cleaner, and more economical alternatives. Academic and scientific research has led to the discovery of several plant, animal, and microbial metabolites that may function as effective bio-preservatives. However, most have not yet been put in the market or are under trial. Hence, the present review aims to summarise such relevant and potential metabolites with bio-preservative properties comprehensively. This article will help readers comprehend recent innovations in the 'clean-label' era, provide informed choices to consumers, and improve the business of regulatory approvals.
Collapse
Affiliation(s)
- Kanika Chauhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
- Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India
| |
Collapse
|
2
|
Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N. Insights on sustainable approaches for production and applications of value added products. CHEMOSPHERE 2022; 286:131623. [PMID: 34346348 DOI: 10.1016/j.chemosphere.2021.131623] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Neetu Sharma
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sajeev Soni
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India.
| |
Collapse
|
3
|
Mothe S, Polisetty VR. Review on anaerobic digestion of rice straw for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24455-24469. [PMID: 32335832 DOI: 10.1007/s11356-020-08762-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
India is an agrarian country producing a large amount of rice straw as an agricultural residue. These residues are burnt openly leading to severe environmental pollution and health hazards. Among several options available, anaerobic digestion of rice straw into biomethane gas and digestate is a promising technology. The current paper reviews the characteristics, principles of rice straw and the process variables (temperature, volatile fatty acids, and pH, carbon to nitrogen ratio, metal elements and organic loading rate) that affect the performance of the rice straw digestion and process strategies which may alleviate the barriers and may improve the biomethane yield. Co-digestion of rice straw with nitrogen-rich substrates is proven to be an effective way to balance the carbon to nitrogen ratio, in turn, leads to nutrient balance and enhance the biomethane yields of anaerobic co-digestion system. Moreover, pretreatment is another effective strategy; physical, chemical and biological pretreatments are reviewed in the article which improved the performance of digester. The utilisation of rice straw along with other co-substrates and appropriate pretreatment may be a recommended sustainable solution for preventing environmental and health hazards.
Collapse
Affiliation(s)
- Sagarika Mothe
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, India.
| | | |
Collapse
|
4
|
Pan SY, Li CW, Huang YZ, Fan C, Tai YC, Chen YL. Composition-oriented estimation of biogas production from major culinary wastes in an anaerobic bioreactor and its associated CO 2 reduction potential. BIORESOURCE TECHNOLOGY 2020; 318:124045. [PMID: 32889126 DOI: 10.1016/j.biortech.2020.124045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Despite the wide applications of dry anaerobic digestion (AD), a number of fundamental issues, such as composition-oriented estimation of biogas production and CO2 reduction potential, were not well understood yet. The objective of this study was to establish composition-oriented models for prediction of biogas production and the associated shift of microbial communities. Three important factors regarding feedstock, including loading, carbon-to-nitrogen ratio, and solid-to-liquid ratio, were found to significantly affect the biogas production. The biogas production and digestion kinetics were evaluated with the response surface methodology. The major contribution to biogas production was found to be hydrogenotrophic methanogens (82.6 ± 0.4%). The net CO2 reduction potential was assessed from the life-cycle approach, and a substantial amount of CO2 generation (i.e., 2.8-6.7 tonne/tonne-VS) could be reduced by AD, compared to incineration, revealing that dry AD for food waste treatment should be one of the essential practices in the portfolio of global CO2 mitigation.
Collapse
Affiliation(s)
- Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei City 106, Taiwan, ROC
| | - Chun-Wei Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei City 106, Taiwan, ROC
| | - Ya-Zhen Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei City 106, Taiwan, ROC
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei City 106, Taiwan, ROC.
| | | | | |
Collapse
|
5
|
Bilal M, Iqbal HMN. Recent Advancements in the Life Cycle Analysis of Lignocellulosic Biomass. CURRENT SUSTAINABLE/RENEWABLE ENERGY REPORTS 2020; 7:100-107. [DOI: 10.1007/s40518-020-00153-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Abstract
Thailand has increased wood pellet production for export and domestic use. The variations in production processes, raw materials, and transportation related to wood pellet production make it necessary to evaluate the environmental impacts assessment. The objective of this study was to compare via Life Cycle Assessment (LCA), eight different cases of wood pellet production varying in terms of raw materials, production processes, energy use, and the format of transportation and to compare LCA of electricity production from wood pellets and fossil fuels. The comparison results show that leucaena is better as a feedstock for wood pellet production than acacia due to shorter harvest cycle and lesser use of resources. Pellet production consumes the most energy contributing significantly to the environmental impacts. The use of fossil fuels in wood pellet production and transportation also has a major contribution to the environmental impacts. Using wood pellets for electricity production is better than lignite in terms of human health, ecosystem quality and resource scarcity. Recommendations from this study include increasing yield of feedstock plants, shortening harvest cycle, reducing overuse of fertilizers and herbicides, pollution control, reducing fossil fuel use in the supply chain, good logistics, feedstock access, and offering incentives considering the externality cost.
Collapse
|
7
|
Evaluation of Industrial Urea Energy Consumption (EC) Based on Life Cycle Assessment (LCA). SUSTAINABILITY 2020. [DOI: 10.3390/su12093793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
With the increasingly prominent environmental problems and the decline of fossil fuel reserves, the reduction of energy consumption (EC) has become a common goal in the world. Urea industry is a typical energy-intensive chemical industry. However, studies just focus on the breakthrough of specific production technology or only consider the EC in the production stage. This results in a lack of evaluations of the life cycle of energy consumption (LcEC). In order to provide a systematic, scientific, and practical theoretical basis for the industrial upgrading and the energy transformation, LcEC of urea production and the greenhouse gas (GHG) emissions generated in the process of EC are studied in this paper. The results show that the average LcEC is about 30.1 GJ/t urea. The EC of the materials preparation stage, synthesis stage, and waste-treatment stage (ECRMP, ECPP, ECWD) is about 0.388 GJ/t urea, 24.8 GJ/t urea, and 4.92 GJ/t urea, accounting for 1.3%, 82.4%, and 16.3% of LcEC, respectively. Thus, the synthesis stage is a dominant energy-consumer, in which 15.4 GJ/t urea of energy, accounting for 62.0% of ECpp, supports steam consumption. According to the energy distribution analysis, it can be concluded that coal presents the primary energy in the process of urea production, which supports 94.4% of LcEC. The proportion of coal consumption is significantly higher than that of the average of 59% in China. Besides, the GHG emissions in the synthesis stage are obviously larger than that in the other stage, with an average of 2.18 t eq.CO2/t urea, accounting for 81.3% of the life cycle of GHG (LcGHG) emissions. In detail, CO2 is the dominant factor accounting for 90.0% of LcGHG emissions, followed by CH4, while N2O is negligible. Coal is the primary source of CO2 emissions. The severe high proportion of coal consumption in the life cycle of urea production is responsible for this high CO2 content of GHG emissions. Therefore, for industrial urea upgrading and energy transformation, reducing coal consumption will still be an important task for energy structure transformation. At the same time, the reformation of synthesis technologies, especially for steam energy-consuming technology, will mainly reduce the EC of the urea industry. Furthermore, the application of green energy will be conducive to a win-win situation for both economic and environmental benefits.
Collapse
|
8
|
Islam MK, Wang H, Rehman S, Dong C, Hsu HY, Lin CSK, Leu SY. Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. BIORESOURCE TECHNOLOGY 2020; 298:122558. [PMID: 31862395 DOI: 10.1016/j.biortech.2019.122558] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/12/2023]
Abstract
Excessive utilization of fossil fuels has resulted in serious concerns about climate change. Integrating biorefinery technology to convert waste-derived-lignocellulosic biomass into biofuels and biopolymers has become an emerging topic toward our sustainable future. Pretreatment to fractionate the building block chemicals from the biomass is a crucial unit operation to ease the downstream processes in biorefinery. However, application of solvents and chemicals in the process can create many operational and environmental challenges in sensitive areas like highly populated cities. To shed light on how to determine a green biorefinery, this study presents the sustainability metrics of various pretreatment techniques and their operational risks during urbanization. The proposed green indexes include fractionation outputs, chemical recyclability, operational profile, and safety factors. In line with the design principles of lignin valorization, the issue of urban biomass and water-and-energy nexus are addressed to support future development and application of urban biorefinery for municipal waste management.
Collapse
Affiliation(s)
- Md Khairul Islam
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Huaimin Wang
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Shazia Rehman
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chengyu Dong
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Hsien-Yi Hsu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Shao-Yuan Leu
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
9
|
Syu WJ, Chang TK, Pan SY. Establishment of an Automatic Real-Time Monitoring System for Irrigation Water Quality Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030737. [PMID: 31979250 PMCID: PMC7038173 DOI: 10.3390/ijerph17030737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 11/30/2022]
Abstract
In order to provide the real-time monitoring for identifying the sources of pollution and improving the irrigation water quality management, the integration of continuous automatic sampling techniques and cloud technologies is essential. In this study, we have established an automatic real-time monitoring system for improving the irrigation water quality management, especially for heavy metals such as Cd, Pb, Cu, Ni, Zn, and Cr. As a part of this work, we have first provided several examples on the basic water quality parameters (e.g., pH and electrical conductance) to demonstrate the capacity of data correction by the smart monitoring system, and then evaluated the trend and variance of water quality parameters for different types of monitoring stations. By doing so, the threshold (to initiate early warming) of different water quality parameters could be dynamically determined by the system, and the authorities could be immediately notified for follow-up actions. We have also provided and discussed the representative results from the real-time automatic monitoring system of heavy metals from different monitoring stations. Finally, we have illustrated the implications of the developed smart monitoring system for ensuring the safety of irrigation water in the near future, including integration with automatic sampling for establishing information exchange platform, estimating fluxes of heavy metals to paddy fields, and combining with green technologies for nonpoint source pollution control.
Collapse
|