1
|
Fan Y, Guo S, Tao C, Fang H, Mou A, Feng M, Wu Z. Noninvasive Radiomics Approach Predicts Dopamine Agonists Treatment Response in Patients with Prolactinoma: A Multicenter Study. Acad Radiol 2025; 32:612-623. [PMID: 39332989 DOI: 10.1016/j.acra.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024]
Abstract
RATIONALE AND OBJECTIVES The first-line treatment for prolactinoma is drug therapy with dopamine agonists (DAs). However, some patients with resistance to DA treatment should prioritize surgical treatment. Therefore, it is crucial to accurately identify the drug treatment response of prolactinoma before treatment. The present study was performed to determine the DA treatment response of prolactinoma using a clinical radiomic model that incorporated radiomic and clinical features before treatment. MATERIALS AND METHODS In total, 255 patients diagnosed with prolactinoma were retrospectively divided to training and validation sets. An elastic net algorithm was used to screen the radiomic features, and a fusion radiomic model was established. A clinical radiomic model was then constructed to integrate the fusion radiomic model and the most important clinical features through multivariate logistic regression analysis for individual prediction. The calibration, discrimination, and clinical applicability of the established models were evaluated. 60 patients with prolactinoma from other centers were used to validate the performance of the constructed model. RESULTS The fusion radiomic model was constructed from three significant radiomic features, and the area under the curve in the training set and validation set was 0.930 and 0.910, respectively. The clinical radiomic model was constructed using the radiomic model and three clinical features. The model exhibited good recognition and calibration abilities as evidenced by its area under the curve of 0.96, 0.92, and 0.92 in the training, validation, and external multicenter validation set, respectively. Analysis of the decision curve showed that the fusion radiomic model and clinical radiomic model had good clinical application value for DA treatment response prediction in patients with prolactinoma. CONCLUSION Our clinical radiomic model demonstrated high sensitivity and excellent performance in predicting DA treatment response in prolactinoma. This model holds promise for the noninvasive development of individualized diagnosis and treatment strategies for patients with prolactinoma.
Collapse
Affiliation(s)
- Yanghua Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
| | - Shuaiwei Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Anna Mou
- Department of Radiology, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Li Z, Fan Y, Ma J, Wang K, Li D, Zhang J, Wu Z, Wang L, Tian K. The novel developed and validated multiparametric MRI-based fusion radiomic and clinicoradiomic models predict the postoperative progression of primary skull base chordoma. Sci Rep 2024; 14:28752. [PMID: 39567620 PMCID: PMC11579367 DOI: 10.1038/s41598-024-80410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024] Open
Abstract
Local progression of primary skull base chordoma (PSBC) is a sign of treatment failure. Predicting the postoperative progression of PSBC can aid in the development of individualized treatment plans to improve patients' progression-free survival (PFS) after surgery. This study aimed to develop a multiparametric MRI-based fusion radiomic model (FRM) and clinicoradiomic model (CRM) via radiomic and clinical analysis and to explore their validity in predicting postoperative progression in PSBC patients before surgery. In this retrospective study, a total of 129 patients with PSBC from our institution, including 57 patients with progression, were enrolled and randomized to the training set (TS) or the validation set (VS) at a 2:1 ratio. Radiomic features were extracted and dimensionally reduced from 3.0 T/axial T2-weighted imaging (T2WI), T1-weighted imaging (T1WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) sequences for each patient, and the features were used for radiomic analysis. Univariate and multivariate Cox regression analyses were used to screen for key clinical factors. We constructed models on the basis of multivariate logistic regression analysis. Receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses were performed to evaluate the performance of the clinical model (CM), FRM and CRM. Through analysis, we found that blood supply was the only significantly different clinical factor in the CM. For the FRM, the area under the receiver operating characteristic curve (AUC) of the TS was 0.925, and the calibration curves were consistent across the TS. In the CRM, the AUC of the TS was 0.929, the calibration curve analysis was consistent for both the TS and the VS, and the DCA showed that the net benefit was greater at a threshold probability of > 0% for both the TS and the VS. Our proposed FRM can help clinicians better predict PSBC progression preoperatively, and the use of the CRM can lead to the development of more appropriate protocols to improve patients' PFS after surgery.
Collapse
Affiliation(s)
- Zekai Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanghua Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Kaibing Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
3
|
Zheng B, Zhao Z, Zheng P, Liu Q, Li S, Jiang X, Huang X, Ye Y, Wang H. The current state of MRI-based radiomics in pituitary adenoma: promising but challenging. Front Endocrinol (Lausanne) 2024; 15:1426781. [PMID: 39371931 PMCID: PMC11449739 DOI: 10.3389/fendo.2024.1426781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial role. However, traditional manual interpretations are plagued by inter-observer variability and limitations in recognizing details. Radiomics, based on MRI, facilitates quantitative analysis by extracting high-throughput data from images. This approach elucidates correlations between imaging features and pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent studies have demonstrated the extensive application of radiomics in differential diagnosis, subtype identification, consistency evaluation, invasiveness assessment, and treatment response in pituitary adenomas. This review succinctly presents the general workflow of radiomics, reviews pertinent literature with a summary table, and provides a comparative analysis with traditional methods. We further elucidate the connections between radiological features and biological findings in the field of pituitary adenoma. While promising, the clinical application of radiomics still has a considerable distance to traverse, considering the issues with reproducibility of imaging features and the significant heterogeneity in pituitary adenoma patients.
Collapse
Affiliation(s)
- Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Zheng
- Department of Neurosurgery, People’s Hospital of Biyang County, Zhumadian, China
| | - Qiang Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang W, Zhang D, Liu S, Wang H, Liu X, Dai C, Fang Y, Fan Y, Wei Z, Feng M, Wang R. Predicting delayed remission in Cushing's disease using radiomics models: a multi-center study. Front Oncol 2024; 13:1218897. [PMID: 38264759 PMCID: PMC10803608 DOI: 10.3389/fonc.2023.1218897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/28/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose No multi-center radiomics models have been built to predict delayed remission (DR) after transsphenoidal surgery (TSS) in Cushing's disease (CD). The present study aims to build clinical and radiomics models based on data from three centers to predict DR after TSS in CD. Methods A total of 122 CD patients from Peking Union Medical College Hospital, Xuanwu Hospital, and Fuzhou General Hospital were enrolled between January 2000 and January 2019. The T1-weighted gadolinium-enhanced MRI images and clinical data were used as inputs to build clinical and radiomics models. The regions of interest (ROI) of MRI images were automatically defined by a deep learning algorithm developed by our team. The area under the curve (AUC) of receiver operating characteristic (ROC) curves was used to evaluate the performance of the models. In total, 10 machine learning algorithms were used to construct models. Results The overall DR rate is 44.3% (54/122). According to multivariate Logistic regression analysis, patients with higher BMI and lower postoperative cortisol levels are more likely to achieve a higher rate of delayed remission. Among the 10 models, XGBoost achieved the best performance among all models in both clinical and radiomics models with AUC values of 0.767 and 0.819 respectively. The results from SHAP value and LIME algorithms revealed that postoperative cortisol level (PoC) and BMI were the most important features associated with DR. Conclusion Radiomics models can be built as an effective noninvasive method to predict DR and might be useful in assisting neurosurgeons in making therapeutic plans after TSS for CD patients. These results are preliminary and further validation in a larger patient sample is needed.
Collapse
Affiliation(s)
- Wentai Zhang
- Department of Thoracic Surgery, Peking University First Hospital, Beijing, China
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Dewei Zhang
- Department of Neurosurgery, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Shaocheng Liu
- Intensive Care Unit, Beijing Mentougou District Hospital, Beijing, China
| | - He Wang
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Xiaohai Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Congxin Dai
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi Fang
- Department of Neurosurgery, The Fuzhou General Hospital, Fuzhou, China
| | - Yanghua Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhenqing Wei
- Department of Neurosurgery, The First Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Ming Feng
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
5
|
Bioletto F, Prencipe N, Berton AM, Aversa LS, Cuboni D, Varaldo E, Gasco V, Ghigo E, Grottoli S. Radiomic Analysis in Pituitary Tumors: Current Knowledge and Future Perspectives. J Clin Med 2024; 13:336. [PMID: 38256471 PMCID: PMC10816809 DOI: 10.3390/jcm13020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Radiomic analysis has emerged as a valuable tool for extracting quantitative features from medical imaging data, providing in-depth insights into various contexts and diseases. By employing methods derived from advanced computational techniques, radiomics quantifies textural information through the evaluation of the spatial distribution of signal intensities and inter-voxel relationships. In recent years, these techniques have gained considerable attention also in the field of pituitary tumors, with promising results. Indeed, the extraction of radiomic features from pituitary magnetic resonance imaging (MRI) images has been shown to provide useful information on various relevant aspects of these diseases. Some of the key topics that have been explored in the existing literature include the association of radiomic parameters with histopathological and clinical data and their correlation with tumor invasiveness and aggressive behavior. Their prognostic value has also been evaluated, assessing their role in the prediction of post-surgical recurrence, response to medical treatments, and long-term outcomes. This review provides a comprehensive overview of the current knowledge and application of radiomics in pituitary tumors. It also examines the current limitations and future directions of radiomic analysis, highlighting the major challenges that need to be addressed before a consistent integration of these techniques into routine clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Silvia Grottoli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.B.); (N.P.); (A.M.B.); (L.S.A.); (D.C.); (E.V.); (V.G.); (E.G.)
| |
Collapse
|
6
|
Patel RV, Groff KJ, Bi WL. Applications and Integration of Radiomics for Skull Base Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:285-305. [PMID: 39523272 DOI: 10.1007/978-3-031-64892-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Radiomics, a quantitative approach to extracting features from medical images, represents a new frontier in skull base oncology. Novel image analysis approaches have enabled us to capture patterns from images imperceptible by the human eye. This rich source of data can be combined with a range of clinical features, holding the potential to be a noninvasive source of biomarkers. Applications of radiomics in skull base pathologies have centered around three common tumor classes: meningioma, sellar/parasellar tumors, and vestibular schwannomas. Radiomic investigations can be categorized into five domains: tumor detection/segmentation, classification between tumor types, tumor grading, detection of tumor features, and prognostication. Various computational architectures have been employed across these domains, with deep-learning methods becoming more common versus machine learning. Across radiomic applications, contrast-enhanced T1-weighted MRI images remain the most utilized sequence for model development. Efforts to standardize and connect radiomic features to tumor biology have facilitated more clinically applicable radiomic models. Despite the advancement in model performance, several challenges continue to hinder translatability, including small sample sizes and model training on homogenous single institution data. To recognize the potential of radiomics for skull base oncology, prospective, multi-institutional collaboration will be the cornerstone for a validated radiomic technology.
Collapse
Affiliation(s)
- Ruchit V Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karenna J Groff
- New York University Grossman School of Medicine, New York, NY, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Liu P, Liang X, Liao S, Lu Z. Pattern Classification for Ovarian Tumors by Integration of Radiomics and Deep Learning Features. Curr Med Imaging 2022; 18:1486-1502. [PMID: 35578861 DOI: 10.2174/1573405618666220516122145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Ovarian tumor is a common female genital tumor, among which malignant tumors have a poor prognosis. The survival rate of 70% of patients with ovarian cancer is less than 5 years, while benign ovarian tumor is better, so the early diagnosis of ovarian cancer is important for the treatment and prognosis of patients. OBJECTIVES Our aim is to establish a classification model for ovarian tumors. METHODS We extracted radiomics and deep learning features from patients'CT images. The four-step feature selection algorithm proposed in this paper was used to obtain the optimal combination of features, then, a classification model was developed by combining those selected features and support vector machine. The receiver operating characteristic curve and an area under the curve (AUC) analysis were used to evaluate the performance of the classification model in both the training and test cohort. RESULTS The classification model, which combined radiomics features with deep learning features, demonstrated better classification performance with respect to the radiomics features model alone in training cohort (AUC 0.9289 vs. 0.8804, P < 0.0001, accuracy 0.8970 vs. 0.7993, P < 0.0001), and significantly improve the performance in the test cohort (AUC 0.9089 vs. 0.8446, P = 0.001, accuracy 0.8296 vs. 0.7259, P < 0.0001). CONCLUSION The experiments showed that deep learning features play an active role in the construction of classification model, and the proposed classification model achieved excellent classification performance, which can potentially become a new auxiliary diagnostic tool.
Collapse
Affiliation(s)
- Pengfei Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Xiaokang Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Shengwu Liao
- Nanfang Hospital Southern Medical University, Guangzhou, China
| | - Zhentai Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Won SY, Lee N, Park YW, Ahn SS, Ku CR, Kim EH, Lee SK. Quality reporting of radiomics analysis in pituitary adenomas: promoting clinical translation. Br J Radiol 2022; 95:20220401. [PMID: 36018049 PMCID: PMC9793472 DOI: 10.1259/bjr.20220401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To evaluate the quality of radiomics studies on pituitary adenoma according to the radiomics quality score (RQS) and Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). METHODS PubMed MEDLINE and EMBASE were searched to identify radiomics studies on pituitary adenomas. From 138 articles, 20 relevant original research articles were included. Studies were scored based on RQS and TRIPOD guidelines. RESULTS Most included studies did not perform pre-processing; isovoxel resampling, signal intensity normalization, and N4 bias field correction were performed in only five (25%), eight (40%), and four (20%) studies, respectively. Only two (10%) studies performed external validation. The mean RQS and basic adherence rate were 2.8 (7.6%) and 26.6%, respectively. There was a low adherence rate for conducting comparison to "gold-standard" (20%), multiple segmentation (25%), and stating potential clinical utility (25%). No study stated the biological correlation, conducted a test-retest or phantom study, was a prospective study, conducted cost-effectiveness analysis, or provided open-source code and data, which resulted in low-level evidence. The overall adherence rate for TRIPOD was 54.6%, and it was low for reporting the title (5%), abstract (0%), explaining the sample size (10%), and suggesting a full prediction model (5%). CONCLUSION The radiomics reporting quality for pituitary adenoma is insufficient. Pre-processing is required for feature reproducibility and external validation is necessary. Feature reproducibility, clinical utility demonstration, higher evidence levels, and open science are required. Titles, abstracts, and full prediction model suggestions should be improved for transparent reporting. ADVANCES IN KNOWLEDGE Despite the rapidly increasing number of radiomics researches on pituitary adenoma, the quality of science in these researches is unknown. Our study indicates that the overall quality needs to be significantly improved in radiomics studies on pituitary adenoma, and since the concept of RQS and IBSI is still unfamiliar to clinicians and radiologist researchers, our study may help to reach higher technical and clinical impact in the future study.
Collapse
Affiliation(s)
| | - Narae Lee
- Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yae Won Park
- Department of Radiology and Research, Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research, Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Ryong Ku
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research, Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Lee T, Song K, Sohn B, Eom J, Ahn SS, Kim HS, Lee SK. A Radiomics-Based Model with the Potential to Differentiate Growth Hormone Deficiency and Idiopathic Short Stature on Sella MRI. Yonsei Med J 2022; 63:856-863. [PMID: 36031786 PMCID: PMC9424774 DOI: 10.3349/ymj.2022.63.9.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We hypothesized that a radiomics approach could be employed to classify children with growth hormone deficiency (GHD) and idiopathic short stature (ISS) on sella magnetic resonance imaging (MRI). Accordingly, we aimed to develop a radiomics prediction model for differentiating GHD from ISS and to evaluate the diagnostic performance thereof. MATERIALS AND METHODS Short stature pediatric patients diagnosed with GHD or ISS from March 2011 to July 2020 at our institution were recruited. We enrolled 312 patients (GHD 210, ISS 102) with normal sella MRI and temporally split them into training and test sets (7:3). Pituitary glands were semi-automatically segmented, and 110 radiomic features were extracted from the coronal T2-weighted images. Feature selection and model development were conducted by applying mutual information (MI) and a light gradient boosting machine, respectively. After training, the model's performance was validated in the test set. We calculated mean absolute Shapley values for each of the selected input features using the Shapley additive explanations (SHAP) algorithm. Volumetric comparison was performed for GHD and ISS groups. RESULTS Ten radiomic features were selected by MI. The receiver operating characteristics curve of the developed model in the test set was 0.705, with an accuracy of 70.6%. When analyzing SHAP plots, root mean squared values had the highest impact in the model, followed by various texture features. In volumetric analysis, sagittal height showed a significant difference between GHD and ISS groups. CONCLUSION Radiomic analysis of sella MRI may be able to differentiate between GHD and ISS in clinical practice for short-statured children.
Collapse
Affiliation(s)
- Taeyoun Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungchul Song
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Beomseok Sohn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Jihwan Eom
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Computer Science, Yonsei University, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Zhang C, Heng X, Neng W, Chen H, Sun A, Li J, Wang M. Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning. Chin Neurosurg J 2022; 8:21. [PMID: 35962442 PMCID: PMC9373412 DOI: 10.1186/s41016-022-00290-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Infiltration is important for the surgical planning and prognosis of pituitary adenomas. Differences in preoperative diagnosis have been noted. The aim of this article is to assess the accuracy of machine learning analysis of texture-derived parameters of pituitary adenoma obtained from preoperative MRI for the prediction of high infiltration. Methods A total of 196 pituitary adenoma patients (training set: n = 176; validation set: n = 20) were enrolled in this retrospective study. In total, 4120 quantitative imaging features were extracted from CE-T1 MR images. To select the most informative features, the least absolute shrinkage and selection operator (LASSO) and variance threshold method were performed. The linear support vector machine (SVM) was used to fit the predictive model based on infiltration features. Furthermore, the receiver operating characteristic curve (ROC) was generated, and the diagnostic performance of the model was evaluated by calculating the area under the curve (AUC), accuracy, precision, recall, and F1 value. Results A variance threshold of 0.85 was used to exclude 16 features with small differences using the LASSO algorithm, and 19 optimal features were finally selected. The SVM models for predicting high infiltration yielded an AUC of 0.86 (sensitivity: 0.81, specificity 0.79) in the training set and 0.73 (sensitivity: 0.87, specificity: 0.80) in the validation set. The four evaluation indicators of the predictive model achieved good diagnostic capabilities in the training set (accuracy: 0.80, precision: 0.82, recall: 0.81, F1 score: 0.81) and independent verification set (accuracy: 0.85, precision: 0.93, recall: 0.87, F1 score: 0.90). Conclusions The radiomics model developed in this study demonstrates efficacy for the prediction of pituitary adenoma infiltration. This model could potentially aid neurosurgeons in the preoperative prediction of infiltration in PAs and contribute to the selection of ideal surgical strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s41016-022-00290-4.
Collapse
|
11
|
Feng T, Fang Y, Pei Z, Li Z, Chen H, Hou P, Wei L, Wang R, Wang S. A Convolutional Neural Network Model for Detecting Sellar Floor Destruction of Pituitary Adenoma on Magnetic Resonance Imaging Scans. Front Neurosci 2022; 16:900519. [PMID: 35860294 PMCID: PMC9289618 DOI: 10.3389/fnins.2022.900519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Convolutional neural network (CNN) is designed for image classification and recognition with a multi-layer neural network. This study aimed to accurately assess sellar floor invasion (SFI) of pituitary adenoma (PA) using CNN. Methods A total of 1413 coronal and sagittal magnetic resonance images were collected from 695 patients with PAs. The enrolled images were divided into the invasive group (n = 530) and the non-invasive group (n = 883) according to the surgical observation of SFI. Before model training, 100 images were randomly selected for the external testing set. The remaining 1313 cases were randomly divided into the training and validation sets at a ratio of 80:20 for model training. Finally, the testing set was imported to evaluate the model performance. Results A CNN model with a 10-layer structure (6-layer convolution and 4-layer fully connected neural network) was constructed. After 1000 epoch of training, the model achieved high accuracy in identifying SFI (97.0 and 94.6% in the training and testing sets, respectively). The testing set presented excellent performance, with a model prediction accuracy of 96%, a sensitivity of 0.964, a specificity of 0.958, and an area under the receptor operator curve (AUC-ROC) value of 0.98. Four images in the testing set were misdiagnosed. Three images were misread with SFI (one with conchal type sphenoid sinus), and one image with a relatively intact sellar floor was not identified with SFI. Conclusion This study highlights the potential of the CNN model for the efficient assessment of PA invasion.
Collapse
Affiliation(s)
- Tianshun Feng
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Fang
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijie Pei
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ziqi Li
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongjie Chen
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Pengwei Hou
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liangfeng Wei
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Renzhi Wang,
| | - Shousen Wang
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Shousen Wang,
| |
Collapse
|
12
|
Fang Y, Wang H, Feng M, Chen H, Zhang W, Wei L, Pei Z, Wang R, Wang S. Application of Convolutional Neural Network in the Diagnosis of Cavernous Sinus Invasion in Pituitary Adenoma. Front Oncol 2022; 12:835047. [PMID: 35494041 PMCID: PMC9047893 DOI: 10.3389/fonc.2022.835047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Convolutional neural network (CNN) is a deep-learning method for image classification and recognition based on a multi-layer NN. In this study, CNN was used to accurately assess cavernous sinus invasion (CSI) in pituitary adenoma (PA). Methods A total of 371 patients with PA were enrolled in the retrospective study. The cohort was divided into the invasive (n = 102) and non-invasive groups (n = 269) based on surgically confirmed CSI. Images were selected on the T1-enhanced imaging on MR scans. The cohort underwent a fivefold division of randomized datasets for cross-validation. Then, a tenfold augmented dataset (horizontal flip and rotation) of the training set was enrolled in the pre-trained Resnet50 model for transfer learning. The testing set was imported into the trained model for evaluation. Gradient-weighted class activation mapping (Grad-CAM) was used to obtain the occlusion map. The diagnostic values were compared with different dichotomizations of the Knosp grading system (grades 0-1/2-4, 0-2/3a-4, and 0-3a/3b-4). Results Based on Knosp grades, 20 cases of grade 0, 107 cases of grade 1, 82 cases of grade 2, 104 cases of grade 3a, 22 cases of grade 3b, and 36 cases of grade 4 were recorded. The CSI rates were 0%, 3.7%, 18.3%, 37.5%, 54.5%, and 88.9%. The predicted accuracies of the three dichotomies were 60%, 74%, and 81%. The area under the receiver operating characteristic (AUC-ROC) of Knosp grade for CSI prediction was 0.84; the cutoff was 2.5 with a Youden value of 0.62. The accuracies of the CNN model ranged from 0.80 to 0.96, with AUC-ROC values ranging from 0.89 to 0.98. The Grad-CAM saliency maps confirmed that the region of interest of the model was around the sellar region. Conclusions We constructed a CNN model with a high proficiency at CSI diagnosis. A more accurate CSI identification was achieved with the constructed CNN than the Knosp grading system.
Collapse
Affiliation(s)
- Yi Fang
- Department of Neurosurgery, The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou, China
| | - He Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjie Chen
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou, China
| | - Wentai Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liangfeng Wei
- Department of Neurosurgery, The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou, China
| | - Zhijie Pei
- Department of Neurosurgery, The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shousen Wang, ; Renzhi Wang,
| | - Shousen Wang
- Department of Neurosurgery, The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou, China
- *Correspondence: Shousen Wang, ; Renzhi Wang,
| |
Collapse
|
13
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
14
|
Fan Y, Liu P, Li Y, Liu F, He Y, Wang L, Zhang J, Wu Z. Non-Invasive Preoperative Imaging Differential Diagnosis of Intracranial Hemangiopericytoma and Angiomatous Meningioma: A Novel Developed and Validated Multiparametric MRI-Based Clini-Radiomic Model. Front Oncol 2022; 11:792521. [PMID: 35059316 PMCID: PMC8763962 DOI: 10.3389/fonc.2021.792521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Accurate preoperative differentiation of intracranial hemangiopericytoma and angiomatous meningioma can greatly assist operation plan making and prognosis prediction. In this study, a clini-radiomic model combining radiomic and clinical features was used to distinguish intracranial hemangiopericytoma and hemangioma meningioma preoperatively. METHODS A total of 147 patients with intracranial hemangiopericytoma and 73 patients with angiomatous meningioma from the Tiantan Hospital were retrospectively reviewed and randomly assigned to training and validation sets. Radiomic features were extracted from MR images, the elastic net and recursive feature elimination algorithms were applied to select radiomic features for constructing a fusion radiomic model. Subsequently, multivariable logistic regression analysis was used to construct a clinical model, then a clini-radiomic model incorporating the fusion radiomic model and clinical features was constructed for individual predictions. The calibration, discriminating capacity, and clinical usefulness were also evaluated. RESULTS Six significant radiomic features were selected to construct a fusion radiomic model that achieved an area under the curve (AUC) value of 0.900 and 0.900 in the training and validation sets, respectively. A clini-radiomic model that incorporated the radiomic model and clinical features was constructed and showed good discrimination and calibration, with an AUC of 0.920 in the training set and 0.910 in the validation set. The analysis of the decision curve showed that the fusion radiomic model and clini-radiomic model were clinically useful. CONCLUSIONS Our clini-radiomic model showed great performance and high sensitivity in the differential diagnosis of intracranial hemangiopericytoma and angiomatous meningioma, and could contribute to non-invasive development of individualized diagnosis and treatment for these patients.
Collapse
Affiliation(s)
- Yanghua Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
| | - Panpan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yiping Li
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Feng Liu
- Department of Neurosurgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Yu He
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Fan Y, Huo X, Li X, Wang L, Wu Z. Non-invasive preoperative imaging differential diagnosis of pineal region tumor: A novel developed and validated multiparametric MRI-based clinicoradiomic model. Radiother Oncol 2022; 167:277-284. [PMID: 35033600 DOI: 10.1016/j.radonc.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Preoperative differential diagnosis of pineal region tumor can greatly assist clinical decision-making and avoid economic costs and complications caused by unnecessary radiotherapy or invasive procedures. The present study was performed to pre-operatively distinguish pineal region germinoma and pinealoblastoma using a clinicoradiomic model by incorporating radiomic and clinical features. METHODS 134 pineal region tumor patients (germinoma, 69; pinealoblastoma, 65) with complete clinic-radiological and histopathological data from Tiantan hospital were retrospectively reviewed and randomly assigned to training and validation sets. Radiomic features were extracted from MR images, then the elastic net and recursive feature elimination algorithms were applied to select radiomic features for constructing a fusion radiomic model. Subsequently, multivariable logistic regression analysis was used to select the clinical features, and a clinicoradiomic model incorporating the fusion radiomic model and selected clinical features was constructed for individual predictions. The calibration, discriminating capacity, and clinical usefulness were also evaluated. RESULTS Seven significant radiomic features were selected to construct a fusion radiomic model that achieved an area under the curve (AUC) value of 0.920 and 0.880 in the training and validation sets, respectively. A clinicoradiomic model that incorporated the radiomic model and four selected clinical features was constructed and showed good discrimination and calibration, with an AUC of 0.950 in the training set and 0.940 in the validation set. The analysis of the decision curve showed that the radiomic model and clinicoradiomic model were clinically useful for patients with pineal region tumor. CONCLUSIONS Our clinicoradiomic model showed great performance and high sensitivity in the differential diagnosis of germinoma and pinealoblastoma, and could contribute to non-invasive development of individualized diagnosis and treatment of patients with pineal region tumor.
Collapse
Affiliation(s)
- Yanghua Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xulei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaojie Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
16
|
Application of artificial intelligence and radiomics in pituitary neuroendocrine and sellar tumors: a quantitative and qualitative synthesis. Neuroradiology 2021; 64:647-668. [PMID: 34839380 DOI: 10.1007/s00234-021-02845-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To systematically review the literature regarding the application of machine learning (ML) of magnetic resonance imaging (MRI) radiomics in common sellar tumors. To identify future directions for application of ML in sellar tumor MRI. METHODS PubMed, Medline, Embase, Google Scholar, Scopus, ArxIV, and bioRxiv were searched to identify relevant studies published between 2010 and September 2021. Studies were included if they specifically involved ML of MRI radiomics in the analysis of sellar masses. Risk of bias assessment was performed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) Tool. RESULTS Fifty-eight articles were identified for review. All papers utilized retrospective data, and a quantitative systematic review was performed for thirty-one studies utilizing a public dataset which compared pituitary adenomas, meningiomas, and gliomas. One of the analyzed architectures yielded the highest classification accuracy of 0.996. The remaining twenty-seven articles were qualitatively reviewed and showed promising findings in predicting specific tumor characteristics such as tumor consistency, Ki-67 proliferative index, and post-surgical recurrence. CONCLUSION This review highlights the potential clinical application of ML using MRI radiomic data of the sellar region in diagnosis and predicting treatment outcomes. We describe future directions for practical application in the clinical care of patients with pituitary neuroendocrine and other sellar tumors.
Collapse
|
17
|
Huang Z, Lyu M, Ai Z, Chen Y, Liang Y, Xiang Z. Pre-operative Prediction of Ki-67 Expression in Various Histological Subtypes of Lung Adenocarcinoma Based on CT Radiomic Features. Front Surg 2021; 8:736737. [PMID: 34733879 PMCID: PMC8558627 DOI: 10.3389/fsurg.2021.736737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose: The aims of this study were to combine CT images with Ki-67 expression to distinguish various subtypes of lung adenocarcinoma and to pre-operatively predict the Ki-67 expression level based on CT radiomic features. Methods: Data from 215 patients with 237 pathologically proven lung adenocarcinoma lesions who underwent CT and immunohistochemical Ki-67 from January 2019 to April 2021 were retrospectively analyzed. The receiver operating curve (ROC) identified the Ki-67 cut-off value for differentiating subtypes of lung adenocarcinoma. A chi-square test or t-test analyzed the differences in the CT images between the negative expression group (n = 132) and the positive expression group (n = 105), and then the risk factors affecting the expression level of Ki-67 were evaluated. Patients were randomly divided into a training dataset (n = 165) and a validation dataset (n = 72) in a ratio of 7:3. A total of 1,316 quantitative radiomic features were extracted from the Analysis Kinetics (A.K.) software. Radiomic feature selection and radiomic classifier were generated through a least absolute shrinkage and selection operator (LASSO) regression and logistic regression analysis model. The predictive capacity of the radiomic classifiers for the Ki-67 levels was investigated through the ROC curves in the training and testing groups. Results: The cut-off value of the Ki-67 to distinguish subtypes of lung adenocarcinoma was 5%. A comparison of clinical data and imaging features between the two groups showed that histopathological subtypes and air bronchograms could be used as risk factors to evaluate the expression of Ki-67 in lung adenocarcinoma (p = 0.005, p = 0.045, respectively). Through radiomic feature selection, eight top-class features constructed the radiomic model to pre-operatively predict the expression of Ki-67, and the area under the ROC curves of the training group and the testing group were 0.871 and 0.8, respectively. Conclusion: Ki-67 expression level with a cut-off value of 5% could be used to differentiate non-invasive lung adenocarcinomas from invasive lung adenocarcinomas. It is feasible and reliable to pre-operatively predict the expression level of Ki-67 in lung adenocarcinomas based on CT radiomic features, as a non-invasive biomarker to predict the degree of malignant invasion of lung adenocarcinoma, and to evaluate the prognosis of the tumor.
Collapse
Affiliation(s)
- Zhiwei Huang
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Mo Lyu
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhu Ai
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yirong Chen
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuying Liang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Zhiming Xiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
18
|
Xiao B, Fan Y, Zhang Z, Tan Z, Yang H, Tu W, Wu L, Shen X, Guo H, Wu Z, Zhu X. Three-Dimensional Radiomics Features From Multi-Parameter MRI Combined With Clinical Characteristics Predict Postoperative Cerebral Edema Exacerbation in Patients With Meningioma. Front Oncol 2021; 11:625220. [PMID: 33937027 PMCID: PMC8082417 DOI: 10.3389/fonc.2021.625220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Postoperative cerebral edema is common in patients with meningioma. It is of great clinical significance to predict the postoperative cerebral edema exacerbation (CEE) for the development of individual treatment programs in patients with meningioma. Objective To evaluate the value of three-dimensional radiomics Features from Multi-Parameter MRI in predicting the postoperative CEE in patients with meningioma. Methods A total of 136 meningioma patients with complete clinical and radiological data were collected for this retrospective study, and they were randomly divided into primary and validation cohorts. Three-dimensional radiomics features were extracted from multisequence MR images, and then screened through Wilcoxon rank sum test, elastic net and recursive feature elimination algorithms. A radiomics signature was established based support vector machine method. By combining clinical with the radiomics signature, a clin-radiomics combined model was constructed for individual CEE prediction. Results Three significance radiomics features were selected to construct a radiomics signature, with areas under the curves (AUCs) of 0.86 and 0.800 in the primary and validation cohorts, respectively. Two clinical characteristics (peritumoral edema and tumor size) and radiomics signature were determined to establish the clin-radiomics combined model, with an AUC of 0.91 in the primary cohort and 0.83 in the validation cohort. The clin-radiomics combined model showed good discrimination, calibration, and clinically useful for postoperative CEE prediction. Conclusions By integrating clinical characteristics with radiomics signature, the clin-radiomics combined model could assist in postoperative CEE prediction before surgery, and provide a basis for surgical treatment decisions in patients with meningioma.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanghua Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zilong Tan
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Yang
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Tu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Wu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoli Shen
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Guo
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingen Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Fan Y, Li Y, Bao X, Zhu H, Lu L, Yao Y, Li Y, Su M, Feng F, Feng S, Feng M, Wang R. Development of Machine Learning Models for Predicting Postoperative Delayed Remission in Patients With Cushing's Disease. J Clin Endocrinol Metab 2021; 106:e217-e231. [PMID: 33000120 DOI: 10.1210/clinem/dgaa698] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Postoperative hypercortisolemia mandates further therapy in patients with Cushing's disease (CD). Delayed remission (DR) is defined as not achieving postoperative immediate remission (IR), but having spontaneous remission during long-term follow-up. OBJECTIVE We aimed to develop and validate machine learning (ML) models for predicting DR in non-IR patients with CD. METHODS We enrolled 201 CD patients, and randomly divided them into training and test datasets. We then used the recursive feature elimination (RFE) algorithm to select features and applied 5 ML algorithms to construct DR prediction models. We used permutation importance and local interpretable model-agnostic explanation (LIME) algorithms to determine the importance of the selected features and interpret the ML models. RESULTS Eighty-eight (43.8%) of the 201 CD patients met the criteria for DR. Overall, patients who were younger, had a low body mass index, a Knosp grade of III-IV, and a tumor not found by pathological examination tended to achieve a lower rate of DR. After RFE feature selection, the Adaboost model, which comprised 18 features, had the greatest discriminatory ability, and its predictive ability was significantly better than using Knosp grading and postoperative immediate morning serum cortisol (PoC). The results obtained from permutation importance and LIME algorithms showed that preoperative 24-hour urine free cortisol, PoC, and age were the most important features, and showed the reliability and clinical practicability of the Adaboost model in DC prediction. CONCLUSIONS Machine learning-based models could serve as an effective noninvasive approach to predicting DR, and could aid in determining individual treatment and follow-up strategies for CD patients.
Collapse
Affiliation(s)
- Yanghua Fan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yichao Li
- DHC Software Co. Ltd, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Lu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Park YW, Kang Y, Ahn SS, Ku CR, Kim EH, Kim SH, Lee EJ, Kim SH, Lee SK. Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary 2020; 23:691-700. [PMID: 32851505 DOI: 10.1007/s11102-020-01077-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate whether radiomic features from magnetic resonance image (MRI) can predict the granulation pattern of growth hormone (GH)-secreting pituitary adenoma patients. METHODS Sixty-nine pathologically proven acromegaly patients (densely granulated [DG] = 50, sparsely granulated [SG] = 19) were included. Radiomic features (n = 214) were extracted from contrast-enhancing and total tumor portions from T2-weighted (T2) MRIs. Imaging features were selected using a least absolute shrinkage and selection operator (LASSO) logistic regression model with fivefold cross-validation. Diagnostic performance for predicting granulation pattern was compared with that for qualitative T2 signal intensity assessment and T2 relative signal intensity (rSI) using the area under the receiver operating characteristics curve (AUC). RESULTS Four significant radiomic features from the contrast-enhancing tumor (1 from shape, 1 from first order feature, and 2 from second order features) were selected by LASSO for model construction. The radiomics model showed an AUC, accuracy, sensitivity, and specificity of 0.834 (95% confidence interval [CI] 0.738-0.930), 73.7%, 74.0%, and 73.9%, respectively. The radiomics model showed significantly better performance than the model using qualitative T2 signal intensity assessment (AUC 0.597 [95% CI 0.447-0.747], P = 0.009) and T2 rSI (AUC 0.647 [95% CI 0.523-0.759], P = 0.037). CONCLUSION Radiomic features may be useful biomarkers to differentiate granulation pattern of GH-secreting pituitary adenoma patients, and showed better performance than qualitative assessment or rSI evaluation.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| | - Yunjun Kang
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| | - Cheol Ryong Ku
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea.
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
21
|
Zheng Y, Liu X, Zhong Y, Lv F, Yang H. A Preliminary Study for Distinguish Hormone-Secreting Functional Adrenocortical Adenoma Subtypes Using Multiparametric CT Radiomics-Based Machine Learning Model and Nomogram. Front Oncol 2020; 10:570502. [PMID: 33117700 PMCID: PMC7552922 DOI: 10.3389/fonc.2020.570502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: To explore the application value of multiparametric computed tomography (CT) radiomics in non-invasive differentiation between aldosterone-producing and cortisol-producing functional adrenocortical adenomas. Methods: This retrospective review analyzed 83 patients including 41 patients with aldosterone-producing adenoma and 42 patients with cortisol-producing adenoma. The quantitative radiomics features were extracted from the complete unenhanced, arterial, and venous phase CT images. A comparative study of several frequently used machine learning models (linear discriminant analysis, logistic regression, random forest, and support vector machine) combined with different feature selection methods was implemented in order to determine which was most advantageous for differential diagnosis using radiomics features. Then, the integrated model using the combination of radiomic signature and clinic-radiological features was built, and the associated calibration curve was also presented. The diagnostic performance of these models was estimated and compared using the area under the receiver operating characteristic (ROC) curve (AUC). Result: In the radiomics-based machine learning model, logistic regression model with LASSO (least absolute shrinkage and selection operator) outperformed the other models, which yielded a sensitivity of 0.935, a specificity of 0.823, and an accuracy of 0.887 [AUC = 0.882, 95% confidence interval (CI) = 0.819-0.945]. Moreover, the nomogram representing the integrated model achieved good discrimination performances, which yielded a sensitivity of 0.915, a specificity of 0.928, and an accuracy of 0.922 (AUC = 0.902, 95% CI = 0.822-0.982), and it was better than that of the radiomics model alone. Conclusion: This study found that the combination of multiparametric radiomics signature and clinic-radiological features can non-invasively differentiate the subtypes of hormone-secreting functional adrenocortical adenomas, which may have good potential for facilitating the diagnosis and treatment in clinical practice.
Collapse
Affiliation(s)
- Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zhong
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|