1
|
Poyatos‐Andújar AM, García‐Linares S, Carretero P, Ocon O, Fresneda D, Gort L, Molina García FS. Prenatal mucopolysaccharidosis VII: A novel pathogenic variant identified in GUSB gene. Clin Case Rep 2021; 9:790-795. [PMID: 33598246 PMCID: PMC7869334 DOI: 10.1002/ccr3.3644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022] Open
Abstract
Clinical exome sequencing is a powerful approach to overcome the wide clinical and genetic heterogeneity of mucopolysaccharidosis. These data could be useful for prenatal diagnosis of MPS VII, genetic counseling, and preimplantation genetic testing.
Collapse
Affiliation(s)
| | - Susana García‐Linares
- UGC de LaboratoriosLaboratorio de GenéticaHospital Universitario San CecilioGranadaSpain
| | - Pilar Carretero
- Department of Obstetrics and GynecologyHospital Universitario San CecilioInstituto de Investigación Biosanitaria IBSGranadaSpain
| | - Olga Ocon
- Department of Obstetrics and GynecologyHospital Universitario San CecilioInstituto de Investigación Biosanitaria IBSGranadaSpain
| | - Dolores Fresneda
- Department of Obstetrics and GynecologyHospital Universitario San CecilioInstituto de Investigación Biosanitaria IBSGranadaSpain
| | - Laura Gort
- Secció d'Errors Congènits del Metabolisme ‐IBCServei de Bioquímica i Genètica MolecularHospital ClínicIDIBAPS, CIBERERBarcelonaSpain
| | - Francisa Sonia Molina García
- Department of Obstetrics and GynecologyHospital Universitario San CecilioInstituto de Investigación Biosanitaria IBSGranadaSpain
| |
Collapse
|
2
|
Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J, Hopkin RJ, Coleman MP, Zhai RG, Stottmann RW. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp Neurol 2019; 320:112961. [PMID: 31136762 DOI: 10.1016/j.expneurol.2019.112961] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members synthesize the electron carrier nicotinamide adenine dinucleotide (NAD+) and are essential for cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 variant alleles in both cases. Both protein variants are incapable of supporting axon survival in mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered protein stability and/or defects in NAD+ synthesis and chaperone functions. Thus, both patient NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown role for NMNAT2 in human neurological development and provide the first direct molecular evidence to support the involvement of Wallerian degeneration in a human axonal disorder. SIGNIFICANCE: Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) both synthesizes the electron carrier Nicotinamide Adenine Dinucleotide (NAD+) and acts a protein chaperone. NMNAT2 has emerged as a major neuron survival factor. Overexpression of NMNAT2 protects neurons from Wallerian degeneration after injury and declining levels of NMNAT2 have been implicated in neurodegeneration. While the role of NMNAT2 in neurodegeneration has been extensively studied, the role of NMNAT2 in human development remains unclear. In this work, we present the first human variants in NMNAT2 identified in two fetuses with severe skeletal muscle hypoplasia and fetal akinesia. Functional studies in vitro showed that the mutations impair both NMNAT2 NAD+ synthase and chaperone functions. This work identifies the critical role of NMNAT2 in human development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Xiuna Yang
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| |
Collapse
|
3
|
Sheth J, Mistri M, Shah K, Chaudhary M, Godbole K, Sheth F. Lysosomal Storage Disorders in Nonimmune Hydrops Fetalis (NIHF): An Indian Experience. JIMD Rep 2016; 35:47-52. [PMID: 27928775 DOI: 10.1007/8904_2016_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/22/2016] [Accepted: 11/14/2016] [Indexed: 01/30/2023] Open
Abstract
Lysosomal storage disorders (LSD) are rare inherited neurovisceral inborn errors of metabolism which may present as nonimmune hydrops fetalis (NIHF) during pregnancy. Although causes of NIHF are highly diverse, LSDs are one of the underlying causes of NIHF. The aim of this study was to elucidate most frequent causes of LSDs presenting as NIHF in Indian population. Several fetal tissues were investigated for enzymatic diagnosis of LSDs using modified fluorometric assays in the current prospective study carried out at our national tertiary center from 2006 through 2016. Other general causes of NIHF were ruled out. Twenty-one percent (7/33) of cases were confirmed to have LSDs. Two patients were diagnosed with Hurler syndrome; two had Sly syndrome and one each of Niemann-Pick disease type A/B, Gaucher's disease, and mucolipidosis. Four of eleven cases (36%) with recurrent NIHF were found to have LSDs. In spite of extreme rarity of LSDs, they should be considered as a potential cause of NIHF, especially with recurrent NIHF. Specific investigations of LSD leading to definitive diagnosis may aid the clinician in providing accurate genetic counseling and prenatal diagnosis to the patients and help in subsequent pregnancies to the families. Furthermore, early intervention and management with enzyme replacement therapy may be planned for the lysosomal storage disorders where available.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India.
| | - Mehul Mistri
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Krati Shah
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Mayank Chaudhary
- Department of Fetal Medicine, May Flower Hospital, Ahmedabad, 380 009, Gujarat, India
| | - Koumudi Godbole
- Department of Genetics, Deenanath Mangeshkar Hospital, Pune, India
| | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| |
Collapse
|