1
|
Monserrat Hernández M, Jiménez-Rodríguez D. Relationship of Genetic Polymorphisms and Microbial Composition with Binge Eating Disorder: A Systematic Review. Healthcare (Basel) 2024; 12:1441. [PMID: 39057584 PMCID: PMC11276772 DOI: 10.3390/healthcare12141441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Humans are the result of an evolutionary process, and because of this, many biological processes are interconnected with each other. The intestine-brain axis consists of an intricately connected neuronal-neuroendocrine circuit that regulates the sensation of hunger and satiety. Genetic variations and the consumption of unnatural diets (ultra-processed foods, high contents of sugars, etc.) can override this circuit and cause addiction to certain foods and/or the inability to feel satiety in certain situations. The patients who come to consultations (mainly psychology or nutrition) in an attempt to resolve this problem sometimes fail, which leads to them looking for new strategies based on biological predisposition. This investigation aims to evaluate the genetic studies regarding the microbiota carried out in the last 12 years in humans to try to determine which genes and microbes that have been recently studied are related to patients diagnosed with binge eating disorder or compulsive eating (presenting obesity or not). The protocol followed the PRISMA statement, and the following databases were searched from 2012 until the present day: PubMed, PsycINFO, SCOPUS, and Web of Science. Twenty-four international articles were analyzed, including cross-sectional or exploratory studies; five of them referred to the microbial composition, and in nineteen, the existence of genetic polymorphisms present in binge eating disorder or in compulsive eating could be observed: DRD2, OPRM1, COMT, MC4R, BNDF, FTO, SLC6A3, GHRL, CARTPT, MCHR2, and LRP11. Even though there is still much to investigate on the subject, it must be highlighted that, in the last 4 years, a two-fold increase has been observed in potential markers and in studies related to the matter, also highlighting the importance of different analyses in relation to psychosocial factors and their interaction with the genetic and microbial factors, for which research on the matter must be continued.
Collapse
Affiliation(s)
| | - Diana Jiménez-Rodríguez
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain;
| |
Collapse
|
2
|
White O, Roeder N, Blum K, Eiden RD, Thanos PK. Prenatal Effects of Nicotine on Obesity Risks: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9477. [PMID: 35954830 PMCID: PMC9368674 DOI: 10.3390/ijerph19159477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Nicotine usage by mothers throughout pregnancy has been observed to relate to numerous deleterious effects in children, especially relating to obesity. Children who have prenatally been exposed to nicotine tend to have lower birth weights, with an elevated risk of becoming overweight throughout development and into their adolescent and adult life. There are numerous theories as to how this occurs: catch-up growth theory, thrifty phenotype theory, neurotransmitter or endocrine imbalances theory, and a more recent examination on the genetic factors relating to obesity risk. In addition to the negative effect on bodyweight and BMI, individuals with obesity may also suffer from numerous comorbidities involving metabolic disease. These may include type 1 and 2 diabetes, high cholesterol levels, and liver disease. Predisposition for obesity with nicotine usage may also be associated with genetic risk alleles for obesity, such as the DRD2 A1 variant. This is important for prenatally nicotine-exposed individuals as an opportunity to provide early prevention and intervention of obesity-related risks.
Collapse
Affiliation(s)
- Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Addiction Research, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rina D. Eiden
- Department of Psychology, Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Shobeiri P, Bagherieh S, Mirzayi P, Kalantari A, Mirmosayyeb O, Teixeira AL, Rezaei N. Serum and plasma levels of brain-derived neurotrophic factor in individuals with eating disorders (EDs): a systematic review and meta-analysis. J Eat Disord 2022; 10:105. [PMID: 35850718 PMCID: PMC9295529 DOI: 10.1186/s40337-022-00630-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, development, and plasticity. Evidence suggests that fluctuations in peripheral levels (i.e., plasma or serum) of BDNF are associated with eating behaviors. Nevertheless, the findings are inconsistent. The purpose of this study is to determine if serum or plasma levels of BDNF are altered in individuals with eating disorders (EDs) compared to controls. METHODS We conducted a systematic search of the core electronic medical databases from inception to March 2022 and identified observational studies that compared individuals with EDs to controls without EDs on serum or plasma levels of BDNF. R version 4.0.4 was used for all visualizations and calculations. RESULTS The current meta-analysis comprised 15 studies that fulfilled the inclusion criteria. Subjects with EDs (n = 795) showed lower BDNF levels compared to non-EDs controls (n = 552) (SMD: - 0.49, 95% CI [- 0.89; - 0.08], p-value = 0.01). Moreover, subgroup analysis was conducted based on the specimen (plasma and serum), which revealed no statistically significant difference in the levels of BDNF between the two subgroups (p-value = 0.92). Additionally, meta-regression results revealed that publication year, mean age of the individuals with EDs, NOS scores, and the number of individuals with EDs collectively accounted for 25.99% percent of the existing heterogeneity. CONCLUSION Lower BDNF levels are associated with EDs.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Sara Bagherieh
- School of Medicine, Isfahan University of Medical Sciences, Esfahān, Iran
| | - Parsa Mirzayi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
| | - Omid Mirmosayyeb
- Isfahan Neuroscience Research Center, Isfahan University of Medical Sciences, Esfahān, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|