1
|
Tang X, Liao L, Lou Y, Deng Z, Gao J. Ethics and engagement: steering China's synbio future. Trends Biotechnol 2024; 42:513-516. [PMID: 37968158 DOI: 10.1016/j.tibtech.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
In the final article of the series, we delve into the crucial role of public engagement and ethical guidelines in shaping the trajectory of synthetic biology (synbio) within China's evolving scientific landscape. We discuss the interconnectedness of enhanced public discourse, stronger ethics, and responsible, transparent advancements in the field.
Collapse
Affiliation(s)
- Xianming Tang
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijuan Liao
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Lou
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Segers S. Heritable genome editing: ethical aspects of a developing domain. Hum Reprod 2023; 38:2055-2061. [PMID: 37581898 DOI: 10.1093/humrep/dead167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/05/2023] [Indexed: 08/16/2023] Open
Abstract
In the past decade, scientific developments in human germline genome editing (GGE) have reinvigorated questions about research ethics, responsible innovation, and what it means to do good in the field of reproductive biology and medicine. In recent years, it has become part of the ethical debate on GGE whether categorical objections about (un)naturalness, dignity, respect for the gene pool as common heritage, are and should be supplemented by more pragmatic questions about safety, utility, efficacy, and potential 'misuse', which seem to become more dominant in the moral discussion. This mini-review summarizes the morally relevant aspects of the rapidly developing domain of GGE, focusing on reproductive applications and with special attention to the ethical questions pertaining to how this technology may affect the interests of those that come to be by means of it. While vital, this encompasses more than safety considerations. Taking this perspective, it will be crucial to engage with normative questions about how GGE maps on the importance of accommodating future parents' preference to have genetically related children, and how far we should go to facilitate this. Similarly, a comprehensive ethical debate about 'appropriate application' of GGE cannot shake off the more fundamental question about how notions like 'normalcy', 'quality of life', and 'disability' can be conceptualized. This is crucial in view of respecting persons whichever traits they have and in view of acceptable boundaries to parental responsibilities.
Collapse
Affiliation(s)
- Seppe Segers
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Trump BD, Cummings CL, Loschin N, Keisler JM, Wells EM, Linkov I. The worsening divergence of biotechnology: the importance of risk culture. Front Bioeng Biotechnol 2023; 11:1250298. [PMID: 37711457 PMCID: PMC10499176 DOI: 10.3389/fbioe.2023.1250298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
In the last 20 years, the field of biotechnology has made significant progress and attracted substantial investments, leading to different paths of technological modernization among nations. As a result, there is now an international divide in the commercial and intellectual capabilities of biotechnology, and the implications of this divergence are not well understood. This raises important questions about why global actors are motivated to participate in biotechnology modernization, the challenges they face in achieving their goals, and the possible future direction of global biotechnology development. Using the framework of prospect theory, this paper explores the role of risk culture as a fundamental factor contributing to this divergence. It aims to assess the risks and benefits associated with the early adoption of biotechnology and the regulatory frameworks that shape the development and acceptance of biotechnological innovations. By doing so, it provides valuable insights into the future of biotechnology development and its potential impact on the global landscape.
Collapse
Affiliation(s)
- Benjamin D. Trump
- United States Army Corps of Engineers, Washington, DC, United States
| | - Christopher L. Cummings
- United States Army Corps of Engineers, Washington, DC, United States
- Department of Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Sociology, Iowa State University, Ames, IA, United States
| | - Nicholas Loschin
- Department of Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey M. Keisler
- Department of Management Science & Info Sys, University of Massachusetts Boston, Boston, MA, United States
| | - Emily M. Wells
- United States Army Corps of Engineers, Washington, DC, United States
| | - Igor Linkov
- United States Army Corps of Engineers, Washington, DC, United States
| |
Collapse
|
4
|
Wang Z, Guo Y, Xu R. Attitude Disparity and Worrying Scenarios in Genetic Discrimination-Based on Questionnaires from China. Healthcare (Basel) 2023; 11:healthcare11020188. [PMID: 36673556 PMCID: PMC9859512 DOI: 10.3390/healthcare11020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Objectives: As genetic testing is increasingly used in non-medical fields, the judgment of people's potential conditions based on predictive genetic information inevitably causes genetic discrimination (henceforth GD). This article aimed to systematically investigate the disparity in attitudes and worrying scenarios concerning GD in China. Methods: A questionnaire survey of 555 respondents was conducted. Statistical tests were used to examine disparity in attitudes between gender, age, and education. A descriptive analysis was also conducted to explore other worrying scenarios. Results: It shows that (1) men are more tolerant of GD compared to women, and (2) participants aged between 18 and 30 years old possess the highest objection to GD. However, (3) no indication can attest to the relationship between educational level and perspective on GD. In addition, (4) the acceptance of gene testing in the three most common scenarios is ranked in descending order as follows: partner choice, insurance services, and recruitment. Moreover, (5) worrying scenarios relating to GD include: education, social occasions, medical services, fertility, shopping, and so on. Conclusions: Based on the results, suggestions proposed include developing a blacklist mechanism in the field of genetic data application and strengthening the security regulations for the commercial use of genetic data.
Collapse
Affiliation(s)
- Zhong Wang
- School of Economics, Guangdong University of Technology, Guangzhou 510520, China
- Key Laboratory of Digital Economy and Data Governance, Guangdong University of Technology, Guangzhou 510520, China
| | - Yujun Guo
- LIESMARS, Wuhan University, Wuhan 430079, China
| | - Rui Xu
- School of Economics, Guangdong University of Technology, Guangzhou 510520, China
- Correspondence: ; Tel.: +86-20-3932-2722
| |
Collapse
|
5
|
Huang C, Li Q, Li J. Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:471-500. [PMID: 37724161 PMCID: PMC10388762 DOI: 10.1515/mr-2022-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
Advancements in genome editing enable permanent changes of DNA sequences in a site-specific manner, providing promising approaches for treating human genetic disorders caused by gene mutations. Recently, genome editing has been applied and achieved significant progress in treating inherited genetic disorders that remain incurable by conventional therapy. Here, we present a review of various programmable genome editing systems with their principles, advantages, and limitations. We introduce their recent applications for treating inherited diseases in the clinic, including sickle cell disease (SCD), β-thalassemia, Leber congenital amaurosis (LCA), heterozygous familial hypercholesterolemia (HeFH), etc. We also discuss the paradigm of ex vivo and in vivo editing and highlight the promise of somatic editing and the challenge of germline editing. Finally, we propose future directions in delivery, cutting, and repairing to improve the scope of clinical applications.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Shaabani E, Sharifiaghdam M, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Gene therapy to enhance angiogenesis in chronic wounds. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:871-899. [PMID: 36159590 PMCID: PMC9464651 DOI: 10.1016/j.omtn.2022.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Skin injuries and chronic non-healing wounds are one of the major global burdens on the healthcare systems worldwide due to their difficult-to-treat nature, associated co-morbidities, and high health care costs. Angiogenesis has a pivotal role in the wound-healing process, which becomes impaired in many chronic non-healing wounds, leading to several healing disorders and complications. Therefore, induction or promotion of angiogenesis can be considered a promising approach for healing of chronic wounds. Gene therapy is one of the most promising upcoming strategies for the treatment of chronic wounds. It can be classified into three main approaches: gene augmentation, gene silencing, and gene editing. Despite the increasing number of encouraging results obtained using nucleic acids (NAs) as active pharmaceutical ingredients of gene therapy, efficient delivery of NAs to their site of action (cytoplasm or nucleus) remains a key challenge. Selection of the right therapeutic cargo and delivery methods is crucial for a favorable prognosis of the healing process. This article presents an overview of gene therapy and non-viral delivery methods for angiogenesis induction in chronic wounds.
Collapse
|
7
|
Knoppers BM, Kleiderman E. Heritable Genome Editing: Who Speaks for "Future" Children? CRISPR J 2020; 2:285-292. [PMID: 31599679 DOI: 10.1089/crispr.2019.0019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Approximately 80% of rare and often incurable and serious conditions affect newborns and children, and roughly half of all rare diseases are considered to have an onset in childhood. Somatic gene therapies are already in clinical trials for spinal muscular atrophy, beta thalassemia, and macular degeneration. If proven to be safe and effective, could heritable genome editing be seen as a form of preventive personalized medicine and as fostering the right to health of the child? The latest calls for global moratoria on clinical applications of heritable genome editing are troubling in that they may create an illusion of control over rogue science and stifle the necessary international debate surrounding an ethically responsible translational path forward. Children are people with distinct rights and interests. An arbitrary moratorium neither fosters their best interests or health nor respects their right to benefit from the advancements of science.
Collapse
Affiliation(s)
| | - Erika Kleiderman
- Centre of Genomics and Policy, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Knoppers BM, Kleiderman E. "CRISPR babies": What does this mean for science and Canada? CMAJ 2019; 191:E91-E92. [PMID: 30692104 DOI: 10.1503/cmaj.181657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
9
|
Li JJ, Lin X, Tang C, Lu YQ, Hu X, Zuo E, Li H, Ying W, Sun Y, Lai LL, Chen HZ, Guo XX, Zhang QJ, Wu S, Zhou C, Shen X, Wang Q, Lin MT, Ma LX, Wang N, Krainer AR, Shi L, Yang H, Chen WJ. Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. Natl Sci Rev 2019; 7:92-101. [PMID: 34691481 PMCID: PMC8446915 DOI: 10.1093/nsr/nwz131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
We here report a genome-editing strategy to correct spinal muscular atrophy (SMA). Rather
than directly targeting the pathogenic exonic mutations, our strategy employed Cas9 and
guide-sgRNA for the targeted disruption of intronic splicing-regulatory elements. We
disrupted intronic splicing silencers (ISSs, including ISS-N1 and ISS + 100) of survival
motor neuron (SMN) 2, a key modifier gene of SMA, to enhance exon 7 inclusion and
full-length SMN expression in SMA iPSCs. Survival of splicing-corrected iPSC-derived motor
neurons was rescued with SMN restoration. Furthermore, co-injection of Cas9 mRNA from
Streptococcus pyogenes (SpCas9) or Cas9 from Staphylococcus
aureus (SaCas9) alongside their corresponding sgRNAs targeting ISS-N1 into
zygotes rescued 56% and 100% of severe SMA transgenic mice
(Smn−/−, SMN2tg/−). The median
survival of the resulting mice was extended to >400 days. Collectively, our study
provides proof-of-principle for a new strategy to therapeutically intervene in SMA and
other RNA-splicing-related diseases.
Collapse
Affiliation(s)
- Jin-Jing Li
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Cheng Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying-Qian Lu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xinde Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Erwei Zuo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yidi Sun
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu-Lu Lai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xin-Xin Guo
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qi-Jie Zhang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Shuang Wu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowen Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Li-Xiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Linyu Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
10
|
Bubela T, Kleiderman E, Master Z, Ogbogu U, Ravitsky V, Zarzeczny A, Knoppers BM. Canada's Assisted Human Reproduction Act: Pragmatic Reforms in Support of Research. Front Med (Lausanne) 2019; 6:157. [PMID: 31355201 PMCID: PMC6636215 DOI: 10.3389/fmed.2019.00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Canada's Assisted Human Reproduction Act is long overdue for Parliamentary review. We argue that the current regulation of research using human reproductive materials is not proportionate, not responsive to the uncertain threats posed to human and environmental health and safety, and is not considerate of diverse values in a democratic society. We propose tailored regulatory carve-outs for in vitro research for currently prohibited activities, such as gene editing, and for the exercise of Ministerial Discretion for access by Canadians to experimental in vivo interventions that are currently prohibited, such as mitochondrial replacement therapy. Our recommendations are bounded by constitutional constraints that recognize political and practical challenges in keeping oversight of this research under Federal jurisdiction, whether conducted in academic or private sectors. The proposed nuanced regulatory scheme should be overseen by a new national Agency, modeled on a blend of the Canadian Stem Cell Oversight Committee and Assisted Human Reproduction Canada.
Collapse
Affiliation(s)
- Tania Bubela
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Erika Kleiderman
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Zubin Master
- Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN, United States
| | - Ubaka Ogbogu
- Faculties of Law, Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vardit Ravitsky
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Amy Zarzeczny
- Johnson Shoyama Graduate School of Public Policy, University of Regina, Regina, SK, Canada
| | - Bartha Maria Knoppers
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Kleiderman E, Ogbogu U. Realigning gene editing with clinical research ethics: What the "CRISPR Twins" debacle means for Chinese and international research ethics governance. Account Res 2019; 26:257-264. [PMID: 31068009 DOI: 10.1080/08989621.2019.1617138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The announcement of the "CRISPR babies" reignited the debate surrounding the ethical, legal and social implications of germline gene editing. Despite having been conducted in the context of a clinical trial, Dr. Jiankui He's research appears to have violated both Chinese regulations and standard ethical procedures, as well as internationally accepted research and bioethical standards. It is within this context that our commentary surrounding the question of the enforceability of Chinese regulations in such a case. We argue that Chinese regulations do align with internationally accepted standards. Yet, the question remains, in what ways can China strengthen and update its regulatory framework to better address the benefits and challenges associated with emerging technologies, delineate clear enforcement mechanisms and specify criteria for ethics approval.
Collapse
Affiliation(s)
- Erika Kleiderman
- a Centre of Genomics and Policy , McGill University , Montreal , QC , Canada
| | - Ubaka Ogbogu
- b Faculties of Law and Pharmacy & Pharmaceutical Sciences , University of Alberta , Edmonton , AB , Canada
| |
Collapse
|