1
|
Nguyen A, Lee P, Rodriguez EK, Chahal K, Freedman BR, Nazarian A. Addressing the growing burden of musculoskeletal diseases in the ageing US population: challenges and innovations. THE LANCET. HEALTHY LONGEVITY 2025:100707. [PMID: 40381641 DOI: 10.1016/j.lanhl.2025.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 05/20/2025] Open
Abstract
The prevalence of musculoskeletal diseases such as osteoarthritis, osteoporosis, sarcopenia, and rheumatoid arthritis is rising sharply with global ageing, increasing disability rates among older adults (aged ≥60 years), diminishing quality of life, and burdening health-care systems. Current musculoskeletal care for older adults faces multiple limitations, including comorbidities, frailty, and fragmented care. High osteoarthritis prevalence in individuals older than 55 years, the mounting economic burden of osteoporotic fractures, the growing concern of muscle mass decline, and insufficient guideline implementation collectively underscore these challenges. In the USA, musculoskeletal diseases affect over 121 million people and account for the highest rate of disability among all disease groups, underscoring the need for targeted strategies. Although promising solutions encompassing advanced pharmacological therapies, regenerative medicine, and digital health technologies (including artificial intelligence) are available, they remain underutilised in existing care models. This Personal View discusses the need for personalised, multidisciplinary approaches to address these issues, advocating for collaboration among the orthopaedic, geriatric, and health-care sectors in the USA. We propose that prevention of musculoskeletal diseases is key to its effective management in ageing populations, alongside a holistic, scalable approach that integrates diagnostics, therapy, and telemedicine. Early intervention, interdisciplinary collaboration, and personalised care are essential to improving patient outcomes and addressing the growing musculoskeletal disease burden in the USA.
Collapse
Affiliation(s)
- Andrew Nguyen
- Harvard Medical School, Boston, MA, USA; Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Philip Lee
- John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Edward K Rodriguez
- Harvard Medical School, Boston, MA, USA; Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Karen Chahal
- Harvard Medical School, Boston, MA, USA; Department of Gerontology, Geriatric Inpatient Fracture Trauma Service, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin R Freedman
- Harvard Medical School, Boston, MA, USA; Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ara Nazarian
- Harvard Medical School, Boston, MA, USA; Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopaedic Surgery, Yerevan State University, Yerevan, Armenia.
| |
Collapse
|
2
|
Moel M, Harinath G, Lee V, Nyquist A, Morgan SL, Isman A, Zalzala S. Influence of rapamycin on safety and healthspan metrics after one year: PEARL trial results. Aging (Albany NY) 2025; 17:908-936. [PMID: 40188830 PMCID: PMC12074816 DOI: 10.18632/aging.206235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
DESIGN This 48-week decentralized, double-blinded, randomized, placebo-controlled trial (NCT04488601) evaluated the long-term safety of intermittent low-dose rapamycin in a healthy, normative-aging human cohort. Participants received placebo, 5 mg or 10 mg compounded rapamycin weekly. The primary outcome measure was visceral adiposity (by DXA scan), secondary outcomes were blood biomarkers, and lean tissue and bone mineral content (by DXA scan). Established surveys were utilized to evaluate health and well-being. Safety was assessed through adverse events and blood biomarker monitoring. RESULTS Adverse and serious adverse events were similar across all groups. Visceral adiposity did not change significantly (ηp2 = 0.001, p = 0.942), and changes in blood biomarkers remained within normal ranges. Lean tissue mass (ηp2 = 0.202, p = 0.013) and self-reported pain (ηp2 = 0.168, p = 0.015) improved significantly for women using 10 mg rapamycin. Self-reported emotional well-being (ηp2 = 0.108, p = 0.023) and general health (ηp2 = 0.166, p = 0.004) also improved for those using 5 mg rapamycin. No other significant effects were observed. CONCLUSIONS Low-dose, intermittent rapamycin administration over 48 weeks is relatively safe in healthy, normative-aging adults, and was associated with significant improvements in lean tissue mass and pain in women. Future work will evaluate benefits of a broader range of rapamycin doses on healthspan metrics for longevity, and will aim to more comprehensively establish efficacy.
Collapse
Affiliation(s)
- Mauricio Moel
- AgelessRx, Ann Arbor, MI 48104, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI 48104, USA
| | - Girish Harinath
- AgelessRx, Ann Arbor, MI 48104, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI 48104, USA
| | - Virginia Lee
- AgelessRx, Ann Arbor, MI 48104, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI 48104, USA
| | | | - Stefanie L. Morgan
- AgelessRx, Ann Arbor, MI 48104, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI 48104, USA
| | | | | |
Collapse
|
3
|
Britton A, Harinath G, Morgan S, Zalzala S. Unexpected Increase in Bone Mineral Density With Rapamycin and Low-Dose Naltrexone: A Case Report of a 52-Year-Old Woman With Osteopenia. Cureus 2025; 17:e77435. [PMID: 39958011 PMCID: PMC11825221 DOI: 10.7759/cureus.77435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
Osteopenia and osteoporosis are prevalent bone disorders characterized by reduced bone mineral density (BMD), leading to an increased risk of fractures. This case report presents a 52-year-old Caucasian female patient with osteopenia who experienced an unexpected 15.9% increase in lumbar spine BMD within two years after enrolling in a clinical trial involving low-dose rapamycin and subsequently starting low-dose naltrexone. This case potentially opens novel treatment strategies for bone density improvement in aging populations.
Collapse
Affiliation(s)
- Amy Britton
- Longevity Medicine, AgelessRx, Ann Arbor, USA
| | | | | | | |
Collapse
|
4
|
Franulic F, Salech F, Rivas D, Duque G. Deciphering Osteosarcopenia through the hallmarks of aging. Mech Ageing Dev 2024; 222:111997. [PMID: 39396681 DOI: 10.1016/j.mad.2024.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Osteosarcopenia is a major driver of functional loss and a risk factor for falls, fractures, disability and mortality in older adults, urgently requiring the development of effective interventions to address it. The hallmarks of aging provide a theoretical and practical framework that allows for the structured organization of current knowledge and the planning of new development lines. This article comprehensively reviews the currently available literature on the role of the hallmarks of aging in the development of osteosarcopenia, thereby offering a panoramic view of the state of the art and knowledge gaps in this field.
Collapse
Affiliation(s)
- Francisca Franulic
- Sección de Geriatría, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Felipe Salech
- Sección de Geriatría, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Ageing and Quality of life Nucleus, INTA, Universidad de Chile, Santiago de Chile, Chile; Centre FONDAP for Aging, Brain and Metabolism GERO, Universidad de Chile, Santiago de Chile, Chile
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Jia M, Dong Z, Dong W, Yang B, He Y, Wang Y, Wang J. DDIT3 deficiency accelerates bone remodeling during bone healing by enhancing osteoblast and osteoclast differentiation through ULK1-mediated autophagy. Bone 2024; 182:117058. [PMID: 38408589 DOI: 10.1016/j.bone.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The coordination of osteoblasts and osteoclasts is essential for bone remodeling. DNA damage inducible script 3 (DDIT3) is an important regulator of bone and participates in cell differentiation, proliferation, autophagy, and apoptosis. However, its role in bone remodeling remains unexplored. Here, we found that Ddit3 knockout (Ddit3-KO) enhanced both bone formation and resorption. The increased new bone formation and woven bone resorption, i.e., enhanced bone remodeling capacity, was found to accelerate bone defect healing in Ddit3-KO mice. In vitro experiments showed that DDIT3 inhibited both osteoblast differentiation and Raw264.7 cell differentiation by regulating autophagy. Cell coculture assay showed that Ddit3-KO decreased the ratio of receptor activator of nuclear factor-κβ ligand (RANKL) to osteoprotegerin (OPG) in osteoblasts, and Ddit3-KO osteoblasts inhibited osteoclast differentiation. Meanwhile, DDIT3 knockdown (DDIT3-sh) increased receptor activator of nuclear factor-κβ (RANK) expression in Raw264.7 cells, and DDIT3-sh Raw264.7 cells promoted osteoblast differentiation, whereas, DDIT3 overexpression had the opposite effect. Mechanistically, DDIT3 promoted autophagy partly by increasing ULK1 phosphorylation at serine555 (pULK1-S555) and decreasing ULK1 phosphorylation at serine757 (pULK1-S757) in osteoblasts, thereby inhibiting osteoblast differentiation. DDIT3 inhibited autophagy partly by decreasing pULK1-S555 in Raw264.7 cells, thereby suppressing osteoclastic differentiation. Taken together, our data indicate that DDIT3 is one of the elements regulating bone remodeling and bone healing, which may become a potential target in bone defect treatment.
Collapse
Affiliation(s)
- Meie Jia
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
6
|
Guarente L, Sinclair DA, Kroemer G. Human trials exploring anti-aging medicines. Cell Metab 2024; 36:354-376. [PMID: 38181790 DOI: 10.1016/j.cmet.2023.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139; Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA.
| | - David A Sinclair
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Blavatnik Institute, Genetics Department, Harvard Medical School, Boston, MA 02115, USA
| | - Guido Kroemer
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
7
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
8
|
Boleti APDA, Cardoso PHDO, Frihling BEF, de Moraes LFRN, Nunes EAC, Mukoyama LTH, Nunes EAC, Carvalho CME, Macedo MLR, Migliolo L. Pathophysiology to Risk Factor and Therapeutics to Treatment Strategies on Epilepsy. Brain Sci 2024; 14:71. [PMID: 38248286 PMCID: PMC10813806 DOI: 10.3390/brainsci14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Epilepsy represents a condition in which abnormal neuronal discharges or the hyperexcitability of neurons occur with synchronicity, presenting a significant public health challenge. Prognostic factors, such as etiology, electroencephalogram (EEG) abnormalities, the type and number of seizures before treatment, as well as the initial unsatisfactory effects of medications, are important considerations. Although there are several third-generation antiepileptic drugs currently available, their multiple side effects can negatively affect patient quality of life. The inheritance and etiology of epilepsy are complex, involving multiple underlying genetic and epigenetic mechanisms. Different neurotransmitters play crucial roles in maintaining the normal physiology of different neurons. Dysregulations in neurotransmission, due to abnormal transmitter levels or changes in their receptors, can result in seizures. In this review, we address the roles played by various neurotransmitters and their receptors in the pathophysiology of epilepsy. Furthermore, we extensively explore the neurological mechanisms involved in the development and progression of epilepsy, along with its risk factors. Furthermore, we highlight the new therapeutic targets, along with pharmacological and non-pharmacological strategies currently employed in the treatment of epileptic syndromes, including drug interventions employed in clinical trials related to epilepsy.
Collapse
Affiliation(s)
- Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Ellynes Amancio Correia Nunes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Lincoln Takashi Hota Mukoyama
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Ellydberto Amancio Correia Nunes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Cristiano Marcelo Espinola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
9
|
Slade L, Bollen SE, Bass JJ, Phillips BE, Smith K, Wilkinson DJ, Szewczyk NJ, Atherton PJ, Etheridge T. Bisphosphonates attenuate age-related muscle decline in Caenorhabditis elegans. J Cachexia Sarcopenia Muscle 2023; 14:2613-2622. [PMID: 37722921 PMCID: PMC10751425 DOI: 10.1002/jcsm.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Age-related muscle decline (sarcopenia) associates with numerous health risk factors and poor quality of life. Drugs that counter sarcopenia without harmful side effects are lacking, and repurposing existing pharmaceuticals could expedite realistic clinical options. Recent studies suggest bisphosphonates promote muscle health; however, the efficacy of bisphosphonates as an anti-sarcopenic therapy is currently unclear. METHODS Using Caenorhabditis elegans as a sarcopenia model, we treated animals with 100 nM, 1, 10, 100 and 500 μM zoledronic acid (ZA) and assessed lifespan and healthspan (movement rates) using a microfluidic chip device. The effects of ZA on sarcopenia were examined using GFP-tagged myofibres or mitochondria at days 0, 4 and 6 post-adulthood. Mechanisms of ZA-mediated healthspan extension were determined using combined ZA and targeted RNAi gene knockdown across the life-course. RESULTS We found 100 nM and 1 μM ZA increased lifespan (P < 0.001) and healthspan [954 ± 53 (100 nM) and 963 ± 48 (1 μM) vs. 834 ± 59% (untreated) population activity AUC, P < 0.05]. 10 μM ZA shortened lifespan (P < 0.0001) but not healthspan (758.9 ± 37 vs. 834 ± 59, P > 0.05), whereas 100 and 500 μM ZA were larval lethal. ZA (1 μM) significantly improved myofibrillar structure on days 4 and 6 post-adulthood (83 and 71% well-organized myofibres, respectively, vs. 56 and 34% controls, P < 0.0001) and increased well-networked mitochondria at day 6 (47 vs. 16% in controls, P < 0.01). Genes required for ZA-mediated healthspan extension included fdps-1/FDPS-1 (278 ± 9 vs. 894 ± 17% population activity AUC in knockdown + 1 μM ZA vs. untreated controls, respectively, P < 0.0001), daf-16/FOXO (680 ± 16 vs. 894 ± 17%, P < 0.01) and agxt-2/BAIBA (531 ± 23 vs. 552 ± 8%, P > 0.05). Life/healthspan was extended through knockdown of igdb-1/FNDC5 (635 ± 10 vs. 523 ± 10% population activity AUC in gene knockdown vs. untreated controls, P < 0.01) and sir-2.3/SIRT-4 (586 ± 10 vs. 523 ± 10%, P < 0.05), with no synergistic improvements in ZA co-treatment vs. knockdown alone [651 ± 12 vs. 635 ± 10% (igdb-1/FNDC5) and 583 ± 9 vs. 586 ± 10% (sir-2.3/SIRT-4), both P > 0.05]. Conversely, let-756/FGF21 and sir-2.2/SIRT-4 were dispensable for ZA-induced healthspan [630 ± 6 vs. 523 ± 10% population activity AUC in knockdown + 1 μM ZA vs. untreated controls, P < 0.01 (let-756/FGF21) and 568 ± 9 vs. 523 ± 10%, P < 0.05 (sir-2.2/SIRT-4)]. CONCLUSIONS Despite lacking an endoskeleton, ZA delays Caenorhabditis elegans sarcopenia, which translates to improved neuromuscular function across the life course. Bisphosphonates might, therefore, be an immediately exploitable anti-sarcopenia therapy.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical SchoolExeterUK
- Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Shelby E. Bollen
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Joseph J. Bass
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Daniel J. Wilkinson
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Nathaniel J. Szewczyk
- Ohio Musculoskeletal and Neurological InstituteHeritage College of Osteopathic MedicineAthensOHUSA
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | | |
Collapse
|
10
|
Cohen J, Huang S, Koczwara KE, Woods KT, Ho V, Woodman KG, Arbiser JL, Daman K, Lek M, Emerson CP, DeSimone AM. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death Dis 2023; 14:749. [PMID: 37973788 PMCID: PMC10654915 DOI: 10.1038/s41419-023-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Kristen T Woods
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Modalis Therapeutics, Waltham, MA, USA.
| |
Collapse
|