1
|
Oliveras L, López-Vargas P, Melilli E, Codina S, Royuela A, Coloma López A, Favà A, Manonelles A, Couceiro C, Lloberas N, Cruzado JM, Montero N. Delayed initiation or reduced initial dose of calcineurin-inhibitors for kidney transplant recipients at high risk of delayed graft function. Cochrane Database Syst Rev 2025; 4:CD014855. [PMID: 40197799 PMCID: PMC11977049 DOI: 10.1002/14651858.cd014855.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
BACKGROUND Kidney transplantation is the preferred therapy for many patients with kidney failure. Delayed graft function (DGF) is more common in donors after cardiac death (DCD), especially those with older age, longer cold ischemia time, or higher creatinine levels. Currently, there is no agreement on the optimal immunosuppressive approach for patients at increased risk of DGF. Strategies include delaying the introduction of calcineurin inhibitors (CNI) or using an initial low dose of CNI. OBJECTIVES To evaluate the benefits and harms of delayed initiation of CNI or reduced CNI dose as initial immunosuppression therapy for kidney transplant recipients at high risk of DGF. SEARCH METHODS The Cochrane Kidney and Transplant Register of Studies was searched up to 11 December 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs evaluating delayed versus early initiation of CNI or reduced versus standard initial dose of CNI in kidney transplant recipients at high risk of DGF. DATA COLLECTION AND ANALYSIS Three authors independently assessed study eligibility, and two assessed the risk of bias, certainty of evidence, extracted the data, and performed the analysis. Results were reported as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes and as mean difference (MD) with 95% CI for continuous outcomes. Statistical analysis was performed using the random-effects model. Risk of bias was assessed with the Cochrane risk of bias assessment tool 1.0, and the certainty of the evidence according to the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) methods, which are presented in the summary of findings tables. MAIN RESULTS We included 12 studies (2230 randomised participants). All studies were performed in Europe. Around 60% of the participants were males, reflecting the expected proportion in the population on kidney replacement therapy in Europe. Most studies had insufficient information to judge adequate random sequence generation and, or allocation concealment. All studies were unblinded, and judged as high risk of bias for DGF if the definition was based on need for dialysis, and for acute rejection if the diagnosis did not require a biopsy. Overall, the level of certainty was low, and reasons to downgrade were mainly due to risk of bias and imprecision. Delayed versus early initiation of CNI There may be little or no difference in DGF between the groups (6 studies, 905 recipients: RR 0.92, 95% CI 0.76 to 1.12; low certainty evidence) or in acute rejection (8 studies, 1295 recipients: RR 1.02, 95% CI 0.75 to 1.40; low certainty evidence). Delaying the initiation of CNI probably makes little or no difference to eGFR (6 studies, 851 recipients: MD -0.81 mL/min, 95% CI -3.33 to 1.72; moderate certainty evidence). Delaying the initiation of CNI may make little or no difference to graft loss censored for death (8 studies, 1295 recipients: RR 1.58, 95% CI 0.68 to 3.65; very low certainty evidence) or to all-cause death (8 studies, 907 recipients: RR 1.08, 95% CI 0.54 to 2.14; very low certainty evidence) although the evidence is very uncertain. There is probably little or no difference in all infections between the groups (6 studies, 1226 recipients: RR 1.10, 95% CI 0.97 to 1.25; moderate certainty evidence). Low versus standard initial dose of CNI There may be little or no difference to DGF between the groups (5 studies, 983 recipients: RR 1.16, 95% CI 0.90 to 1.50; low certainty evidence) or in acute rejection (5 studies, 947 recipients: RR 0.83, 95% CI 0.52 to 1.30; low certainty evidence). Starting CNI at a lower dose may make little or no difference to eGFR (5 studies, 935 recipients: MD 4.06 mL/min, 95% CI -1.36 to 9.48, low certainty evidence). Starting CNI at a lower dose may make little or no difference to graft loss censored for death, although the evidence is very uncertain (5 studies, 983 recipients: RR 1.05, 95% CI 0.64 to 1.71; very low certainty evidence), or to all-cause death (4 studies, 521 recipients: RR 1.01, 95% CI 0.41 to 2.47; low certainty evidence). There is probably little or no difference in all infections between the groups (4 studies, 828 recipients: RR 0.87, 95% CI 0.71 to 1.07; moderate certainty evidence). AUTHORS' CONCLUSIONS There may be little or no difference in DGF or acute rejection when delaying the start of CNI or when starting it at a lower dose in kidney transplant recipients at high risk of DGF. The available data are of low certainty.
Collapse
Affiliation(s)
- Laia Oliveras
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Pamela López-Vargas
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Edoardo Melilli
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Sergi Codina
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Ana Royuela
- Department of Biostatistics, Biomedical Sciences Research Institute, Hospital Universitario Puerta de Hierro-Majadahonda, CIBERESP, Majadahonda, Spain
| | - Ana Coloma López
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Alexandre Favà
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Anna Manonelles
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Carlos Couceiro
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Nuria Lloberas
- Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Nuria Montero
- Department of Nephrology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| |
Collapse
|
2
|
Wajih Z, Karpe KM, Walters GD. Interventions for BK virus infection in kidney transplant recipients. Cochrane Database Syst Rev 2024; 10:CD013344. [PMID: 39382091 PMCID: PMC11462636 DOI: 10.1002/14651858.cd013344.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND BK virus-associated nephropathy (BKVAN), caused by infection with or reactivation of BK virus, remains a challenge in kidney transplantation. Screening is recommended for all kidney transplant recipients. For those with clinically significant infection, reduction of immunosuppression is the cornerstone of management. There is no specific antiviral or immunomodulatory therapy sufficiently effective for routine use. OBJECTIVES This review aimed to examine the benefits and harms of interventions for BK virus infection in kidney transplant recipients. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 5 September 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and cohort studies investigating any intervention for the treatment or prevention of BKVAN for kidney transplant recipients. DATA COLLECTION AND ANALYSIS Two authors independently assessed the study quality and extracted data. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Twelve RCTs (2669 randomised participants) were included. Six studies were undertaken in single centres, and six were multicentre studies; two of these were international studies. The ages of those participating ranged from 44 to 57 years. The length of follow-up ranged from three months to five years. All studies included people with a kidney transplant, and three studies included people with signs of BK viraemia. Studies were heterogeneous in terms of the type of interventions and outcomes assessed. The overall risk of bias was low or unclear. Intensive screening for the early detection of BK viraemia or BK viruria prevents graft loss (1 study, 908 participants: RR 0.00, 95% CI 0.00 to 0.05) and decreases the presence of decoy cells and viraemia at 12 months (1 study, 908 participants: RR 0.06, 95% CI 0.03 to 0.11) compared to routine care (high certainty evidence). No other outcomes were reported. Compared to placebo, fluoroquinolones may slightly reduce the risk of graft loss (3 studies, 393 participants: RR 0.37, CI 0.09 to 1.57; I2 = 0%; low certainty evidence), probably makes little or no difference to donor-specific antibodies (DSA), may make little or no difference to BK viraemia and death, had uncertain effects on BKVAN and malignancy, but may increase the risk of tendonitis (2 studies, 193 participants: RR 5.66, CI 1.02 to 31.32; I2 = 0%; low certainty evidence). Compared to tacrolimus (TAC), cyclosporin (CSA) probably makes little or no difference to graft loss and death, may make little or no difference to BKVAN and malignancy, but probably decreases BK viraemia (2 studies, 263 participants: RR 0.61, 95% CI 0.26 to 1.41; I2 = 38%) and probably reduces the risk of new-onset diabetes after transplantation (1 study, 200 participants: RR 0.41, 95% CI 0.12 to 1.35) (both moderate certainty evidence). Compared to azathioprine, mycophenolate mofetil (MMF) probably makes little or no difference to graft loss and BK viraemia but probably reduces the risk of death (1 study, 133 participants: RR 0.43, 95% CI 0.16 to 1.16) and malignancy (1 study, 199 participants: RR 0.43, 95% CI 0.16 to 1.16) (both moderate certainty evidence). Compared to mycophenolate sodium (MPS), CSA has uncertain effects on graft loss and death, may make little or no difference to BK viraemia, but may reduce BKVAN (1 study, 224 participants: RR 0.06, 95% CI 0.00 to 1.20; low certainty evidence). Compared to immunosuppression dose reduction, MMF or TAC conversion to everolimus or sirolimus may make little or no difference to graft loss, BK viraemia or BKVAN (low certainty evidence). TAC conversion to sirolimus probably results in more people having a reduced BK viral load (< 600 copies/mL) than immunosuppression reduction (1 study, 30 participants: RR 1.31, 95% CI 0.90 to 1.89; moderate certainty evidence). Compared to MPS, everolimus had uncertain effects on graft loss and BK viraemia, may reduce BKVAN (1 study, 135 participants: 0.06, 95% CI 0.00 to 1.11) and may increase the risk of death (1 study, 135 participants: RR 3.71, 95% CI 0.20 to 67.35) (both low certainty evidence). Compared to CSA, everolimus may make little or no difference to BK viraemia, has uncertain effects on graft loss and BKVAN, but may increase the risk of death (1 study, 185 participants: RR 3.71, 95% CI 0.42 to 32.55; low certainty evidence). Compared to immunosuppression reduction, the leflunomide derivative FK778 may make little or no difference to graft loss, probably results in a greater reduction in plasma BK viral load (1 study, 44 participants: -0.60 copies/µL, 95% CI -1.22 to 0.02; moderate certainty evidence), but had uncertain effects on BKVAN and malignancy. Aggravated hypertension may be increased with KF778 (1 study, 46 participants: RR 8.23, 95% CI 0.50 to 135.40; low certainty evidence). There were no deaths in either group. AUTHORS' CONCLUSIONS Intense monitoring early after transplantation for BK viruria and BK viraemia is effective in improving BK virus infection outcomes as it helps with early detection of the infection and allows for a timely reduction in immunosuppression reduction. There is insufficient evidence to support any other intervention for BK virus infection in kidney transplant recipients.
Collapse
Affiliation(s)
- Zainab Wajih
- Renal and General Medicine, Bathurst Hospital (WNSWLHD), Bathurst, NSW, Australia
| | - Krishna M Karpe
- Department of Renal Medicine, The Canberra Hospital, Canberra, Australia
| | - Giles D Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra, Australia
| |
Collapse
|
3
|
Seeking Standardized Definitions for HLA-incompatible Kidney Transplants: A Systematic Review. Transplantation 2023; 107:231-253. [PMID: 35915547 DOI: 10.1097/tp.0000000000004262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is no standard definition for "HLA incompatible" transplants. For the first time, we systematically assessed how HLA incompatibility was defined in contemporary peer-reviewed publications and its prognostic implication to transplant outcomes. METHODS We combined 2 independent searches of MEDLINE, EMBASE, and the Cochrane Library from 2015 to 2019. Content-expert reviewers screened for original research on outcomes of HLA-incompatible transplants (defined as allele or molecular mismatch and solid-phase or cell-based assays). We ascertained the completeness of reporting on a predefined set of variables assessing HLA incompatibility, therapies, and outcomes. Given significant heterogeneity, we conducted narrative synthesis and assessed risk of bias in studies examining the association between death-censored graft failure and HLA incompatibility. RESULTS Of 6656 screened articles, 163 evaluated transplant outcomes by HLA incompatibility. Most articles reported on cytotoxic/flow T-cell crossmatches (n = 98). Molecular genotypes were reported for selected loci at the allele-group level. Sixteen articles reported on epitope compatibility. Pretransplant donor-specific HLA antibodies were often considered (n = 143); yet there was heterogeneity in sample handling, assay procedure, and incomplete reporting on donor-specific HLA antibodies assignment. Induction (n = 129) and maintenance immunosuppression (n = 140) were frequently mentioned but less so rejection treatment (n = 72) and desensitization (n = 70). Studies assessing death-censored graft failure risk by HLA incompatibility were vulnerable to bias in the participant, predictor, and analysis domains. CONCLUSIONS Optimization of transplant outcomes and personalized care depends on accurate HLA compatibility assessment. Reporting on a standard set of variables will help assess generalizability of research, allow knowledge synthesis, and facilitate international collaboration in clinical trials.
Collapse
|
4
|
Hellemans R, Pengel L, Choquet S, Maggiore U. Managing immunosuppressive therapy in potentially cured post-kidney transplant cancer (excluding non-melanoma skin cancer): overview of the available evidence and guidance for shared decision making. Transpl Int 2021; 34:1789-1800. [PMID: 34146426 PMCID: PMC8518116 DOI: 10.1111/tri.13952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022]
Abstract
Kidney transplant recipients (KTRs) have increased incidence of de novo cancers. After having undergone treatment for cancer with curative intent, reducing the overall immunosuppressive load and/or switching to an alternative drug regimen may potentially be of great benefit to avoid cancer recurrence, but should be balanced against the risks of rejection and/or severe adverse events. The TLJ (Transplant Learning Journey) project is an initiative from the European Society for Organ Transplantation (ESOT). This article reports a systematic literature search undertaken by TLJ Workstream 3 to answer the questions: (1) Should we decrease the overall anti‐rejection therapy in potentially cured post‐kidney transplant cancer (excluding non‐melanoma skin cancer)? (2) Should we switch to mammalian target of rapamycin inhibitors (mTORi) in potentially cured post‐kidney transplant cancer (excluding non‐melanoma skin cancer)? The literature search revealed insufficient solid data on which to base recommendations, so this review additionally presents an extensive overview of the indirect evidence on the benefits versus risks of alterations in immunosuppressive medication. We hope this summary will help transplant physicians advise KTRs on how best to continue with anti‐rejection therapy after receiving cancer treatment with curative intent, and aid shared decision‐making, ensuring that patient preferences are taken into account.
Collapse
Affiliation(s)
- Rachel Hellemans
- Department of Nephrology, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Belgium
| | - Liset Pengel
- Centre of Evidence for Transplantation, Nuffield Department of Surgical Sciences, Oxford, UK
| | - Sylvain Choquet
- Service d'Hématologie, Hôpital Pitié Salpêtrière, Paris, France
| | - Umberto Maggiore
- Nephrology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
5
|
Hahn D, Hodson EM, Hamiwka LA, Lee VWS, Chapman JR, Craig JC, Webster AC, Cochrane Kidney and Transplant Group. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev 2019; 12:CD004290. [PMID: 31840244 PMCID: PMC6953317 DOI: 10.1002/14651858.cd004290.pub3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Kidney transplantation is the therapy of choice for many patients with end-stage kidney disease (ESKD) with an improvement in survival rates and satisfactory short term graft survival. However, there has been little improvement in long-term survival. The place of target of rapamycin inhibitors (TOR-I) (sirolimus, everolimus), which have different modes of action from other commonly used immunosuppressive agents, in kidney transplantation remains uncertain. This is an update of a review first published in 2006. OBJECTIVES To evaluate the short and long-term benefits and harms of TOR-I (sirolimus and everolimus) when used in primary immunosuppressive regimens for kidney transplant recipients. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 20 September 2019 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register were identified through searches of CENTRAL, MEDLINE and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs in which drug regimens, containing TOR-I commenced within seven days of transplant, were compared to alternative drug regimens, were included without age restriction, dosage or language of report. DATA COLLECTION AND ANALYSIS Three authors independently assessed study eligibility, risk of bias, and extracted data. Results were reported as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) with 95% CI for continuous outcomes. Statistical analyses were performed using the random-effects model. The certainty of the evidence was assessed using GRADE MAIN RESULTS: Seventy studies (17,462 randomised participants) were included; eight studies included two comparisons to provide 78 comparisons. Outcomes were reported at six months to three years post transplant. Risk of bias was judged to be low for sequence generation in 25 studies, for allocation concealment in 23 studies, performance bias in four studies, detection bias in 65 studies, attrition bias in 45 studies, selective reporting bias in 48 studies, and for other potential bias in three studies. Risk of bias was judged to be at high risk of bias for sequence generation in two studies, allocation concealment in two studies, performance bias in 61 studies, detection bias in one study, attrition bias in four studies, for selective reporting bias in 11 studies and for other potential risk of bias in 46 studies. Compared with CNI and antimetabolite, TOR-I with antimetabolite probably makes little or no difference to death (RR 1.31, 95% CI 0.87 to 1.98; 19 studies) or malignancies (RR 0.86, 95% CI 0.50 to 1.48; 10 studies); probably increases graft loss censored for death (RR 1.32, 95% CI 0.96 to 1.81; 15 studies), biopsy-proven acute rejection (RR 1.60, 95% CI 1.25 to 2.04; 15 studies), need to change treatment (RR 2.42, 95% CI 1.88 to 3.11; 14 studies) and wound complications (RR 2.56, 95% CI 1.94 to 3.36; 12 studies) (moderate certainty evidence); but reduces CMV infection (RR 0.43, 95% CI 0.29 to 0.63; 13 studies) (high certainty evidence). Compared with antimetabolites and CNI, TOR-I with CNI probably makes little or no difference to death (RR 1.06, 95% CI 0.84 to 1.33; 31 studies), graft loss censored for death (RR 1.09, 95% CI 0.82 to 1.45; 26 studies), biopsy-proven acute rejection (RR 0.95, 95% CI 0.81 to 1.12; 24 studies); and malignancies (RR 0.83, 95% CI 0.64 to 1.07; 17 studies); probably increases the need to change treatment (RR 1.56, 95% CI 1.28 to 1.90; 25 studies), and wound complications (RR 1.56, 95% CI 1.28 to 1.91; 17 studies); but probably reduces CMV infection (RR 0.44, 95% CI 0.34 to 0.58; 25 studies) (moderate certainty evidence). Lower dose TOR-I and standard dose CNI compared with higher dose TOR-I and reduced dose CNI probably makes little or no difference to death (RR 1.07, 95% CI 0.64 to 1.78; 9 studies), graft loss censored for death (RR 1.09, 95% CI 0.54 to 2.20; 8 studies), biopsy-proven acute rejection (RR 0.87, 95% CI 0.67 to 1.13; 8 studies), and CMV infection (RR 1.42, 95% CI 0.78 to 2.60; 5 studies) (moderate certainty evidence); and may make little or no difference to wound complications (RR 0.95, 95% CI 0.53 to 1.71; 3 studies), malignancies (RR 1.04, 95% CI 0.36 to 3.04; 7 studies), and the need to change treatments (RR 1.18, 95% CI 0.58 to 2.42; 5 studies) (low certainty evidence). Lower dose of TOR-I compared with higher doses probably makes little or no difference to death (RR 0.84, 95% CI 0.67 to 1.06; 13 studies), graft loss censored for death (RR 0.92, 95% CI 0.71 to 1.19; 12 studies), biopsy-proven acute rejection (RR 1.26, 95% CI 1.10 to 1.43; 11 studies), CMV infection (RR 0.87, 95% CI 0.63 to 1.21; 9 studies), wound complications (RR 0.92, 95% CI 0.66 to 1.29; 7 studies), and malignancy (RR 0.84, 95% CI 0.54 to 1.32; 10 studies) (moderate certainty evidence); and may make little or no difference to the need to change treatments (RR 0.91, 95% CI 0.78 to 1.05; 10 studies) (low certainty evidence). It is uncertain whether sirolimus and everolimus differ in their effects on kidney function and lipid levels because the certainty of the evidence is very low based on a single small study with only three months of follow-up. AUTHORS' CONCLUSIONS In studies with follow-up to three years, TOR-I with an antimetabolite increases the risk of graft loss and acute rejection compared with CNI and an antimetabolite. TOR-I with CNI potentially offers an alternative to an antimetabolite with CNI as rates of graft loss and acute rejection are similar between interventions and TOR-I regimens are associated with a reduced risk of CMV infections. Wound complications and the need to change immunosuppressive medications are higher with TOR-I regimens. While further new studies are not required, longer-term follow-up data from participants in existing methodologically robust RCTs are needed to determine how useful immunosuppressive regimens, which include TOR-I, are in maintaining kidney transplant function and survival beyond three years.
Collapse
Affiliation(s)
- Deirdre Hahn
- The Children's Hospital at WestmeadDepartment of NephrologyLocked Bag 4001WestmeadNSWAustralia2145
| | - Elisabeth M Hodson
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchLocked Bag 4001WestmeadNSWAustralia2145
| | - Lorraine A Hamiwka
- University of Calgary/Alberta Children's HospitalDepartment of Medicine/Pediatrics2888 Shaganappi Trail NW Children's HospitalCalgaryAlbertaCanadaT3B 6A8
| | - Vincent WS Lee
- Westmead & Blacktown HospitalsDepartment of Renal MedicineDarcy RdWestmeadNSWAustralia2145
- The University of Sydney at WestmeadCentre for Transplant and Renal Research, Westmead Millennium InstituteWestmeadAustralia
| | - Jeremy R Chapman
- Westmead Millennium Institute, The University of Sydney at WestmeadCentre for Transplant and Renal ResearchDarcy RdWestmeadNSWAustralia2145
| | - Jonathan C Craig
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchLocked Bag 4001WestmeadNSWAustralia2145
- Flinders UniversityCollege of Medicine and Public HealthAdelaideSAAustralia5001
| | - Angela C Webster
- The University of Sydney at WestmeadCentre for Transplant and Renal Research, Westmead Millennium InstituteWestmeadAustralia
- The University of SydneySydney School of Public HealthEdward Ford Building A27SydneyNSWAustralia2006
| | | |
Collapse
|
6
|
Mammalian Target of Rapamycin Inhibitors Combined With Calcineurin Inhibitors as Initial Immunosuppression in Renal Transplantation: A Meta-analysis. Transplantation 2019; 103:2031-2056. [DOI: 10.1097/tp.0000000000002769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
|
8
|
Karpe KM, Talaulikar GS, Walters GD, Cochrane Kidney and Transplant Group. Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. Cochrane Database Syst Rev 2017; 7:CD006750. [PMID: 28730648 PMCID: PMC6483545 DOI: 10.1002/14651858.cd006750.pub2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Calcineurin inhibitors (CNI) can reduce acute transplant rejection and immediate graft loss but are associated with significant adverse effects such as hypertension and nephrotoxicity which may contribute to chronic rejection. CNI toxicity has led to numerous studies investigating CNI withdrawal and tapering strategies. Despite this, uncertainty remains about minimisation or withdrawal of CNI. OBJECTIVES This review aimed to look at the benefits and harms of CNI tapering or withdrawal in terms of graft function and loss, incidence of acute rejection episodes, treatment-related side effects (hypertension, hyperlipidaemia) and death. SEARCH METHODS We searched the Cochrane Kidney and Transplant Specialised Register to 11 October 2016 through contact with the Information Specialist using search terms relevant to this review. Studies contained in the Specialised Register are identified through search strategies specifically designed for CENTRAL, MEDLINE, and EMBASE; handsearching conference proceedings; and searching the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) where drug regimens containing CNI were compared to alternative drug regimens (CNI withdrawal, tapering or low dose) in the post-transplant period were included, without age or dosage restriction. DATA COLLECTION AND ANALYSIS Two authors independently assessed studies for eligibility, risk of bias, and extracted data. Results were expressed as risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI). MAIN RESULTS We included 83 studies that involved 16,156 participants. Most were open-label studies; less than 30% of studies reported randomisation method and allocation concealment. Studies were analysed as intent-to-treat in 60% and all pre-specified outcomes were reported in 54 studies. The attrition and reporting bias were unclear in the remainder of the studies as factors used to judge bias were reported inconsistently. We also noted that 50% (47 studies) of studies were funded by the pharmaceutical industry.We classified studies into four groups: CNI withdrawal or avoidance with or without substitution with mammalian target of rapamycin inhibitors (mTOR-I); and low dose CNI with or without mTOR-I. The withdrawal groups were further stratified as avoidance and withdrawal subgroups for major outcomes.CNI withdrawal may lead to rejection (RR 2.54, 95% CI 1.56 to 4.12; moderate certainty evidence), may make little or no difference to death (RR 1.09, 95% CI 0.96 to 1.24; moderate certainty), and probably slightly reduces graft loss (RR 0.85, 95% CI 0.74 to 0.98; low quality evidence). Hypertension was probably reduced in the CNI withdrawal group (RR 0.82, 95% CI 0.71 to 0.95; low certainty), while CNI withdrawal may make little or no difference to malignancy (RR 1.10, 95% CI 0.93 to 1.30; low certainty), and probably makes little or no difference to cytomegalovirus (CMV) (RR 0.87, 95% CI 0.52 to 1.45; low certainty)CNI avoidance may result in increased acute rejection (RR 2.16, 95% CI 0.85 to 5.49; low certainty) but little or no difference in graft loss (RR 0.96, 95% CI 0.79 to 1.16; low certainty). Late CNI withdrawal increased acute rejection (RR 3.21, 95% CI 1.59 to 6.48; moderate certainty) but probably reduced graft loss (RR 0.84, 95% CI 0.72 to 0.97, low certainty).Results were similar when CNI avoidance or withdrawal was combined with the introduction of mTOR-I; acute rejection was probably increased (RR 1.43; 95% CI 1.15 to 1.78; moderate certainty) and there was probably little or no difference in death (RR 0.96; 95% CI 0.69 to 1.36, moderate certainty). mTOR-I substitution may make little or no difference to graft loss (RR 0.94, 95% CI 0.75 to 1.19; low certainty), probably makes little of no difference to hypertension (RR 0.86, 95% CI 0.64 to 1.15; moderate), and probably reduced the risk of cytomegalovirus (CMV) (RR 0.60, 95% CI 0.44 to 0.82; moderate certainty) and malignancy (RR 0.69, 95% CI 0.47 to 1.00; low certainty). Lymphoceles were increased with mTOR-I substitution (RR 1.45, 95% CI 0.95 to 2.21; low certainty).Low dose CNI combined with mTOR-I probably increased glomerular filtration rate (GFR) (MD 6.24 mL/min, 95% CI 3.28 to 9.119; moderate certainty), reduced graft loss (RR 0.75, 95% CI 0.55 to 1.02; moderate certainty), and made little or no difference to acute rejection (RR 1.13 ; 95% CI 0.91 to 1.40; moderate certainty). Hypertension was decreased (RR 0.98, 95% CI 0.80 to 1.20; low certainty) as was CMV (RR 0.41, 95% CI 0.16 to 1.06; low certainty). Low dose CNI plus mTOR-I makes probably makes little of no difference to malignancy (RR 1.22, 95% CI 0.42 to 3.53; low certainty) and may make little of no difference to death (RR 1.16, 95% CI 0.71 to 1.90; moderate certainty). AUTHORS' CONCLUSIONS CNI avoidance increased acute rejection and CNI withdrawal increases acute rejection but reduced graft loss at least over the short-term. Low dose CNI with induction regimens reduced acute rejection and graft loss with no major adverse events, also in the short-term. The use of mTOR-I reduced CMV infections but increased the risk of acute rejection. These conclusions must be tempered by the lack of long-term data in most of the studies, particularly with regards to chronic antibody-mediated rejection, and the suboptimal methodological quality of the included studies.
Collapse
Affiliation(s)
- Krishna M Karpe
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | - Girish S Talaulikar
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | - Giles D Walters
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | | |
Collapse
|