1
|
Song Y, Luo X, Yao L, Chen Y, Mao X. Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage. Mol Biotechnol 2025; 67:1310-1320. [PMID: 38619799 DOI: 10.1007/s12033-024-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event associated with high mortality and significant morbidity. Recent studies have highlighted the emerging role of ferroptosis, a novel form of regulated cell death, in the pathogenesis of SAH. Circular RNAs (circRNAs), have been found to play essential roles in various cellular processes, including gene regulation and disease pathogenesis. The expression profile of circRNAs in neural tissues, particularly in the brain, suggests their critical role in synaptic function and neurogenesis. Moreover, the interplay between circRNAs and ferroptosis-related pathways, such as iron metabolism and lipid peroxidation, is explored in the context of SAH. Understanding the functional roles of specific circRNAs in the context of SAH may provide potential therapeutic targets to attenuate ferroptosis-associated brain injury. Furthermore, the potential of circRNAs as diagnostic biomarkers for SAH severity, prognosis, and treatment response is discussed. Overall, this review highlights the significance of studying the intricate interplay between circRNAs and ferroptosis in the context of SAH. Unraveling the mechanisms by which circRNAs modulate ferroptotic cell death may pave the way for the development of novel therapeutic strategies and diagnostic approaches for SAH management, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yanju Song
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xin Luo
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Liping Yao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Yinchao Chen
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China.
| |
Collapse
|
2
|
Zhu Z, Hu B, Zhu D, Li X, Chen D, Wu N, Rao Q, Zhang Z, Wang H, Zhu Y. Bromocriptine sensitivity in bromocriptine-induced drug-resistant prolactinomas is restored by inhibiting FGF19/FGFR4/PRL. J Endocrinol Invest 2025; 48:67-80. [PMID: 38926262 DOI: 10.1007/s40618-024-02408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE At present, various treatment strategies are available for pituitary adenomas, including medications, surgery and radiation. The guidelines indicate that pharmacological treatments, such as bromocriptine (BRC) and cabergoline (CAB), are important treatments for prolactinomas, but drug resistance is an urgent problem that needs to be addressed. Therefore, exploring the mechanism of drug resistance in prolactinomas is beneficial for clinical treatment. METHODS In our research, BRC-induced drug-resistant cells were established. Previous RNA sequencing data and an online database were used for preliminary screening of resistance-related genes. Cell survival was determined by Cell Counting Kit-8 (CCK-8) assay, colony formation assays and flow cytometry. Quantitative real-time polymerase chain reaction (qRT‒PCR), western blotting, immunohistochemistry, immunofluorescence and Co-immunoprecipitation (Co-IP) were used to assess the molecular changes and regulation. The therapeutic efficacy of BRC and FGFR4 inhibitor fisogatinib (FISO) combination was evaluated in drug-resistant cells and xenograft tumors in nude mice. RESULTS Consistent with the preliminary results of RNA sequencing and database screening, fibroblast growth factor 19 (FGF19) expression was elevated in drug-resistant cells and tumor samples. With FGF19 silencing, drug-resistant cells exhibited increased sensitivity to BRC and decreased intracellular phosphorylated fibroblast growth factor receptor 4 (FGFR4) levels. After confirming that FGF19 binds to FGFR4 in prolactinoma cells, we found that FGF19/FGFR4 regulated prolactin (PRL) synthesis through the ERK1/2 and JNK signaling pathways. Regarding the effect of targeting FGF19/FGFR4 on BRC efficacy, FISO and BRC synergistically inhibited the growth of tumor cells, promoted apoptosis and reduced PRL levels. CONCLUSION Overall, our study revealed FGF19/FGFR4 as a new mechanism involved in the drug resistance of prolactinomas, and combination therapy targeting the pathway could be helpful for the treatment of BRC-induced drug-resistant prolactinomas.
Collapse
Affiliation(s)
- Z Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - B Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - X Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - N Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Q Rao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - H Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| | - Y Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
- Department of Histology and Embryology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
3
|
Rad SG, Orang FN, Shadbad MA. MicroRNA networks in prolactinoma tumorigenesis: a scoping review. Cancer Cell Int 2024; 24:418. [PMID: 39702128 PMCID: PMC11660578 DOI: 10.1186/s12935-024-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Prolactinoma is the leading type of pituitary adenoma. Aside from the mass-like effect of prolactinoma, its hormonal effect is the main pathological cause of endocrine dysregulation and infertility. The dopamine agonist administration and surgical resection are the current mainstream anti-neoplastic treatments for affected patients; however, tumor fibrosis, tumor invasion, dopamine agonist resistance, and gain prolactinomas are clinical challenges for treating affected patients. Therefore, there is a need to develop novel treatments for these patients. Although growing evidence has highlighted the significance of dysregulated microRNA (miRNA) expression in various malignancies, no study has systematically investigated the significance of miRNA networks and their therapeutic potential in prolactinoma. For this aim, the current scoping review was performed according to the systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR) guideline. MAIN BODY The systematic study on PubMed, Web of Science, Scopus, and Embase databases has shown that miR-200c, miR-217, miR-93a, miR-93, miR-1299, and miR-9 are the oncogenic miRNAs and miR-137, miR-145-5p, miR-197-3p, miR-29a-3p, miR-489, miR-199a-5p, miR-124, miR-212, miR-129-5p, miR-130a-3p, miR-326, miR-432, miR-548c-3p, miR-570, miR-15, miR-16, miR-26a, miR-196a2, and let-7a are tumor-suppressive miRNAs in prolactinoma tumorigenesis. CONCLUSION In summary, inhibiting the oncogenic miRNAs and ectopic expression of tumor-suppressive miRNAs can decrease prolactin secretion, reduce tumor invasion and migration, enhance dopamine agonist efficacy, and inhibit prolactinoma development. These findings can serve as a blueprint for future translational studies investigating miR-based therapeutics for prolactinoma.
Collapse
Affiliation(s)
- Sevil Ghaffarzadeh Rad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Abdoli Shadbad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Xu L, Lei Z, Wang Q, Jiang Q, Xing B, Li X, Guo X, Wang Z, Li S, Huang Y, Lei T. Androgen Receptor Mediates Dopamine Agonist Resistance by Regulating Intracellular Reactive Oxygen Species in Prolactin-Secreting Pituitary Adenoma. Antioxid Redox Signal 2024. [PMID: 39360800 DOI: 10.1089/ars.2024.0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Aims: Dopamine agonists (DAs) are the first-line treatment for patients with prolactin-secreting pituitary adenoma (PRL adenoma). However, a subset of individuals exhibits poor responses, known as DA resistance. Previous studies have reported that DA resistance is more prevalent in male patients. This study aims to investigate the relationship between androgen receptor (AR) expression and DA resistance, as well as to explore underlying mechanisms of AR-mediated DA resistance. Results: Our results demonstrated that patients with higher AR expression exhibit greater resistance to DA in our cohort of DA-resistant PRL adenoma. Furthermore, AR was found to be involved in cell proliferation, PRL secretion, and resistance to bromocriptine (BRC) both in vitro and in vivo. Mechanistically, we demonstrated that intracellular reactive oxygen species (ROS) function as upstream mediators of apoptosis and ferroptosis following BRC treatment. As a ligand-dependent transcription factor, AR could translocate to the nucleus and transcriptionally promote NFE2-like bZIP transcription factor 2 (NRF2) expression, which regulates intracellular ROS levels, thereby enhancing cell viability and conferring DA resistance to pituitary adenoma (PA) cells. Finally, AR targeting agents were used to inhibit AR signaling, downregulate NRF2 transcription, and sensitize PA cells to BRC treatment. Conclusion and Innovation: We demonstrated that AR plays a crucial role in mediating DA resistance in PRL adenoma. Mechanistically, AR promotes cell proliferation and PRL secretion and confers drug resistance by transcriptionally regulating NRF2 expression to maintain redox homeostasis in PA cells. Finally, combining AR targeting agents with BRC shows promise as a therapeutic strategy for treating PRL adenomas. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Linpeng Xu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuowei Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Quanji Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Xing
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Guo
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zihan Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Sihan Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Huang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Gao Y, Lin H, Tang T, Wang Y, Chen W, Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int J Biol Macromol 2024; 280:135659. [PMID: 39288849 DOI: 10.1016/j.ijbiomac.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalently closed structures formed by reverse splicing of precursor mRNAs. The widespread expression of circRNAs across species has been revealed by high-throughput sequencing and bioinformatics approaches, indicating their unique properties and diverse functions including acting as microRNA sponges and interacting with RNA-binding proteins. Programmed cell death (PCD), encompassing various forms such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis, is an essential process for maintaining normal development and homeostasis in the human body by eliminating damaged, infected, and aging cells. Many studies have demonstrated that circRNAs play crucial roles in tumourigenesis and development by regulating PCD in tumor cells, showing that circRNAs have the potential to be biomarkers and therapeutic targets in cancer. This review aims to comprehensively summarize the intricate associations between circRNAs and diverse PCD pathways in tumor cells, which play crucial roles in cancer development. Additionally, this review provides a detailed overview of the underlying mechanisms by which circRNAs modulate various forms of PCD for the first time. The ultimate objective is to offer valuable insights into the potential clinical significance of developing novel strategies based on circRNAs and PCD for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yudi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hong Lin
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
6
|
Wang H, Fleishman JS, Cheng S, Wang W, Wu F, Wang Y, Wang Y. Epigenetic modification of ferroptosis by non-coding RNAs in cancer drug resistance. Mol Cancer 2024; 23:177. [PMID: 39192329 DOI: 10.1186/s12943-024-02088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The development of drug resistance remains a major challenge in cancer treatment. Ferroptosis, a unique type of regulated cell death, plays a pivotal role in inhibiting tumour growth, presenting new opportunities in treating chemotherapeutic resistance. Accumulating studies indicate that epigenetic modifications by non-coding RNAs (ncRNA) can determine cancer cell vulnerability to ferroptosis. In this review, we first summarize the role of chemotherapeutic resistance in cancer growth/development. Then, we summarize the core molecular mechanisms of ferroptosis, its upstream epigenetic regulation, and its downstream effects on chemotherapeutic resistance. Finally, we review recent advances in understanding how ncRNAs regulate ferroptosis and from such modulate chemotherapeutic resistance. This review aims to enhance general understanding of the ncRNA-mediated epigenetic regulatory mechanisms which modulate ferroptosis, highlighting the ncRNA-ferroptosis axis as a key druggable target in overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| | - Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
7
|
Lv S, Li Y, Li X, Zhu L, Zhu Y, Guo C, Li Y. Silica nanoparticles triggered epithelial ferroptosis via miR-21-5p/GCLM signaling to contribute to fibrogenesis in the lungs. Chem Biol Interact 2024; 399:111121. [PMID: 38944326 DOI: 10.1016/j.cbi.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
The toxicity of silica nanoparticles (SiNPs) to lung is known. We previously demonstrated that exposure to SiNPs promoted pulmonary impairments, but the precise pathogenesis remains elucidated. Ferroptosis has now been identified as a unique form of oxidative cell death, but whether it participated in SiNPs-induced lung injury remains unclear. In this work, we established a rat model with sub-chronic inhalation exposure of SiNPs via intratracheal instillation, and conducted histopathological examination, iron detection, and ferroptosis-related lipid peroxidation and protein assays. Moreover, we evaluated the effect of SiNPs on epithelial ferroptosis, possible mechanisms using in vitro-cultured human bronchial epithelial cells (16HBE), and also assessed the ensuing impact on fibroblast activation for fibrogenesis. Consequently, fibrotic lesions occurred in the rat lungs, concomitantly by enhanced lipid peroxidation, iron overload, and ferroptosis. Consistently, the in vitro data showed SiNPs triggered oxidative stress and caused the accumulation of lipid peroxides, resulting in ferroptosis. Importantly, the mechanistic investigation revealed miR-21-5p as a key player in the epithelial ferroptotic process induced by SiNPs via targeting GCLM for GSH depletion. Of note, ferrostatin-1 could greatly suppress ferroptosis and alleviate epithelial injury and ensuing fibroblast activation by SiNPs. In conclusion, our findings first revealed SiNPs triggered epithelial ferroptosis through miR-21-5p/GCLM signaling and thereby promoted fibroblast activation for fibrotic lesions, and highlighted the therapeutic potential of inhibiting ferroptosis against lung impairments upon SiNPs exposure.
Collapse
Affiliation(s)
- Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yurou Zhu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks and ferroptosis in cancer: novel therapeutic targets. Cell Death Dis 2024; 15:357. [PMID: 38778030 PMCID: PMC11111666 DOI: 10.1038/s41419-024-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Gong H, Li Z, Wu Z, Lian G, Su Z. Modulation of ferroptosis by non‑coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol Res Pract 2024; 253:155042. [PMID: 38184963 DOI: 10.1016/j.prp.2023.155042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Ferroptosis is a recently discovered cell programmed death. Extensive researches have indicated that ferroptosis plays an essential role in tumorigenesis, development, migration and chemotherapy drugs resistance, which makes it become a new target for tumor therapy. Non-coding RNAs (ncRNAs) are considered to control a wide range of cellular processes by modulating gene expression. Recent studies have indicated that ncRNAs regulate the process of ferroptosis via various pathway to affect the development of cancer. However, the regulation network remains ambiguous. In this review, we outlined the major metabolic processes of ferroptosis and concluded the relationship between ferroptosis-related ncRNAs and cancer progression. In addition, the prospect of ncRNAs being new therapeutic targets and early diagnosis biomarkers for cancer by regulating ferroptosis were presented, and the possible obstacles were also predicted. This could help in discovering novel cancer early diagnostic methods and therapeutic approaches.
Collapse
Affiliation(s)
- Huifang Gong
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhimin Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Zheng X, Zhang C. The Regulation of Ferroptosis by Noncoding RNAs. Int J Mol Sci 2023; 24:13336. [PMID: 37686142 PMCID: PMC10488123 DOI: 10.3390/ijms241713336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
As a novel form of regulated cell death, ferroptosis is characterized by intracellular iron and lipid peroxide accumulation, which is different from other regulated cell death forms morphologically, biochemically, and immunologically. Ferroptosis is regulated by iron metabolism, lipid metabolism, and antioxidant defense systems as well as various transcription factors and related signal pathways. Emerging evidence has highlighted that ferroptosis is associated with many physiological and pathological processes, including cancer, neurodegeneration diseases, cardiovascular diseases, and ischemia/reperfusion injury. Noncoding RNAs are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that noncoding RNAs, especially miRNAs, lncRNAs, and circRNAs, can interfere with the progression of ferroptosis by modulating ferroptosis-related genes or proteins directly or indirectly. In this review, we summarize the basic mechanisms and regulations of ferroptosis and focus on the recent studies on the mechanism for different types of ncRNAs to regulate ferroptosis in different physiological and pathological conditions, which will deepen our understanding of ferroptosis regulation by noncoding RNAs and provide new insights into employing noncoding RNAs in ferroptosis-associated therapeutic strategies.
Collapse
Affiliation(s)
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| |
Collapse
|
11
|
Yang R, Ma L, Wan J, Li Z, Yang Z, Zhao Z, Ming L. Ferroptosis-associated circular RNAs: Opportunities and challenges in the diagnosis and treatment of cancer. Front Cell Dev Biol 2023; 11:1160381. [PMID: 37152286 PMCID: PMC10157116 DOI: 10.3389/fcell.2023.1160381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis is an emerging form of non-apoptotic regulated cell death which is different from cell death mechanisms such as autophagy, apoptosis and necrosis. It is characterized by iron-dependent lipid peroxide accumulation. Circular RNA (circRNA) is a newly studied evolutionarily conserved type of non-coding RNA with a covalent closed-loop structure. It exhibits universality, conservatism, stability and particularity. At present, the functions that have been studied and found include microRNA sponge, protein scaffold, transcription regulation, translation and production of peptides, etc. CircRNA can be used as a biomarker of tumors and is a hotspot in RNA biology research. Studies have shown that ferroptosis can participate in tumor regulation through the circRNA molecular pathway and then affect cancer progression, which may become a direction of cancer diagnosis and treatment in the future. This paper reviews the molecular biological mechanism of ferroptosis and the role of circular RNA in tumors and summarizes the circRNA related to ferroptosis in tumors, which may inspire research prospects for the precise prevention and treatment of cancer in the future.
Collapse
Affiliation(s)
- Ruotong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhuofang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhengwu Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhuochen Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
- *Correspondence: Liang Ming,
| |
Collapse
|