1
|
Zheng C, Guo D, Zhang T, Hu W, Zhang B, Feng H, Gao Y, Yang G. HDAC/H3K27ac-mediated transcription of NDUFA3 exerts protective effects on high glucose-treated human nucleus pulposus cells through improving mitochondrial function. Sci Rep 2024; 14:21165. [PMID: 39256449 PMCID: PMC11387752 DOI: 10.1038/s41598-024-71810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetes mellitus (DM) is a well-documented risk factor of intervertebral disc degeneration (IVDD). The current study was aimed to clarify the effects and mechanisms of NADH: ubiquinone oxidoreductase subunit A3 (NDUFA3) in human nucleus pulposus cells (HNPCs) exposed to high glucose. NDUFA3 was overexpressed in HNPCs via lenti-virus transduction, which were co-treated with high glucose and rotenone (a mitochondrial complex I inhibitor) for 48 h. Cell activities were assessed for cell viability, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) ratio, oxygen consumption rate (OCR) and mitochondrial complexes I activities. High glucose decreased cell viability, increased apoptotic cells, increased ROS production, decreased MMP levels and OCR values in HNPCs in a dose-dependent manner. Rotenone co-treatment augmented the high glucose-induced injuries on cell viability, apoptosis, ROS production and mitochondrial function. NDUFA3 overexpression counteracted the high glucose-induced injuries in HNPCs. HDAC/H3K27ac mechanism was involved in regulating NDUFA3 transcription. NDUFA3 knockdown decreased cell viability and increased apoptotic cells, which were reversed by ROS scavenger N-acetylcysteine. HDAC/H3K27ac-mediated transcription of NDUFA3 protects HNPCs against high glucose-induced injuries through suppressing cell apoptosis, eliminating ROS, improving mitochondrial function and oxidative phosphorylation. This study sheds light on candidate therapeutic targets and deepens the understanding of molecular mechanisms behind DM-induced IVDD.
Collapse
Affiliation(s)
- Cheng Zheng
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
- Xinxiang Medical University, 601 Jinsui Avenue, Hongqi District, Xinxiang City, Henan Province, Xinxiang, 453003, China
| | - Dongshuai Guo
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Tong Zhang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Weiran Hu
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Bo Zhang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Hang Feng
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Yanzheng Gao
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Guang Yang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Dicitore A, Gaudenzi G, Carra S, Cantone MC, Oldani M, Saronni D, Borghi MO, Grotteschi J, Persani L, Vitale G. Antitumor Activity of Axitinib in Lung Carcinoids: A Preclinical Study. Cancers (Basel) 2023; 15:5375. [PMID: 38001635 PMCID: PMC10669991 DOI: 10.3390/cancers15225375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Lung carcinoids (LCs) comprise well-differentiated neuroendocrine tumors classified as typical (TCs) and atypical (ACs) carcinoids. Unfortunately, curative therapies remain elusive for metastatic LCs, which account for 25-30% of cases. This study evaluated the antitumor activity of axitinib (AXI), a second-generation tyrosine kinase inhibitor selectively targeting vascular endothelial growth factor receptors (VEGFR-1, VEGFR-2, VEGFR-3) in human lung TC (NCI-H727, UMC-11, NCI-H835) and AC (NCI-H720) cell lines. In vitro and in vivo (zebrafish) assays were performed following AXI treatment to gather several read-outs about cell viability, cell cycle, the secretion of proangiogenic factors, apoptosis, tumor-induced angiogenesis and migration. AXI demonstrated relevant antitumor activity in human LC cells, with pronounced effects observed in UMC-11 and NCI-H720, characterized by cell cycle perturbation and apoptosis induction. AXI significantly hindered tumor induced-angiogenesis in Tg(fli1a:EGFP)y1 zebrafish embryos implanted with all LC cell lines and also reduced the invasiveness of NCI-H720 cells, as well as the secretion of several proangiogenic factors. In conclusion, our study provides initial evidence supporting the potential anti-tumor activity of AXI in LC, offering a promising basis for future investigations in mammalian animal models and, eventually, progressing to clinical trials.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (G.G.); (M.C.C.); (M.O.)
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy;
| | - Maria Celeste Cantone
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (G.G.); (M.C.C.); (M.O.)
| | - Monica Oldani
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (G.G.); (M.C.C.); (M.O.)
| | - Davide Saronni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Experimental Laboratory of Immuno-Rheumatology, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Jacopo Grotteschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy;
| | - Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (G.G.); (M.C.C.); (M.O.)
| |
Collapse
|
3
|
Guo L, Cen H, Weng J, He Y, Guo X, He D, Liu K, Duan S, Yang J, Zhang X, Qin Z, Wan Y, Chen Z, Wu B. PER2 integrates circadian disruption and pituitary tumorigenesis. Theranostics 2023; 13:2657-2672. [PMID: 37215573 PMCID: PMC10196825 DOI: 10.7150/thno.82995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: The role of circadian clock in pituitary tumorigenesis remains elusive. Here we investigate whether and how circadian clock modulates the development of pituitary adenomas. Methods and Results: We found altered expression of pituitary clock genes in patients with pituitary adenomas. In particular, PER2 is prominently upregulated. Further, jetlagged mice with PER2 upregulation have accelerated growth of GH3 xenograft tumor. Conversely, loss of Per2 protects mice against developing estrogen-induced pituitary adenoma. Similar antitumor effect is observed for SR8278, a chemical that can decrease pituitary PER2 expression. RNA-seq analysis suggests involvement of cell cycle disturbance in PER2 regulation of pituitary adenoma. Subsequent in vivo and cell-based experiments validate that PER2 induces pituitary expression of Ccnb2, Cdc20 and Espl1 (three cell cycle genes) to facilitate cell cycle progression and inhibit apoptosis, thereby promoting pituitary tumorigenesis. Mechanistically, PER2 regulates the transcription of Ccnb2, Cdc20 and Espl1 through enhancing the transcriptional activity of HIF-1α. HIF-1α trans-activates Ccnb2, Cdc20 and Espl1 via direct binding to its specific response element in the gene promoters. Conclusion: PER2 integrates circadian disruption and pituitary tumorigenesis. These findings advance our understanding of crosstalk between circadian clock and pituitary adenomas and highlight the relevance of clock-based approaches in disease management.
Collapse
Affiliation(s)
- Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haobin Cen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxian Weng
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaocao Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Di He
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Shuyi Duan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zifei Qin
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yong Wan
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhiyong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
- Minimally Invasive Treatment Center for Pituitary Adenoma of Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Herkenhoff CGB, Trarbach EB, Batista RL, Soares IC, Frassetto FP, do Nascimento FBP, Grande IPP, Silva PPB, Duarte FHG, Bronstein MD, Jallad RS. Survivin: A Potential Marker of Resistance to Somatostatin Receptor Ligands. J Clin Endocrinol Metab 2023; 108:876-887. [PMID: 36273993 DOI: 10.1210/clinem/dgac610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/19/2022] [Indexed: 02/13/2023]
Abstract
CONTEXT Invasive and somatostatin receptor ligand (SRL)-resistant pituitary tumors represent a challenge in the clinical practice of endocrinologists. Efforts have been made to elucidate reliable makers for both. Survivin and eukaryotic translation initiation factor-binding protein 1 (4EBP1) are upregulated in several cancers and involved in apoptosis and cell proliferation. OBJECTIVE We explored the role of these markers in somatotropinomas. METHODS Immunostains for survivin and 4EBP1, and also for somatostatin receptor type 2 (SSTR2), Ki-67, and cytokeratin 18, were analyzed in tissue microarrays containing 52 somatotropinoma samples. Tumor invasiveness was evaluated in all samples while drug resistance was evaluated in 34 patients who received SRL treatment. All these parameters were correlated with first-generation SRL (fg-SRL) responsiveness and tumor invasiveness. RESULTS Low survivin expression (P = 0.04), hyperintense signal on T2 weighted image (T2WI) (P = 0.01), younger age (P = 0.01), sparsely granular adenomas (SGA) (P = 0.04), high postoperative growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels (P = 0.049 and P < 0.001, respectively), and large postoperative tumor size (P = 0.02) were associated with resistance to fg-SRL. Low survivin and SSTR2 expression and high 4EBP1 expression were associated with SGA (P = 0.04, P = 0.01, and P = 0.001, respectively). Younger age (P = 0.03), large tumor pre- and postoperative (P = 0.04 and P = 0.006, respectively), low SSTR2 expression (P = 0.03), and high baseline GH and IGF-1 (P = 0.01 and P = 0.02, respectively) were associated with tumor invasiveness. However, survivin, 4EBP1, Ki-67, and granulation patterns were not associated with tumor invasion. CONCLUSION This study suggests that low survivin expression is predictive of resistance to fg-SRL in somatotropinomas, but not of tumor invasiveness.
Collapse
Affiliation(s)
- Clarissa G Borba Herkenhoff
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Ericka B Trarbach
- Laboratory of Cellular and Molecular Endocrinology/LIM25 Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Rafael Loch Batista
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
- Service of Endocrine Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Iberê Cauduro Soares
- Department of Pathology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Fernando Pereira Frassetto
- Department of Pathology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | | | - Isabella Pacetti Pajaro Grande
- Laboratory of Cellular and Molecular Endocrinology/LIM25 Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Paula P B Silva
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Felipe H G Duarte
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Marcello D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
- Laboratory of Cellular and Molecular Endocrinology/LIM25 Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Raquel S Jallad
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
- Laboratory of Cellular and Molecular Endocrinology/LIM25 Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| |
Collapse
|
5
|
Vitale G, Carra S, Alessi Y, Campolo F, Pandozzi C, Zanata I, Colao A, Faggiano A. Carcinoid Syndrome: Preclinical Models and Future Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24043610. [PMID: 36835022 PMCID: PMC9961914 DOI: 10.3390/ijms24043610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Carcinoid syndrome represents a debilitating paraneoplastic disease, caused by the secretion of several substances, occurring in about 10-40% of patients with well-differentiated neuroendocrine tumors (NETs). The main signs and symptoms associated with carcinoid syndrome are flushing, diarrhea, hypotension, tachycardia, bronchoconstriction, venous telangiectasia, dyspnea and fibrotic complications (mesenteric and retroperitoneal fibrosis, and carcinoid heart disease). Although there are several drugs available for the treatment of carcinoid syndrome, the lack of therapeutic response, poor tolerance or resistance to drugs are often reported. Preclinical models are indispensable tools for investigating the pathogenesis, mechanisms for tumor progression and new therapeutic approaches for cancer. This paper provides a state-of-the-art overview of in vitro and in vivo models in NETs with carcinoid syndrome, highlighting the future developments and therapeutic approaches in this field.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
- Correspondence: ; Tel.: +39-02-6191-12023; Fax: +39-02-6191-13033
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Ylenia Alessi
- Endocrine Unit, University Hospital “Gaetano Martino” of Messina, 98125 Messina, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Pandozzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Isabella Zanata
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
6
|
Papaioannou C, Druce M. Preoperative medical treatments and surgical approaches for acromegaly: A systematic review. Clin Endocrinol (Oxf) 2023; 98:14-31. [PMID: 35726150 PMCID: PMC10084190 DOI: 10.1111/cen.14790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Acromegaly is a condition characterized by an overproduction of growth hormone which infers high morbidity and mortality if left untreated. The objective of this review is to analyse and appraise the current evidence for the generalized use of preoperative medications and the various surgical approaches as described in the literature. DESIGN A thorough search from MEDLINE via PubMed, EMBASE, and Cochrane Library has been performed which identified a total of 37 papers. CONCLUSION The preoperative use of somatostatin receptor agonists (SAs) in acromegaly is a controversial topic with current guidelines suggesting against their generalized routine use. Most authors noticed an insignificant long-term remission of acromegaly when given SAs compared with nil preoperative therapy, except for invasive macroadenomas as SAs have been found to reduce the tumour volume and aid towards the total resection of the adenoma. Furthermore, according to the evidence available, endoscopic transsphenoidal surgery is the optimum method for hypophysectomy in terms of its remission and safety profile.
Collapse
Affiliation(s)
- Christos Papaioannou
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Maralyn Druce
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
7
|
Duan J, Hu C, Zhang Q, Zhu J. Exploration of the Effects of TGF- β Pathway-Based Pituitary Tumor of Rats on GH3 Cell Line after Intervention with Different Concentrations of TGZ. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7445042. [PMID: 36072638 PMCID: PMC9402356 DOI: 10.1155/2022/7445042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
The effect of the TGF-β pathway-based pituitary tumor of rats on the GH3 cell line after intervention with different concentrations of troglitazone (TGZ) is explored. The CH3 cell line of 24 clean male SD rats with pituitary adenoma is selected. The cells are divided into a blank contrast set and an experimental set. The experimental set is divided into different TGZ concentration sets, including 1 × 10-3 TGZ set, 1 × 10-4 TGZ set, and 1 × 10-5 TGZ set. The cell proliferation is detected by the CCK-8 method, the protein expressions of CD147, TGF-β1, and MMP-9 are detected by the western blot method, and the relative mRNA expressions of CD147, TGF-β1, and MMP-9 are detected by the qRT-PCR method. The expression levels of CD147, TGF-β1, and MMP-9 in CH3 cells of pituitary adenoma rats are notoriously lower, while the expression of CD147, TGF-31, and MMP-9 could be reduced by TGZ acting on the GH3 cell line. The specific mechanism of action of this effect on the invasive ability of GH3 cell lines is multifaceted, suggesting that peroxisome proliferator activator-receptor (PPAR-γ) agonists have good clinical application prospects in tumor therapy and can provide new targets and approaches for tumor drug therapy.
Collapse
Affiliation(s)
- Jiafeng Duan
- Department of Neurology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Chunmei Hu
- Department of Neurology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Integrated Chinese and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jin Zhu
- Department of Neurology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| |
Collapse
|
8
|
Carra S, Gaudenzi G, Dicitore A, Cantone MC, Plebani A, Saronni D, Zappavigna S, Caraglia M, Candeo A, Bassi A, Persani L, Vitale G. Modeling Lung Carcinoids with Zebrafish Tumor Xenograft. Int J Mol Sci 2022; 23:8126. [PMID: 35897702 PMCID: PMC9330857 DOI: 10.3390/ijms23158126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Lung carcinoids are neuroendocrine tumors that comprise well-differentiated typical (TCs) and atypical carcinoids (ACs). Preclinical models are indispensable for cancer drug screening since current therapies for advanced carcinoids are not curative. We aimed to develop a novel in vivo model of lung carcinoids based on the xenograft of lung TC (NCI-H835, UMC-11, and NCI-H727) and AC (NCI-H720) cell lines and patient-derived cell cultures in Tg(fli1a:EGFP)y1 zebrafish embryos. We exploited this platform to test the anti-tumor activity of sulfatinib. The tumorigenic potential of TC and AC implanted cells was evaluated by the quantification of tumor-induced angiogenesis and tumor cell migration as early as 24 h post-injection (hpi). The characterization of tumor-induced angiogenesis was performed in vivo and in real time, coupling the tumor xenograft with selective plane illumination microscopy on implanted zebrafish embryos. TC-implanted cells displayed a higher pro-angiogenic potential compared to AC cells, which inversely showed a relevant migratory behavior within 48 hpi. Sulfatinib inhibited tumor-induced angiogenesis, without affecting tumor cell spread in both TC and AC implanted embryos. In conclusion, zebrafish embryos implanted with TC and AC cells faithfully recapitulate the tumor behavior of human lung carcinoids and appear to be a promising platform for drug screening.
Collapse
Affiliation(s)
- Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy; (S.C.); (L.P.)
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy; (G.G.); (M.C.C.); (A.P.)
| | - Alessandra Dicitore
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy; (A.D.); (D.S.)
| | - Maria Celeste Cantone
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy; (G.G.); (M.C.C.); (A.P.)
| | - Alice Plebani
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy; (G.G.); (M.C.C.); (A.P.)
| | - Davide Saronni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy; (A.D.); (D.S.)
- PhD Program in Experimental Medicine, University of Milan, 20100 Milan, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (S.Z.); (M.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (S.Z.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem scarl, 83031 Ariano Irpino, Italy
| | - Alessia Candeo
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy; (A.C.); (A.B.)
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy; (A.C.); (A.B.)
| | - Luca Persani
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy; (S.C.); (L.P.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy; (A.D.); (D.S.)
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy; (G.G.); (M.C.C.); (A.P.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy; (A.D.); (D.S.)
| |
Collapse
|