1
|
Depes D, Mennander A, Paavonen T, Sheppard MN, Kholová I. Detailed study of collagen, vasculature, and innervation in the human cardiac conduction system. Cardiovasc Pathol 2024; 69:107603. [PMID: 38104850 DOI: 10.1016/j.carpath.2023.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The cardiac conduction system (CCS) creates and propagates electrical signals generating the heartbeat. This study aimed to assess the collagen content, vasculature, and innervation in the human sinoatrial and atrioventricular CCS, and surrounding tissue. MATERIALS AND METHODS Ten sinoatrial and 17 atrioventricular CCS samples were collected from 17 adult human autopsied hearts. Masson trichrome stain was used to examine collagen, cardiomyocytes, and fat proportions. Immunohistochemically, vessels and lymphatics were studied by CD31 (pan-endothelial marker) and D2-40 (lymphatic endothelium marker) antibodies. General nerve densities were assessed by S100, while sympathetic nerves were studied using tyrosine hydroxylase, parasympathetic nerves with choline acetyltransferase, and GAP43 (neural growth marker) antibodies looked at these components. All components were quantified with QuPath software (Queens University, Belfast, Northern Ireland). RESULTS Interstitial collagen was more than two times higher in the sinoatrial vs. atrioventricular CCS (55% vs. 22%). The fat content was 6.3% in the sinoatrial CCS and 6.5% in the atrioventricular CCS. The lymphatic vessel density was increased in the sinoatrial and atrioventricular CCS compared to the surrounding tissue and was lower in the sinoatrial vs. atrioventricular CCS (P=.043). The overall vasculature density did not differ between the SA and AV CCS. The overall innervation and neural growth densities were significantly increased in the CCS compared to the surrounding tissue. The overall innervation was higher in the atrial vs. ventricular CCS (P=.018). The neural growth was higher in the atrial vs. ventricular CCS (P=.018). The sympathetic neural supply was dominant in all the studied regions with the highest density in the sinoatrial CCS. CONCLUSIONS Our results provide new insights into the unique morphology of the human CCS collagen, fat, vasculature, and innervation. A deeper understanding of the CCS anatomical components and morphologic substrates' role will help in elucidating the causes of cardiac arrhythmias and provide a basis for further therapeutic interventions.
Collapse
Affiliation(s)
- Denis Depes
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Ari Mennander
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; Division of Cardiothoracic Surgery, Tampere University Heart Hospital, Elämänaukio 1, 33520 Tampere, Finland
| | - Timo Paavonen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; Department of Pathology, Fimlab Laboratories, Arvo Ylpön katu 4, 33520 Tampere, Finland
| | - Mary N Sheppard
- Department of Cardiovascular Pathology, Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's Medical School, London, United Kingdom
| | - Ivana Kholová
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; Department of Pathology, Fimlab Laboratories, Arvo Ylpön katu 4, 33520 Tampere, Finland.
| |
Collapse
|
2
|
Xu L, Desjardins B, Witschey WR, Nazarian S. Noninvasive Assessment of Lipomatous Metaplasia as a Substrate for Ventricular Tachycardia in Chronic Infarct. Circ Cardiovasc Imaging 2023; 16:e014399. [PMID: 37526027 PMCID: PMC10528518 DOI: 10.1161/circimaging.123.014399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Myocardial lipomatous metaplasia (LM) has been increasingly reported in patients with prior myocardial infarction. Cardiac magnetic resonance and cardiac contrast-enhanced computed tomography have been used to noninvasively detect and quantify myocardial LM in postinfarct patients, and may provide useful information for understanding cardiac mechanics, arrhythmia susceptibility, and prognosis. This review aims to summarize the advantages and disadvantages, clinical applications, and imaging features of different cardiac magnetic resonance sequences and cardiac contrast-enhanced computed tomography for LM detection and quantification. We also briefly summarize LM prevalence in different cohorts of postinfarct patients and review the clinical utility of cardiac imaging in exploring myocardial LM as an arrhythmogenic substrate in patients with prior myocardial infarction.
Collapse
Affiliation(s)
- Lingyu Xu
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Benoit Desjardins
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Walter R. Witschey
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Saman Nazarian
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
3
|
Leo S, Tremoli E, Ferroni L, Zavan B. Role of Epicardial Adipose Tissue Secretome on Cardiovascular Diseases. Biomedicines 2023; 11:1653. [PMID: 37371748 DOI: 10.3390/biomedicines11061653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity and insulin resistance are associated with the inflamed and defective adipose tissue (AT) phenotype, and are established risk factors for cardiovascular diseases (CVDs). Extracellular vesicles (EVs) are a heterogeneous group of cell-derived lipid membrane vesicles involved in the onset and development of many pathologies, including insulin resistance, diabetes, and CVDs. The inflammation associated with overweight and obesity triggers the transition of the AT secretome from healthy to pathological, with a consequent increased expression of pro-inflammatory mediators. Epicardial adipose tissue (EAT) is a specialized fat depot that surrounds the heart, in direct contact with the myocardium. Recently, the role of EAT in regulating the physiopathology of many heart diseases has been increasingly explored. In particular, the EAT phenotype and derived EVs have been associated with the onset and exacerbation of CVDs. In this review, we will focus on the role of the AT secretome in the case of CVDs, and will discuss the beneficial effects of EVs released by AT as promising therapeutic candidates.
Collapse
Affiliation(s)
- Sara Leo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Li C, Liu X, Adhikari BK, Chen L, Liu W, Wang Y, Zhang H. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: an overview of pathophysiology, evaluation, and management. Front Endocrinol (Lausanne) 2023; 14:1167952. [PMID: 37260440 PMCID: PMC10229094 DOI: 10.3389/fendo.2023.1167952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
In recent decades, the epicardial adipose tissue (EAT) has been at the forefront of scientific research because of its diverse role in the pathogenesis of cardiovascular diseases (CVDs). EAT lies between the myocardium and the visceral pericardium. The same microcirculation exists both in the epicardial fat and the myocardium. Under physiological circumstances, EAT serves as cushion and protects coronary arteries and myocardium from violent distortion and impact. In addition, EAT acts as an energy lipid source, thermoregulator, and endocrine organ. Under pathological conditions, EAT dysfunction promotes various CVDs progression in several ways. It seems that various secretions of the epicardial fat are responsible for myocardial metabolic disturbances and, finally, leads to CVDs. Therefore, EAT might be an early predictor of CVDs. Furthermore, different non-invasive imaging techniques have been proposed to identify and assess EAT as an important parameter to stratify the CVD risk. We also present the potential therapeutic possibilities aiming at modifying the function of EAT. This paper aims to provide overview of the potential role of EAT in CVDs, discuss different imaging techniques to assess EAT, and provide potential therapeutic options for EAT. Hence, EAT may represent as a potential predictor and a novel therapeutic target for management of CVDs in the future.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Liu
- School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | | | - Liping Chen
- Department of Echocardiography, Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyun Liu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, Jilin, China
| |
Collapse
|
5
|
Krishnan A, Sharma H, Yuan D, Trollope AF, Chilton L. The Role of Epicardial Adipose Tissue in the Development of Atrial Fibrillation, Coronary Artery Disease and Chronic Heart Failure in the Context of Obesity and Type 2 Diabetes Mellitus: A Narrative Review. J Cardiovasc Dev Dis 2022; 9:jcdd9070217. [PMID: 35877579 PMCID: PMC9318726 DOI: 10.3390/jcdd9070217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant burden globally and are especially prevalent in obese and/or diabetic populations. Epicardial adipose tissue (EAT) surrounding the heart has been implicated in the development of CVDs as EAT can shift from a protective to a maladaptive phenotype in diseased states. In diabetic and obese patients, an elevated EAT mass both secretes pro-fibrotic/pro-inflammatory adipokines and forms intramyocardial fibrofatty infiltrates. This narrative review considers the proposed pathophysiological roles of EAT in CVDs. Diabetes is associated with a disordered energy utilization in the heart, which promotes intramyocardial fat and structural remodeling. Fibrofatty infiltrates are associated with abnormal cardiomyocyte calcium handling and repolarization, increasing the probability of afterdepolarizations. The inflammatory phenotype also promotes lateralization of connexin (Cx) proteins, undermining unidirectional conduction. These changes are associated with conduction heterogeneity, together creating a substrate for atrial fibrillation (AF). EAT is also strongly implicated in coronary artery disease (CAD); inflammatory adipokines from peri-vascular fat can modulate intra-luminal homeostasis through an “outside-to-inside” mechanism. EAT is also a significant source of sympathetic neurotransmitters, which promote progressive diastolic dysfunction with eventual cardiac failure. Further investigations on the behavior of EAT in diabetic/obese patients with CVD could help elucidate the pathogenesis and uncover potential therapeutic targets.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Harman Sharma
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Daniel Yuan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| |
Collapse
|
6
|
Epicardial Adipose Tissue Thickness is Higher in Right Ventricular Outflow Tract Tachycardia. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2021. [DOI: 10.2478/jce-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT
Introduction: Idiopathic ventricular arrhythmias, which occur in the absence of structural heart disease, are commonly originating from the outflow tract, and 80% of the them arise from the right ventricle. Epicardial adipose tissue (EAT), which originates from the splanchnopleuric mesoderm, has been shown to be an important source of inflammatory mediators and plays an important role in cardiac autonomic function by epicardial ganglionated plexuses. EAT may potentially contribute to the pathophysiology of idiopathic right ventricular outflow tract (RVOT) tachycardia by different mechanisms. In this study, we aimed to investigate the relationship between EAT thickness and RVOT tachycardia. Methods: This study included 55 patients (32 male, 23 female) with RVOT tachycardia and 60 control subjects (38 male, 22 female). Patients who had more than three consecutive ventricular beats over 100 bpm with specific morphological features on the electrocardiogram (ECG) were diagnosed with RVOT tachycardia. EAT thickness was measured by transthoracic echocardiography. Results: EAT thickness was significantly higher in the RVOT tachycardia group (p <0.05). Ejection fraction (EF), and the thickness of the posterior wall of the left ventricle and of the interventricular septum were significantly lower, and left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left atrial diameter were significantly higher in patients who had RVOT tachycardia compared to normal subjects (p <0.05). Conclusion: Patients who were diagnosed with RVOT tachycardia had increased EAT thickness compared to normal subjects. The underlying mechanism of the condition could be mechanical, metabolic, infiltrative, or autonomic effects of the EAT.
Collapse
|
7
|
Vučić D, Bijelić N, Rođak E, Rajc J, Dumenčić B, Belovari T, Mihić D, Selthofer-Relatić K. Right Heart Morphology and Its Association With Excessive and Deficient Cardiac Visceral Adipose Tissue. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2021; 15:11795468211041330. [PMID: 34602829 PMCID: PMC8485260 DOI: 10.1177/11795468211041330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Visceral adipose tissue is an independent risk factor for the development of atherosclerotic coronary disease, arterial hypertension, diabetes and metabolic syndrome. Right heart morphology often involves the presence of adipose tissue, which can be quantified by non-invasive imaging methods. The last decade brought a wealth of new insights into the function and morphology of adipose tissue, with great emphasis on its role in the pathogenesis of heart disease. Cardiac adipose tissue is involved in thermogenesis, mechanical protection of the heart and energy storage. However, it can also be an endocrine organ that synthesises numerous pro-inflammatory and anti-inflammatory cytokines, the effect of which is accomplished by paracrine and vasocrine mechanisms. Visceral adipose tissue has several compartments that differ in their embryological origin and vascularisation. Deficiency of cardiac adipose tissue, often due to chronic pathological conditions such as oncological diseases or chronic infectious diseases, predicts increased mortality and morbidity. To date, knowledge about the influence of visceral adipose tissue on cardiac morphology is limited, especially the effect on the morphology of the right heart in a state of excess or deficient visceral adipose tissue.
Collapse
Affiliation(s)
- Domagoj Vučić
- Department for Internal Medicine, Division of Cardiology, General Hospital Doctor Josip Benčević, Slavonski Brod, Croatia
| | - Nikola Bijelić
- Department for Histology and Embriology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Edi Rođak
- Department for Histology and Embriology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Jasmina Rajc
- Department for Pathology and Forensic Medicine, University Hospital Center Osijek, Osijek, Croatia.,Department for Pathology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Boris Dumenčić
- Department for Pathology and Forensic Medicine, University Hospital Center Osijek, Osijek, Croatia.,Department for Pathology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Tatjana Belovari
- Department for Histology and Embriology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Damir Mihić
- Department of Intensive Care Medicine, University Center Hospital Osijek, Osijek, Croatia.,Department for Internal Medicine, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Department for Internal Medicine, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia.,Department for Heart and Vascular Diseases, University Center Hospital Osijek, Osijek, Croatia
| |
Collapse
|
8
|
Adami GF, Carbone F, Montecucco F, Camerini G, Cordera R. Adipose Tissue Composition in Obesity and After Bariatric Surgery. Obes Surg 2019; 29:3030-3038. [PMID: 31190263 DOI: 10.1007/s11695-019-04030-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The adipose tissue is a complex organ that regulates food intake and energy expenditure as well as induces low-grade inflammation. This review deals with changes in the composition and activity of the adipose organ after bariatric surgery, focusing on epicardial and ectopic fat and on relationships between white and brown adipose tissues. Postoperative improvements of ectopic fat and epicardial fat size and composition account for the metabolic recovery and the decreased cardiovascular risk. Following Roux-en-Y gastric bypass or biliopancreatic diversion, a proportional increase in the size and activity of the metabolically active brown adipose tissue was observed, most likely related to the postoperative rearrangement of the entero-hormonal pattern with an increase of GLP-1 production: this aspect would promote the postoperative weight loss and maintenance of post-surgery benefits.
Collapse
Affiliation(s)
- Gian Franco Adami
- Department of Internal Medicine, University of Genova, 8, viale Benedetto XV, 16132, Genova, Italy.
- IRCCS, Azienda Ospedale-Universitaria San Martino, Genoa, Italy.
| | - Federico Carbone
- Department of Internal Medicine, University of Genova, 8, viale Benedetto XV, 16132, Genova, Italy
- IRCCS, Azienda Ospedale-Universitaria San Martino, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genova, 8, viale Benedetto XV, 16132, Genova, Italy
- IRCCS, Azienda Ospedale-Universitaria San Martino, Genoa, Italy
| | - Giovanni Camerini
- Department of Internal Medicine, University of Genova, 8, viale Benedetto XV, 16132, Genova, Italy
- IRCCS, Azienda Ospedale-Universitaria San Martino, Genoa, Italy
- Department of Surgery, University of Genova, Genoa, Italy
| | - Renzo Cordera
- Department of Internal Medicine, University of Genova, 8, viale Benedetto XV, 16132, Genova, Italy
- IRCCS, Azienda Ospedale-Universitaria San Martino, Genoa, Italy
| |
Collapse
|
9
|
Selthofer-Relatić K, Kibel A, Delić-Brkljačić D, Bošnjak I. Cardiac Obesity and Cardiac Cachexia: Is There a Pathophysiological Link? J Obes 2019; 2019:9854085. [PMID: 31565432 PMCID: PMC6745151 DOI: 10.1155/2019/9854085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a risk factor for cardiometabolic and vascular diseases like arterial hypertension, diabetes mellitus type 2, dyslipidaemia, and atherosclerosis. A special role in obesity-related syndromes is played by cardiac visceral obesity, which includes epicardial adipose tissue and intramyocardial fat, leading to cardiac steatosis; hypertensive heart disease; atherosclerosis of epicardial coronary artery disease; and ischemic cardiomyopathy, cardiac microcirculatory dysfunction, diabetic cardiomyopathy, and atrial fibrillation. Cardiac expression of these changes in any given patient is unique and multimodal, varying in clinical settings and level of expressed changes, with heart failure development depending on pathophysiological mechanisms with preserved, midrange, or reduced ejection fraction. Progressive heart failure with misbalanced metabolic and catabolic processes will change muscle, bone, and fat mass and function, with possible changes in the cardiac fat state from excessive accumulation to reduction and cardiac cachexia with a worse prognosis. The question we address is whether cardiac obesity or cardiac cachexia is to be more feared.
Collapse
Affiliation(s)
- K. Selthofer-Relatić
- Department for Cardiovascular Disease, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Department for Internal Medicine, Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - A. Kibel
- Department for Cardiovascular Disease, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Department for Physiology and Immunology, Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - D. Delić-Brkljačić
- Department for Internal Medicine, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Clinic for Cardiology, University Hospital “Sestre Milosrdnice”, Vinogradska Cesta 29, 10000 Zagreb, Croatia
| | - I. Bošnjak
- Department for Cardiovascular Disease, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
10
|
Petrini M, Alì M, Cannaò PM, Zambelli D, Cozzi A, Codari M, Malavazos AE, Secchi F, Sardanelli F. Epicardial adipose tissue volume in patients with coronary artery disease or non-ischaemic dilated cardiomyopathy: evaluation with cardiac magnetic resonance imaging. Clin Radiol 2018; 74:81.e1-81.e7. [PMID: 30336943 DOI: 10.1016/j.crad.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
AIM To compare the amount of epicardial adipose tissue (EAT) in patients with coronary artery disease (CAD) or non-ischaemic dilated cardiomyopathy (NIDCM) with that in patients with negative cardiac magnetic resonance imaging (CMR). MATERIALS AND METHODS One hundred and fifty patients (median age 57 years, interquartile range [IQR] 46-66 years) who underwent CMR were evaluated retrospectively: 50 with CAD, 50 with NIDCM, and 50 with negative CMR. For each patient, the EAT mass index (EATMI) to body surface area, end-diastolic volume index (EDVI), end-systolic volume index (ESVI), stroke volume (SV), ejection fraction (EF) for both ventricles, and left ventricle (LV) mass index were estimated. Intra and inter-reader reproducibility was tested in a random subset of 30 patients, 10 for each group. Mann-Whitney U test, Kruskal-Wallis test, Spearman's correlation, and Bland-Altman statistics were used. RESULTS The EATMI in CAD patients (median 15.7 g/m2, IQR 8.3-25.7) or in NIDCM patients (15.9 g/m2, 11.5-18.1) was significantly higher than that in negative CMR patients (9.1 g/m2, 6-12; p<0.001 both). No significant difference was found between CAD and NIDCM patients (p=1.000). A correlation between EATMI and LV mass index was found in NIDCM patients (r=0.455, p=0.002). Intra- and inter-reader reproducibility were up to 80% and 72%, respectively. CONCLUSION Patients with NIDCM or CAD exhibited an increased EATMI in comparison to negative CMR patients. CMR can be used to estimate EAT with good reproducibility.
Collapse
Affiliation(s)
- M Petrini
- Post-graduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 20122, Milan, Italy
| | - M Alì
- Integrative Biomedical Research Program, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - P M Cannaò
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy
| | - D Zambelli
- Università degli Studi di Milano, Corso di Laurea in Medicina e Chirurgia, Via Festa del Perdono 7, 20122 Milan, Italy
| | - A Cozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| | - M Codari
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy
| | - A E Malavazos
- High Speciality Center for Dietetics, Nutritional Education and Cardiometabolic Prevention, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy
| | - F Secchi
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy.
| | - F Sardanelli
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy
| |
Collapse
|
11
|
Coronary Microcirculatory Dysfunction in Human Cardiomyopathies: A Pathologic and Pathophysiologic Review. Cardiol Rev 2018; 25:165-178. [PMID: 28574936 DOI: 10.1097/crd.0000000000000140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cardiomyopathies are a heterogeneous group of diseases of the myocardium. The term cardiomyopathy involves a wide range of pathogenic mechanisms that affect the structural and functional states of cardiomyocytes, extravascular tissues, and coronary vasculature, including both epicardial coronary arteries and the microcirculation. In the developed phase, cardiomyopathies present with various clinical symptoms: dyspnea, chest pain, palpitations, swelling of the extremities, arrhythmias, and sudden cardiac death. Due to the heterogeneity of cardiomyopathic patterns and symptoms, their diagnosis and therapies are great challenges. Despite extensive research, the relation between the structural and functional abnormalities of the myocardium and the coronary circulation are still not well understood in the various forms of cardiomyopathy. The main pathological characteristics of cardiomyopathies and the coronary microcirculation develop in a progressive manner due to (1) genetic-immunologic-systemic factors; (2) comorbidities with endothelial, myogenic, metabolic, and inflammatory changes; (3) aging-induced arteriosclerosis; and (4) myocardial fibrosis. The aim of this review is to summarize the most important common pathological features and/or adaptations of the coronary microcirculation in various types of cardiomyopathies and to integrate the present understanding of the underlying pathophysiological mechanisms responsible for the development of various types of cardiomyopathies. Although microvascular dysfunction is present and contributes to cardiac dysfunction and the potential outcome of disease, the current therapeutic approaches are not specific for the given types of cardiomyopathy.
Collapse
|
12
|
Selthofer-Relatić K, Belovari T, Bijelić N, Kibel A, Rajc J. Presence of Intramyocardial Fat Tissue in the Right Atrium and Right Ventricle - Postmortem Human Analysis. Acta Clin Croat 2018; 57:122-129. [PMID: 30256020 PMCID: PMC6400345 DOI: 10.20471/acc.2018.57.01.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Histologic and radiologic studies describe intramyocardial fat tissue as a normal finding or as part of cardiac pathology. The role of fat cells within the myocardium is not fully understood. The aim of this study was to assess fat tissue distribution in the myocardium of right atrium (RA) and right ventricle (RV) and age differences in subjects free from cardiac disease. The study included 10 males without cardiac disease divided into two groups according to age (below/above 50 years). Three cross sections were performed (RV free wall and apex and RA free wall) with histomorphological analysis on digital photographs. The shares of total myocardial fat (TMF), peri-vascular fat (PVF) and non-perivascular (nPVF) fat were calculated. Samples from the older group had larger amounts of fat in the epicardium and myocardium, without statistically significant differ-ence (TMF p=0.847, PVF p=0.4 and nPVF p=0.4). The largest quantities of fat tissue were found in the RV apex samples (14.9%), followed by RV free wall (7.5%) and RA (4.5%), where total apical RV fat share was significantly larger than in RA sample (p=0.044). Intramyocardial fat cells were present within the non-diseased RA and RV in all samples, mostly in the apex. Further investigations on age difference, effect of visceral obesity and sex differences are needed.
Collapse
Affiliation(s)
| | - Tatjana Belovari
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nikola Bijelić
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Aleksandar Kibel
- Department of Cardiovascular Disease, Osijek University Hospital Centre, Osijek, Croatia.,Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Jasmina Rajc
- Department of Pathology and Forensic Medicine, Osijek University Hospital Centre, Osijek, Croatia
| |
Collapse
|
13
|
da Silva RMS, de Mello RJV. Fat deposition in the left ventricle: descriptive and observacional study in autopsy. Lipids Health Dis 2017; 16:86. [PMID: 28464933 PMCID: PMC5414127 DOI: 10.1186/s12944-017-0475-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The human heart contains varying amounts of fat deposits. Cardiac physiological fat occurs predominantly in the right ventricle (RV). The discovery and characterization of adipose tissue along the left ventricle (LV) has been rarely reported. This study aimed to determine the occurrence of fatty deposits in epicardial, pericoronay and myocardial compartments in the LV, and to trace the epidemiological profile and clinical associations with this finding. METHODS Epidemiological and morphological data and heart samples were collected from corpses submitted to necropsy. Cardiac samples were fixed, embedded in paraffin and subjected to hematoxylin-eosin for microscopic study. RESULTS The research was based on 40 samples of cardiac tissue, 21 male cadavers and 19 female ones with mean age of 68.2 years. 52.2% of the subjects had a history of smoking, 20% of them had alcohol consumption and 43.59% showed cardiac cause as a cause of death (acute myocardial infarction - AMI - was the most frequent immediate cause of death). 82.5% of the subjects showed atherosclerotic disease in the ascending aorta (ADAA). The fat deposition in the left ventricule (FDLV) was observed in 95% of cases. Epicardial fat (EF) and pericoronary adipose tissue (PAT) are the most frequent topographies in fat accumulation in the left heart chamber and the EF deposition is associated with myocardial adiposity (MA) (Fisher test [FT] 0.019; odds ratio [OR] 0.097 [95% CI 0.033 to 0.284]; p < 0.05). FDLV was associated with alcoholism (FT 0.04, OR 0.161 [95% CI 0.072 to 0.36]; p < 0.05); smoking (FT 0.508; OR 0581 [95% CI 0.431 to 0.73]; p < 0.05), presence of Frank's sign (FT 0.502; OR 0.567 [95% CI 0.414 to 0.775]; p < 0.05); ADAA (0.774 OR [95% CI 0.6405 to 0.936]; p < 0.05); AMI (OR 0.730 [95% CI 0.600 to 0.888]; p < 0.05) and macroscopic finding of cardiac hypertrophy (OR 0.700 [95% CI 0.525 to 0.933]; p < 0.05). FDLV is related with the thickness of the abdominal fat cushion. CONCLUSIONS FDLV is common and associated with cardiovascular disease risk factors. Cardiac adiposity cannot be considered a random autopsy finding, requiring diagnostic research and more studies to investigate the clinical implications.
Collapse
Affiliation(s)
- Ricella Maria Souza da Silva
- Pathological Anatomy Service, Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Paraíba Brazil
- Postgraduate Program in Pathology, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
14
|
Aldiss P, Davies G, Woods R, Budge H, Sacks HS, Symonds ME. 'Browning' the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int J Cardiol 2016; 228:265-274. [PMID: 27865196 PMCID: PMC5236060 DOI: 10.1016/j.ijcard.2016.11.074] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/05/2016] [Indexed: 01/02/2023]
Abstract
Excess visceral adiposity, in particular that located adjacent to the heart and coronary arteries is associated with increased cardiovascular risk. In the pathophysiological state, dysfunctional adipose tissue secretes an array of factors modulating vascular function and driving atherogenesis. Conversely, brown and beige adipose tissues utilise glucose and lipids to generate heat and are associated with improved cardiometabolic health. The cardiac and thoracic perivascular adipose tissues are now understood to be composed of brown adipose tissue in the healthy state and undergo a brown-to-white transition i.e. during obesity which may be a driving factor of cardiovascular disease. In this review we discuss the risks of excess cardiac and vascular adiposity and potential mechanisms by which restoring the brown phenotype i.e. “re-browning” could potentially be achieved in clinically relevant populations. Epicardial, paracardial and thoracic perivascular adipose tissues resemble BAT at birth. Despite ‘whitening’ in early life these depots remain metabolically active and potentially thermogenic into adulthood. Obesity induces further ‘whitening’ and inflammation in these depots likely driving the atherogenesis. Maintaining or inducing the brown phenotype in these depots could prevent atherosclerotic disease.
Collapse
Affiliation(s)
- Peter Aldiss
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University Hospital, University of Nottingham, Nottingham, UK, NG7 2UH
| | - Graeme Davies
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University Hospital, University of Nottingham, Nottingham, UK, NG7 2UH
| | - Rachel Woods
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University Hospital, University of Nottingham, Nottingham, UK, NG7 2UH
| | - Helen Budge
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University Hospital, University of Nottingham, Nottingham, UK, NG7 2UH
| | - Harold S Sacks
- VA Greater Los Angeles Healthcare System, Endocrinology and Diabetes Division, and Department of Medicine David Geffen School of Medicine, Los Angeles, CA 90073, USA
| | - Michael E Symonds
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University Hospital, University of Nottingham, Nottingham, UK, NG7 2UH.
| |
Collapse
|