1
|
Mumtha C, Mahalingam PU. Biohydrogen production from co-substrates through dark fermentation by bacterial consortium. 3 Biotech 2024; 14:281. [PMID: 39464519 PMCID: PMC11511797 DOI: 10.1007/s13205-024-04106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Hydrogen is a clean energy carrier that can be used as fuel for fuel cells. Dark fermentative biohydrogen production with other waste biomass needs to be explored as an alternative for sustainable biohydrogen production in future. In this study, lab-scale bioreactor were carried out to produce biohydrogen from co-substrates using bacterial consortium at 37 ℃. For the experimental setup, a 1-L-working-volume reactor was used for biohydrogen production by bacterial monocultures and consortium on co-substrates. A batch experiment was performed at 37 °C with an initial pH of 7.0 and a mixing ratio of 600:300 between dairy whey and sugarcane bagasse. Total solids (TS), volatile solids (VS), total chemical oxygen demand (TCOD), soluble chemical oxygen demand (SCOD), and hydrogen production rate (HPR) were determined from co-substrates during the dark fermentation process. Morphologic changes of biohydrogen producing bacteria binds on co-substrates after the fermentation process were determined using SEM imaging. The bacteria can degrade the substrate when they attach to it causing hole formation and cracked the surface area. The level of biohydrogen production by bacterial consortium was observed and the results revealed a hydrogen production rate of 35.9 mL H2/L/h. In fermentative H2 production, it is quite similar to that of most H2-producing bacteria previously studied, especially that of the bacterial consortium, and this indicates that the attempt to find an outstanding bacterial strain for fermentative H2 production might be very difficult if not impossible.
Collapse
Affiliation(s)
- Chelladurai Mumtha
- Department of Biology, The Gandhigram Rural Institute–(Deemed to Be University), Gandhigram, Dindigul, 624 302 Tamil Nadu India
| | - Pambayan Ulagan Mahalingam
- Department of Biology, The Gandhigram Rural Institute–(Deemed to Be University), Gandhigram, Dindigul, 624 302 Tamil Nadu India
| |
Collapse
|
2
|
Elkaliny NE, Alzamel NM, Moussa SH, Elodamy NI, Madkor EA, Ibrahim EM, Elshobary ME, Ismail GA. Macroalgae Bioplastics: A Sustainable Shift to Mitigate the Ecological Impact of Petroleum-Based Plastics. Polymers (Basel) 2024; 16:1246. [PMID: 38732716 PMCID: PMC11085313 DOI: 10.3390/polym16091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The surge in global utilization of petroleum-based plastics, which notably heightened during the COVID-19 pandemic, has substantially increased its harm to ecosystems. Considering the escalating environmental impact, a pivotal shift towards bioplastics usage is imperative. Exploring and implementing bioplastics as a viable alternative could mitigate the ecological burden posed by traditional plastics. Macroalgae is a potential feedstock for the production of bioplastics due to its abundance, fast growth, and high cellulose and sugar content. Researchers have recently explored various methods for extracting and converting macroalgae into bioplastic. Some of the key challenges in the production of macroalgae bioplastics are the high costs of large-scale production and the need to optimize the extraction and conversion processes to obtain high-quality bioplastics. However, the potential benefits of using macroalgae for bioplastic production include reducing plastic waste and greenhouse gas emissions, using healthier materials in various life practices, and developing a promising area for future research and development. Also, bioplastic provides job opportunities in free enterprise and contributes to various applications such as packaging, medical devices, electronics, textiles, and cosmetics. The presented review aims to discuss the problem of petroleum-based plastic, bioplastic extraction from macroalgae, bioplastic properties, biodegradability, its various applications, and its production challenges.
Collapse
Affiliation(s)
- Nehal E. Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nurah M. Alzamel
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Shaaban H. Moussa
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Nour I. Elodamy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Engy A. Madkor
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa M. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan A. Ismail
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
3
|
Zhang J, Yan X, Park H, Scrutton NS, Chen T, Chen GQ. Nonsterile microbial production of chemicals based on Halomonas spp. Curr Opin Biotechnol 2024; 85:103064. [PMID: 38262074 DOI: 10.1016/j.copbio.2023.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
The use of extremophile organisms such as Halomomas spp. can eliminate the need for fermentation sterilization, significantly reducing process costs. Microbial fermentation is considered a pivotal strategy to reduce reliance on fossil fuel resources; however, sustainable processes continue to incur higher costs than their chemical industry counterparts. Most organisms require equipment sterilization to prevent contamination, a practice that introduces complexity and financial strain. Fermentations involving extremophile organisms can eliminate the sterilization process, relying instead on conditions that are conductive solely to the growth of the desired organism. This review discusses current challenges in pilot- and industrial-scale bioproduction when using the extremophile bacteria Halomomas spp. under nonsterile conditions.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Kashyap M, Chakraborty S, Kumari A, Rai A, Varjani S, Vinayak V. Strategies and challenges to enhance commercial viability of algal biorefineries for biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129551. [PMID: 37506948 DOI: 10.1016/j.biortech.2023.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The rise in energy consumption would quadruple in the coming century and the, existing energy resources might be insufficient to meet the demand of the growing population. An alternative and sustainable energy resource is therefore needed to address the fossil fuel deficiency. The utility of microalgae strains in the aspect of biorefinery has been in research for quite some time. Algal biorefinery is an alternate way of renewable energy however even after decades of research it still suffers from commercialization bottlenecks. The current manuscript reviews the scenarios where the innovation needs an ignition for its commercialization. This review discusses the prospects of up-scale cultivation, and harvesting algal biomass for biorefineries. It narrates algal biorefinery hurdles that can be solved using integrated technology approach, life cycle assessment and applications of nanotechnology. The review also sheds light upon the ties of algal biorefineries with its economic viability.
Collapse
Affiliation(s)
- Mrinal Kashyap
- Porter School of Earth and Environment Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sukanya Chakraborty
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Anamika Kumari
- Porter School of Earth and Environment Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Anshuman Rai
- Department of Biotechnology, School of Engineering, Maharishi Markandeshwar University, Ambala, Haryana 133203, India; State Forensic Science Laboratory, Haryana, Madhuban 132037, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
5
|
Aytar Celik P, Barut D, Enuh BM, Erdogan Gover K, Nural Yaman B, Burcin Mutlu M, Cabuk A. A novel higher polyhydroxybutyrate producer Halomonas halmophila 18H with unique cell factory attributes. BIORESOURCE TECHNOLOGY 2023; 372:128669. [PMID: 36702321 DOI: 10.1016/j.biortech.2023.128669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
For cost-competitive biosynthesis of polyhydroxybutyrate (PHB), the screening of efficient producers and characterization of their genomic potential is fundamental. In this study, 94 newly isolated halophilic strains from Turkish salterns were screened for their polyhydroxyalkanoates (PHAs) biosynthesis capabilities through fermentation. Halomonas halmophila 18H was found to be the highest PHB producer, yielding 63.72 % of its biomass as PHB. The PHB produced by this strain was physically and chemically characterized using various techniques. Its genome was also sequenced and found to be large (6,713,657 bp) and have a GC content of 59.9 %. Halomonas halmophila 18H was also found to have several copies of PHB biosynthesis genes, as well as 20 % more protein-coding genes and 1075 singletons compared to other high PHB producers. These unique genomic features make it a promising cell factory for the simultaneous production of PHAs and other biotechnologically important secondary metabolites.
Collapse
Affiliation(s)
- Pinar Aytar Celik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, 26110 Eskisehir, Turkey; Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Kubra Erdogan Gover
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Belma Nural Yaman
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Mehmet Burcin Mutlu
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| | - Ahmet Cabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
6
|
Scale-Up to Pilot of a Non-Axenic Culture of Thraustochytrids Using Digestate from Methanization as Nitrogen Source. Mar Drugs 2022; 20:md20080499. [PMID: 36005502 PMCID: PMC9410245 DOI: 10.3390/md20080499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
The production of non-fish based docosahexaenoic acid (DHA) for feed and food has become a critical need in our global context of over-fishing. The industrial-scale production of DHA–rich Thraustochytrids could be an alternative, if costs turned out to be competitive. In order to reduce production costs, this study addresses the feasibility of the non-axenic (non-sterile) cultivation of Aurantiochytrium mangrovei on industrial substrates (as nitrogen and mineral sources and glucose syrup as carbon and energy sources), and its scale-up from laboratory (250 mL) to 500 L cultures. Pilot-scale reactors were airlift cylinders. Batch and fed-batch cultures were tested. Cultures over 38 to 62 h achieved a dry cell weight productivity of 3.3 to 5.5 g.L−1.day−1, and a substrate to biomass yield of up to 0.3. DHA productivity ranged from 10 to 0.18 mg.L−1.day−1. Biomass productivity appears linearly related to oxygen transfer rate. Bacterial contamination of cultures was low enough to avoid impacts on fatty acid composition of the biomass. A specific work on microbial risks assessment (in supplementary files) showed that the biomass can be securely used as feed. However, to date, there is a law void in EU legislation regarding the recycling of nitrogen from digestate from animal waste for microalgae biomass and its usage in animal feed. Overall, the proposed process appears similar to the industrial yeast production process (non-axenic heterotrophic process, dissolved oxygen supply limiting growth, similar cell size). Such similarity could help in further industrial developments.
Collapse
|
7
|
Eraslan K, Aversa C, Nofar M, Barletta M, Gisario A, Salehiyan R, Alkan Goksu Y. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): synthesis, properties, and applications - A Review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N. Insights on sustainable approaches for production and applications of value added products. CHEMOSPHERE 2022; 286:131623. [PMID: 34346348 DOI: 10.1016/j.chemosphere.2021.131623] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Neetu Sharma
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sajeev Soni
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India.
| |
Collapse
|
9
|
Jaffur N, Jeetah P, Kumar G. A review on enzymes and pathways for manufacturing polyhydroxybutyrate from lignocellulosic materials. 3 Biotech 2021; 11:483. [PMID: 34790507 DOI: 10.1007/s13205-021-03009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Currently, major focus in the biopolymer field is being drawn on the exploitation of plant-based resources grounded on holistic sustainability trends to produce novel, affordable, biocompatible and environmentally safe polyhydroxyalkanoate biopolymers. The global PHA market, estimated at USD 62 Million in 2020, is predicted to grow by 11.2 and 14.2% between 2020-2024 and 2020-2025 correspondingly based on market research reports. The market is primarily driven by the growing demand for PHA products by the food packaging, biomedical, pharmaceutical, biofuel and agricultural sectors. One of the key limitations in the growth of the PHA market is the significantly higher production costs associated with pure carbon raw materials as compared to traditional polymers. Nonetheless, considerations such as consumer awareness on the toxicity of petroleum-based plastics and strict government regulations towards the prohibition of the use and trade of synthetic plastics are expected to boost the market growth rate. This study throws light on the production of polyhydroxybutyrate from lignocellulosic biomass using environmentally benign techniques via enzyme and microbial activities to assess its feasibility as a green substitute to conventional plastics. The novelty of the present study is to highlight the recent advances, pretreatment techniques to reduce the recalcitrance of lignocellulosic biomass such as dilute and concentrated acidic pretreatment, alkaline pretreatment, steam explosion, ammonia fibre explosion (AFEX), ball milling, biological pretreatment as well as novel emerging pretreatment techniques notably, high-pressure homogenizer, electron beam, high hydrostatic pressure, co-solvent enhanced lignocellulosic fractionation (CELF) pulsed-electric field, low temperature steep delignification (LTSD), microwave and ultrasound technologies. Additionally, inhibitory compounds and detoxification routes, fermentation downstream processes, life cycle and environmental impacts of recovered natural biopolymers, review green procurement policies in various countries, PHA strategies in line with the United Nations Sustainable Development Goals (SDGs) along with the fate of the spent polyhydroxybutyrate are outlined.
Collapse
Affiliation(s)
- Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
10
|
Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks. Life (Basel) 2021; 11:life11080807. [PMID: 34440551 PMCID: PMC8398495 DOI: 10.3390/life11080807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable polymers that are considered able to replace synthetic plastic because their biochemical characteristics are in some cases the same as other biodegradable polymers. However, due to the disadvantages of costly and non-renewable carbon sources, the production of PHA has been lower in the industrial sector against conventional plastics. At the same time, first-generation sugar-based cultivated feedstocks as substrates for PHA production threatens food security and considerably require other resources such as land and energy. Therefore, attempts have been made in pursuit of suitable sustainable and affordable sources of carbon to reduce production costs. Thus, in this review, we highlight utilising waste lignocellulosic feedstocks (LF) as a renewable and inexpensive carbon source to produce PHA. These waste feedstocks, second-generation plant lignocellulosic biomass, such as maize stoves, dedicated energy crops, rice straws, wood chips, are commonly available renewable biomass sources with a steady supply of about 150 billion tonnes per year of global yield. The generation of PHA from lignocellulose is still in its infancy, hence more screening of lignocellulosic materials and improvements in downstream processing and substrate pre-treatment are needed in the future to further advance the biopolymer sector.
Collapse
|
11
|
Vinayak V, Khan MJ, Varjani S, Saratale GD, Saratale RG, Bhatia SK. Microbial fuel cells for remediation of environmental pollutants and value addition: Special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J Biotechnol 2021; 338:5-19. [PMID: 34245783 DOI: 10.1016/j.jbiotec.2021.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
With the advent of global industrialisation and adaptation of smart life there is rise in anthropogenic pollution especially in water. Remediation of the pollutants (such as metals, and dyes) present in industrial effluents is possible via microbes and algae present in the environment. Microbes are used in a microbial fuel cell (MFC) for remediation of various organic and inorganic pollutants. However, for industrial scale application coupling the MFCs with photocatalytic and photoelectric fuel cell has a potential in improving the output of power. It can also be used for remediation of pollutants more expeditiously, conserving fossil fuels, cleaning environment, hence making the coupled hybrid fuel cell to run economically. Furthermore, such MFC inbuilt with algae in living or powder form give additional value addition products like biofuel, polysaccharides, biopolymers, and polyhydroxy alkanoates etc. This review provides bird's eye view on the removal of environmental pollutants by different biological sources like bacteria and algae. The article is focussed on diatoms as potential algae since they are rich source of crude oil and high value added products in a hybrid photocatalytic MFC. It also covers bottle necks, challenges and future in this field of research.
Collapse
Affiliation(s)
- Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
12
|
Montiel-Corona V, Buitrón G. Polyhydroxyalkanoates from organic waste streams using purple non-sulfur bacteria. BIORESOURCE TECHNOLOGY 2021; 323:124610. [PMID: 33429315 DOI: 10.1016/j.biortech.2020.124610] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Many microorganisms can produce intracellular and extracellular biopolymers, such as polyhydroxyalkanoates (PHA). Despite PHA's benefits, their widespread at the industrial level has not occurred due mainly to high production costs. PHA production under a biorefinery scheme is proposed to improve its economic viability. In this context, purple non-sulfur bacteria (PNSB) are ideal candidates to produce PHA and other substances of economic interest. This review describes the PHA production by PNSB under different metabolic pathways, by using a wide range of wastes and under diverse operational conditions such as aerobic and anaerobic metabolism, irradiance level, light or dark conditions. Some strategies, such as controlling the feed regime, biofilm reactors, and open photobioreactors in outdoor conditions, were identified from the literature review as the approach needed to improve the process's economic viability when using mixed cultures of PNSB and wastes as substrates.
Collapse
Affiliation(s)
- Virginia Montiel-Corona
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216 San Luis Potosí, SLP, Mexico; Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
13
|
Giubilini A, Bondioli F, Messori M, Nyström G, Siqueira G. Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering (Basel) 2021; 8:29. [PMID: 33672131 PMCID: PMC7926534 DOI: 10.3390/bioengineering8020029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, biopolymers have been attracting the attention of researchers and specialists from different fields, including biotechnology, material science, engineering, and medicine. The reason is the possibility of combining sustainability with scientific and technological progress. This is an extremely broad research topic, and a distinction has to be made among different classes and types of biopolymers. Polyhydroxyalkanoate (PHA) is a particular family of polyesters, synthetized by microorganisms under unbalanced growth conditions, making them both bio-based and biodegradable polymers with a thermoplastic behavior. Recently, PHAs were used more intensively in biomedical applications because of their tunable mechanical properties, cytocompatibility, adhesion for cells, and controllable biodegradability. Similarly, the 3D-printing technologies show increasing potential in this particular field of application, due to their advantages in tailor-made design, rapid prototyping, and manufacturing of complex structures. In this review, first, the synthesis and the production of PHAs are described, and different production techniques of medical implants are compared. Then, an overview is given on the most recent and relevant medical applications of PHA for drug delivery, vessel stenting, and tissue engineering. A special focus is reserved for the innovations brought by the introduction of additive manufacturing in this field, as compared to the traditional techniques. All of these advances are expected to have important scientific and commercial applications in the near future.
Collapse
Affiliation(s)
- Alberto Giubilini
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy;
| | - Federica Bondioli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
| | - Massimo Messori
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
| |
Collapse
|
14
|
Surface-Modified Highly Biocompatible Bacterial-poly(3-hydroxybutyrate- co-4-hydroxybutyrate): A Review on the Promising Next-Generation Biomaterial. Polymers (Basel) 2020; 13:polym13010051. [PMID: 33375622 PMCID: PMC7795663 DOI: 10.3390/polym13010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are bacteria derived bio-based polymers that are synthesised under limited conditions of nutritional elements with excess carbon sources. Among the members of PHAs, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] emerges as an attractive biomaterial to be applied in medical applications owing to its desirable mechanical and physical properties, non-genotoxicity and biocompatibility eliciting appropriate host tissue responses. The tailorable physical and chemical properties and easy surface functionalisation of P(3HB-co-4HB) increase its practicality to be developed as functional medical substitutes. However, its applicability is sometimes limited due to its hydrophobic nature due to fewer bio-recognition sites. In this review, we demonstrate how surface modifications of PHAs, mainly P(3HB-co-4HB), will overcome these limitations and facilitate their use in diverse medical applications. The integration of nanotechnology has drastically enhanced the functionality of P(3HB-co-4HB) biomaterials for application in complex biological environments of the human body. The design of versatile P(3HB-co-4HB) materials with surface modifications promise a non-cytotoxic and biocompatible material without inducing severe inflammatory responses for enhanced effective alternatives in healthcare biotechnology. The enticing work carried out with P(3HB-co-4HB) promises to be one of the next-generation materials in biomedicines which will facilitate translation into the clinic in the future.
Collapse
|