4
|
Wang W, Zheng Y, Sun S, Li W, Song M, Ji Q, Wu Z, Liu Z, Fan Y, Liu F, Li J, Esteban CR, Wang S, Zhou Q, Belmonte JCI, Zhang W, Qu J, Tang F, Liu GH. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med 2021; 13:13/575/eabd2655. [PMID: 33408182 DOI: 10.1126/scitranslmed.abd2655] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Understanding the genetic and epigenetic bases of cellular senescence is instrumental in developing interventions to slow aging. We performed genome-wide CRISPR-Cas9-based screens using two types of human mesenchymal precursor cells (hMPCs) exhibiting accelerated senescence. The hMPCs were derived from human embryonic stem cells carrying the pathogenic mutations that cause the accelerated aging diseases Werner syndrome and Hutchinson-Gilford progeria syndrome. Genes whose deficiency alleviated cellular senescence were identified, including KAT7, a histone acetyltransferase, which ranked as a top hit in both progeroid hMPC models. Inactivation of KAT7 decreased histone H3 lysine 14 acetylation, repressed p15INK4b transcription, and alleviated hMPC senescence. Moreover, lentiviral vectors encoding Cas9/sg-Kat7, given intravenously, alleviated hepatocyte senescence and liver aging and extended life span in physiologically aged mice as well as progeroid Zmpste24-/- mice that exhibit a premature aging phenotype. CRISPR-Cas9-based genetic screening is a robust method for systematically uncovering senescence genes such as KAT7, which may represent a therapeutic target for developing aging interventions.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zheng
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Feifei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China. .,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Kong Y, Sharma RB, Ly S, Stamateris RE, Jesdale WM, Alonso LC. CDKN2A/B T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets. Diabetes 2018; 67:872-884. [PMID: 29432124 PMCID: PMC5910004 DOI: 10.2337/db17-1055] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
Genome-wide association studies link the CDKN2A/B locus with type 2 diabetes (T2D) risk, but mechanisms increasing risk remain unknown. The CDKN2A/B locus encodes cell cycle inhibitors p14, p15, and p16; MTAP; and ANRIL, a long noncoding RNA. The goal of this study was to determine whether CDKN2A/B T2D risk SNPs impact locus gene expression, insulin secretion, or β-cell proliferation in human islets. Islets from donors without diabetes (n = 95) were tested for SNP genotype (rs10811661, rs2383208, rs564398, and rs10757283), gene expression (p14, p15, p16, MTAP, ANRIL, PCNA, KI67, and CCND2), insulin secretion (n = 61), and β-cell proliferation (n = 47). Intriguingly, locus genes were coregulated in islets in two physically overlapping cassettes: p14-p16-ANRIL, which increased with age, and MTAP-p15, which did not. Risk alleles at rs10811661 and rs2383208 were differentially associated with expression of ANRIL, but not p14, p15, p16, or MTAP, in age-dependent fashion, such that younger homozygous risk donors had higher ANRIL expression, equivalent to older donor levels. We identified several risk SNP combinations that may impact locus gene expression, suggesting possible mechanisms by which SNPs impact locus biology. Risk allele carriers at ANRIL coding SNP rs564398 had reduced β-cell proliferation index. In conclusion, CDKN2A/B locus SNPs may impact T2D risk by modulating islet gene expression and β-cell proliferation.
Collapse
Affiliation(s)
- Yahui Kong
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Socheata Ly
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Rachel E Stamateris
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - William M Jesdale
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|