1
|
Cai W, Yu D, Gao J, Deng Q, Lin H, Chen Y. Clinical Presentation and Genetic Analysis of Neonatal 11β-Hydroxylase Deficiency Induced by a Chimeric CYP11B2/CYP11B1 Gene. J Clin Res Pediatr Endocrinol 2024; 16:372-378. [PMID: 38088752 PMCID: PMC11590773 DOI: 10.4274/jcrpe.galenos.2023.2023-9-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/16/2023] [Indexed: 09/06/2024] Open
Abstract
In terms of prevalence, 11β-hydroxylase deficiency (11β-OHD), a common form of congenital adrenal hyperplasia, closely follows 21-hydroxylase deficiency. 11β-OHD has been attributed to diminished enzymatic activity owing to CYP11B1 gene variants, mainly encompassing single nucleotide variations and insertions-deletions. The involvement of chimeric CYP11B2/CYP11B1 genes in 11β-OHD has rarely been reported. We conducted a genetic investigation on a male infant with generalized pigmentation and abnormal steroid hormone levels. Whole-exome sequencing revealed a heterozygous variant in CYP11B1 inherited from the mother (NM_000497.4: c.1391_1393dup [p.Leu464dup]). Long-range polymerase chain reaction revealed an additional allele, a chimeric CYP11B2/CYP11B1 gene, inherited from the father. The current case report highlights the need to consider the occurrence of gene fusion variants in the diagnosis of neonatal or early infantile 11β-OHD.
Collapse
Affiliation(s)
- Wenjuan Cai
- Children’s Hospital of Fudan University Anhui Hospital, Clinic of Pediatric Endocrinology and Metabolic Disease, Anhui, China
| | - Dan Yu
- Children’s Hospital of Fudan University Anhui Hospital, Clinic of Pediatric Endocrinology and Metabolic Disease, Anhui, China
| | - Jian Gao
- Children’s Hospital of Fudan University Anhui Hospital, Clinic of Pediatric Endocrinology and Metabolic Disease, Anhui, China
| | - Qian Deng
- Children’s Hospital of Fudan University Anhui Hospital, Clinic of Pediatric Endocrinology and Metabolic Disease, Anhui, China
| | - Huihui Lin
- Children’s Hospital of Fudan University Anhui Hospital, Clinic of Medical Imaging, Anhui, China
| | - Yuqing Chen
- Children’s Hospital of Fudan University Anhui Hospital, Clinic of Pediatric Endocrinology and Metabolic Disease, Anhui, China
| |
Collapse
|
2
|
Concolino P. Chimeric Genes Causing 11β-Hydroxylase Deficiency: Implications in Clinical and Molecular Diagnosis. Mol Diagn Ther 2024; 28:215-224. [PMID: 38324138 DOI: 10.1007/s40291-024-00697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Deficiency of 11β-hydroxylase (11β-OHD) is the second most common cause of congenital adrenal hyperplasia (CAH), accounting for 0.2-8% of all cases. The disease is transmitted as an autosomal recessive trait and the underlying genetic causes of 11β-OHD are primarily small pathogenic variants affecting the CYP11B1 gene coding the 11β-hydroxylase enzyme. However, special events complicate the molecular diagnosis of 11β-OHD such as an unequal crossing over between the CYP11B2 (coding aldosterone synthase enzyme) and CYP11B1 genes. The resulting allele contains a hybrid gene, with a CYP11B2 5'-end and a CYP11B1 3'-end, where the CYP11B1 gene is under the control of the CYP11B2 promoter and thus not responding to the adrenocorticotropin (ACTH) but to angiotensin II and K+. This leads a reduction of cortisol production in 11β-OHD. In particular, CYP11B2/CYP11B1 chimeric genes can be distinguished into two groups depending on the breakpoint site: chimeras with breakpoint after the exon 5 of CYP11B2 preserve the aldosterone synthase activity, the others with breakpoint before exon 5 lose this function. In the last case, a more severe phenotype is expected. The aim of this review was to explore the setting of CYP11B2/CYP11B1 chimeras in 11β-OHD, performing a careful review of clinical literature cases.
Collapse
Affiliation(s)
- Paola Concolino
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
3
|
Li J, Zhang F, Xu M, Qiu H, Zhou C, Li L, Qin L. Case Report: A combination of chimeric CYP11B2/CYP11B1 and a novel p.Val68Gly CYP11B1 variant causing 11β-Hydroxylase deficiency in a Chinese patient. Front Endocrinol (Lausanne) 2023; 14:1216767. [PMID: 38027139 PMCID: PMC10679387 DOI: 10.3389/fendo.2023.1216767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction 11β-Hydroxylase deficiency (11β-OHD, OMIM#202010) is the second most common form of congenital adrenal hyperplasia (CAH) caused by pathogenic variants in the CYP11B1 gene. Both single nucleotide variations (SNV)/small insertion and deletion and genomic rearrangements of CYP11B1 are important causes of 11β-OHD. Among these variant types, pathogenic CYP11B2/CYP11B1 chimeras only contribute to a minority of cases. Heterozygote cases (chimera combined with SNV) are very rare, and genetic analysis of these cases can be challenging. Case presentation We presented a suspected 11β-OHD female patient with incomplete virilization, adrenal hyperplasia, and hypokalemia hypertension. Whole exome sequencing (WES) revealed that the patient carried both a chimeric CYP11B2/CYP11B1 and a novel missense variant, NM_000497.4: c.203T>G, p.Val68Gly (chr8:143961027) in CYP11B1, which were confirmed by CNVplex and Sanger sequencing, respectively. The patient's manifestations and genetic findings confirmed the diagnosis of 11β-OHD, and oral dexamethasone was administered as a subsequent treatment. Conclusion This report showed a rare CYP11B2/CYP11B1 chimera combined with a novel missense variant in a 11β-OHD female patient. The result expands variant spectrum of CYP11B1 and suggests that both chimera and CYP11B1 variant screening should be performed simultaneously in suspected cases of 11β-OHD. To our knowledge, this is the first report about CYP11B2/CYP11B1 chimera detected by WES analysis. WES combined with CNV analysis is an efficient method in the genetic diagnosis of this rare and complex disorder.
Collapse
Affiliation(s)
- Jialin Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Fenglan Zhang
- Clincal Genomics Center, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Hao Qiu
- Clincal Genomics Center, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Cheng Zhou
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Li Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lan Qin
- Clincal Genomics Center, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| |
Collapse
|
4
|
Xiong Y, Zeng Z, Liang T, Yang P, Lu Q, Yang J, Zhang J, Fang W, Luo P, Hu Y, Zhang M, Zhou D. Unequal crossing over between CYP11B2 and CYP11B1 causes 11 β -hydroxylase deficiency in a consanguineous family. J Steroid Biochem Mol Biol 2023; 233:106375. [PMID: 37572761 DOI: 10.1016/j.jsbmb.2023.106375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Cytochrome P450 (CYP) family CYP11B2/CYP11B1 chimeric genes have been shown to arise from unequal crossing over of the genes encoding aldosterone synthase (CYP11B2) and 11β-hydroxylase (CYP11B1) during meiosis. The activity deficiency or impaired activity of aldosterone synthase and 11β-hydroxylase resulting from these chimeric genes are important reasons for 11β-hydroxylase deficiency (11β-OHD). Here,two patients with pseudoprecocious puberty and hypokalemia hypertension and three carriers in a consanguineous marriage family were studied. A single CYP11B2/CYP11B1 chimera consisting of the promoter and exons 1 through 5 of CYP11B2, exons 8 and 9 of CYP11B1, and a breakpoint consisting of part of exon 6 of CYP11B2 and part of exon 6, intron 6, and exon 7 of CYP11B1 were detected in the patients and carriers. At the breakpoint of the chimera, a c 0.1086 G > C ( p.Leu.362 =) synonymous mutation in exon 6 of CYP11B2, a c 0.1157 C>G(p. A386V) missense mutation in exon 7 of CYP11B1, and an intronic mutation in intron 6 were detected. The allele model of the CYP11B2/CYP11B1 chimera demonstrated homozygosity and heterozygosity in the patients and the carriers, respectively. Molecular docking and enzymatic activity analyses indicated that the CYP11B2/CYP11B1 chimeric protein interacted with the catalytic substrate of aldosterone synthase and had similar enzymatic activity to aldosterone synthase. Our study indicated that deletion of CYP11B1 and CYP11B2 abolished the enzymatic activity of 11 β-hydroxylase and aldosterone synthase; however, the compensation of the enzymatic activity of aldosterone synthase by the CYP11B2/CYP11B1 chimeric protein maintained normal aldosterone levels in vitro. All of the above findings explained the 11β-OHD phenotypes of the proband and patients in the family.
Collapse
Affiliation(s)
- Yu Xiong
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, PR China; Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Zhen Zeng
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, PR China; Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Tingting Liang
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Endocrine Metabolism Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Pingping Yang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, PR China; Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Qingxiang Lu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, PR China; Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jingye Yang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, PR China; Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jing Zhang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Wen Fang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, PR China
| | - Panyu Luo
- Endocrine Metabolism Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Ying Hu
- Endocrine Metabolism Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Miao Zhang
- Endocrine Metabolism Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Ding'an Zhou
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Key Laboratory of Medical Molecular Biology,Guizhou province; Key Laboratory of Eedimic and Ethnic Disease, Ministry of Education; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, PR China.
| |
Collapse
|
5
|
Xie H, Yin H, Ye X, Liu Y, Liu N, Zhang Y, Chen X, Chen X. Detection of Small CYP11B1 Deletions and One Founder Chimeric CYP11B2/CYP11B1 Gene in 11β-Hydroxylase Deficiency. Front Endocrinol (Lausanne) 2022; 13:882863. [PMID: 35685215 PMCID: PMC9171383 DOI: 10.3389/fendo.2022.882863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE 11β-Hydroxylase deficiency (11β-OHD) caused by mutations in the CYP11B1 gene is the second most common form of congenital adrenal hyperplasia. Both point mutations and genomic rearrangements of CYP11B1 are important causes of 11β-OHD. However, the high degree of sequence identity between CYP11B1 and its homologous gene CYP11B2, presents unique challenges for molecular diagnosis of suspected 11β-OHD. The aim of this study was to detect the point mutation, indel, small deletion of CYP11B1 and chimeric CYP11B2/CYP11B1 gene in a one-tube test, improving the genetic diagnosis of 11β-OHD. METHODS Optimized custom-designed target sequencing strategy was performed in three patients with suspected 11β-OHD, in which both the coverage depth of paired-end reads and the breakpoint information of split reads from sequencing data were analysed in order to detect genomic rearrangements covering CYP11B1. Long-range PCR was peformed to validate the speculated CYP11B1 rearrangements with the breakpoint-specifc primers. RESULTS Using the optimized target sequencing approach, we detected two intragenic/intergenic deletions of CYP11B1 and one chimeric CYP11B2/CYP11B1 gene from three suspected patients with 11β-OHD besides three pathogenic heterozygous point mutation/indels. Furthermore, we mapped the precise breakpoint of this chimeric CYP11B2/CYP11B1 gene located on chr8:143994517 (hg19) and confirmed it as a founder rearrangement event in the Chinese population. CONCLUSIONS Our optimized target sequencing approach improved the genetic diagnosis of 11β-OHD.
Collapse
Affiliation(s)
- Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Yin
- Department of Endocrinology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Xue Ye
- Department of Endocrinology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ying Liu
- Department of Endocrinology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Na Liu
- Bioinformation Department, Beijing Mygenostics Co., Ltd, Beijing, China
| | - Yu Zhang
- Department of Laboratory Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Xiaobo Chen, ; Xiaoli Chen,
| | - Xiaobo Chen
- Department of Endocrinology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Xiaobo Chen, ; Xiaoli Chen,
| |
Collapse
|
6
|
46,XX DSD due to Androgen Excess in Monogenic Disorders of Steroidogenesis: Genetic, Biochemical, and Clinical Features. Int J Mol Sci 2019; 20:ijms20184605. [PMID: 31533357 PMCID: PMC6769793 DOI: 10.3390/ijms20184605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
The term 'differences of sex development' (DSD) refers to a group of congenital conditions that are associated with atypical development of chromosomal, gonadal, or anatomical sex. Disorders of steroidogenesis comprise autosomal recessive conditions that affect adrenal and gonadal enzymes and are responsible for some conditions of 46,XX DSD where hyperandrogenism interferes with chromosomal and gonadal sex development. Congenital adrenal hyperplasias (CAHs) are disorders of steroidogenesis that mainly involve the adrenals (21-hydroxylase and 11-hydroxylase deficiencies) and sometimes the gonads (3-beta-hydroxysteroidodehydrogenase and P450-oxidoreductase); in contrast, aromatase deficiency mainly involves the steroidogenetic activity of the gonads. This review describes the main genetic, biochemical, and clinical features that apply to the abovementioned conditions. The activities of the steroidogenetic enzymes are modulated by post-translational modifications and cofactors, particularly electron-donating redox partners. The incidences of the rare forms of CAH vary with ethnicity and geography. The elucidation of the precise roles of these enzymes and cofactors has been significantly facilitated by the identification of the genetic bases of rare disorders of steroidogenesis. Understanding steroidogenesis is important to our comprehension of differences in sexual development and other processes that are related to human reproduction and fertility, particularly those that involve androgen excess as consequence of their impairment.
Collapse
|
7
|
Duan L, Shen R, Song L, Liao Y, Zheng H. A novel chimeric CYP11B2/CYP11B1 combined with a new p.L340P CYP11B1 mutation in a patient with 11OHD: case report. BMC Endocr Disord 2018; 18:23. [PMID: 29703198 PMCID: PMC5921981 DOI: 10.1186/s12902-018-0249-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 11β-Hydroxylase deficiency (11OHD) is a common form of congenital adrenal hyperplasia that has been shown to result from inactivating CYP11B1 mutations, and pathogenic CYP11B2/CYP11B1 chimeras contribute to a minority of cases. Heterozygote cases (chimeras combined with missense mutation) are very rare, and genetic analysis of these cases is difficult. CASE PRESENTATION We describe an 11OHD patient presenting with precocious pseudopuberty and hypokalemia hypertension who harbored a chimeric CYP11B2/CYP11B1 with a novel breakage point located at g.9559-9742 of CYP11B2. Interestingly, the other allele exhibited a new mutation, p.L340P, in CYP11B1. Bioinformatics and molecular dynamics simulation indicated that p.L340P decreased the stability and changed the surface configuration of 11β-hydroxylase, indicating a disease-causing mutation. Further pedigree study, PCR and next-generation sequencing indicated that the proband carried both the chimera and p.L340P, and coexistence of the two increased the severity of 11OHD in this family. After treatment with combined medications, blood pressure and clinical parameters improved. CONCLUSIONS Our results suggest that chimera screening and CYP11B1 mutation screening should be simultaneously conducted, and pedigree study is necessary.
Collapse
Affiliation(s)
- Lian Duan
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 China
| | - Rufei Shen
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 China
| | - Lingyu Song
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 China
| | - Yong Liao
- Department of Endocrinology, Armed Police Hospital of Chongqing, Chongqing, 400061 China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 China
| |
Collapse
|