1
|
Parada-Molina PC, Cerdán-Cabrera CR, Cervantes-Pérez J, Barradas VL, Ortiz-Ceballos GC. Impact of climate on water status, growth, yield, and phenology of coffee (Coffea arabica) plants in the central region of the state of Veracruz, Mexico. PLoS One 2025; 20:e0319670. [PMID: 40258096 PMCID: PMC12011297 DOI: 10.1371/journal.pone.0319670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/06/2025] [Indexed: 04/23/2025] Open
Abstract
Coffee (Coffea arabica) is one of the most widely traded and most consumed agro-products worldwide. Its production is concentrated in tropical regions, and its consumption, in northern countries. Climate variability influences coffee yield and quality, and the distribution of wet and dry periods is closely related to its phenological phases. Recently, the vulnerability of coffee producing regions to changes in climate patterns has been demonstrated. Therefore, this study evaluated the effect of climatic variables on the water status, vegetative growth, yield, and phenology of coffee plants. The research was carried out in a coffee agroecosystem (Garnica variety) located in the central region of the state of Veracruz, Mexico (19.51998∘ N and 96.94339∘ W; 1320 masl). For three years, the phenology of coffee plants was monitored; plant growth (height, number of leaves) and cherry yield were measured each month during three productive periods. Microclimatic variables (temperature, precipitation, relative air humidity, solar radiation, and wind direction) and water-balance variables (infiltration, rainfall interception, transpiration, soil water storage, crop evapotranspiration [ETo], and reference evapotranspiration [ETc]) were also monitored. The water status of the plants was evaluated based on their water demand, determined as the ETc/ETo ratio. The relationship of microclimatic variables with water status, plant growth, and plant yield was measured by performing correlation statistical tests (Pearson; [Formula: see text]), principal component analyses (PCA), and simple and multiple linear regressions. The results show that the highest water consumption occurred during the flowering ([Formula: see text]), and grain ripening ([Formula: see text]) phenological phases, while the lowest value ([Formula: see text]), indicative of water deficit, was observed at harvest for the period 2018-2019. Precipitation (P) and rainfall infiltration (I) are the variables with the greatest influence on vegetative growth (r2>0.70). A relationship was observed between yield and water and microclimatic variables. However, simple and multiple linear regressions, including PCA, explain less than [Formula: see text] (p < 0.05) of the variability of yield data. This variability is mainly described by water conditions related to soil water storage (S) and thermal conditions, particularly the minimum temperature (Tmin). Our findings suggest that the water demand of coffee plants changes significantly with the phenological phases of the crop; therefore, changes in the cyclical patterns of climate variation could cause a water deficit in coffee plants, limiting their development, yield, and quality.
Collapse
Affiliation(s)
| | | | - Juan Cervantes-Pérez
- Facultad de Instrumentación Electrónica, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Víctor L Barradas
- Instituto de Ecología, Universidad Nacional Autónoma de México, Cd., México
| | | |
Collapse
|
2
|
de Freitas CH, Coelho RD, de Oliveira Costa J, Sentelhas PC. A bitter cup of coffee? Assessing the impact of climate change on Arabica coffee production in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177546. [PMID: 39566630 DOI: 10.1016/j.scitotenv.2024.177546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Brazil, the world's largest producer and exporter of Arabica coffee, faces increasing challenges from climate changes. To maintain the sustainability of this commodity, innovative management techniques will be essential. This study aimed to assess the impact of climate projections, considering two CMIP6 emission scenarios (SSP2-4.5 and SSP5-8.5) on the phenology and yield of Arabica coffee in 36 representative locations across Brazil for the periods 2041-2060, 2061-2080, and 2081-2100. Observed meteorological data from the BR-DWGD (Brazilian Daily Weather Gridded Data) and projected data from CLIMBra (Climate Change Dataset for Brazil) were employed. An agrometeorological model, calibrated for Brazilian conditions, estimated yield and phenology. Results indicate significant impacts on coffee cultivation areas, mainly due to rising temperatures and increased water deficits. Projections also suggest changes in coffee phenology, with anthesis advancing in colder regions and delaying in warmer areas, while maturation timing occurring earlier in all climates. Yield increases from CO₂ fertilization were more pronounced in category C climates (Cfa, Cfb, Cwa, and Cwb), particularly in Cwb climates, reaching 2.9 bags ha-1 (3.7 bags ha-1 with irrigation) under the SSP2-4.5 scenario and 2.5 bags ha-1 (3.5 bags ha-1 with irrigation) under SSP5-8.5. However, higher temperatures and water deficits could cause severe yield losses, especially in Aw climates and under high-emission scenarios, where losses may reach 100 %. Irrigation will play an important role in mitigating yield losses, especially in northern regions such as northern Minas Gerais and Bahia, where yields could exceed 30 bags ha-1. While southern Minas Gerais, São Paulo, and northern Paraná are projected to have the highest yields, these regions also face greater uncertainty and variability. This study underscores the need for adaptive agricultural practices, the development of resilient coffee cultivars, and supportive research policies to ensure the sustainability of coffee farming in the face of climate change.
Collapse
Affiliation(s)
| | - Rubens Duarte Coelho
- University of São Paulo/USP-ESALQ, Biosystems Engineering Department, C.P. 09, 13418-900 Piracicaba, SP, Brazil
| | - Jéfferson de Oliveira Costa
- Minas Gerais Agricultural Research Agency/EPAMIG, Experimental Field of Gorutuba, 39525-000 Nova Porteirinha, MG, Brazil
| | - Paulo Cesar Sentelhas
- University of São Paulo/USP-ESALQ, Biosystems Engineering Department, C.P. 09, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Crasque J, Lira JMS, Polonini GT, de Souza TC, Schmildt ER, Arantes LDO, Dousseau-Arantes S. Seasonal Morphological and Biochemical Variation of Coffea canephora Pierre ex A. Froehner (Rubiaceae) Leaves of Early, Intermediate and Late Maturing Genotypes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3461. [PMID: 39771159 PMCID: PMC11676114 DOI: 10.3390/plants13243461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Understanding the growth patterns of genotypes optimizes their selection and management. The objective of this study is to investigate the seasonal variations in the morphology and biochemistry of Coffea canephora clone leaves, considering climatic conditions and the maturation cycle. Morphological characteristics and carbohydrate contents of the leaves were analyzed throughout the growth cycle. A nonlinear logistic model was applied, and critical points of the leaf emission rates of plagiotropic branches were determined. Leaf growth was greater at higher temperatures during the rainy periods and lower at milder temperatures during the dry season. Genotype 143 exhibited the largest leaf width in spring, while 104, A1, and P2 had the largest leaf width in summer. The logistic model was suitable for describing leaf emission, with the critical points of genotype 143 being earlier, while P2 displayed a longer leaf emission cycle. The peak growth period influenced the quantities of starch and total soluble sugars in the leaves. The dormancy period showed a higher availability of reducing sugars. Pearson correlation indicated significant coefficients between temperature, precipitation, photoperiod, and foliar characteristics. The results obtained serve as a reference for future investigations, particularly in response to environmental challenges.
Collapse
Affiliation(s)
- Jeane Crasque
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural—Centro Regional de Desenvolvimento Rural—Norte, Linhares 29901-443, ES, Brazil; (G.T.P.); (L.d.O.A.)
| | - Jean Marcel Sousa Lira
- Setor de Fisiologia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras 37200-900, MG, Brazil;
| | - Giuseppe Tognere Polonini
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural—Centro Regional de Desenvolvimento Rural—Norte, Linhares 29901-443, ES, Brazil; (G.T.P.); (L.d.O.A.)
| | - Thiago Corrêa de Souza
- Instituto de Ciências da Natureza—ICN, Universidade Federal de Alfenas, UNIFAL, Alfenas 37130-001, MG, Brazil;
| | - Edilson Romais Schmildt
- Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, CUNES, São Mateus 29932-540, ES, Brazil;
| | - Lúcio de Oliveira Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural—Centro Regional de Desenvolvimento Rural—Norte, Linhares 29901-443, ES, Brazil; (G.T.P.); (L.d.O.A.)
| | - Sara Dousseau-Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural—Centro Regional de Desenvolvimento Rural—Norte, Linhares 29901-443, ES, Brazil; (G.T.P.); (L.d.O.A.)
| |
Collapse
|
4
|
Marques I, Fernandes I, Paulo OS, Batista D, Lidon FC, Rodrigues AP, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Transcriptomic Analyses Reveal That Coffea arabica and Coffea canephora Have More Complex Responses under Combined Heat and Drought than under Individual Stressors. Int J Mol Sci 2024; 25:7995. [PMID: 39063237 PMCID: PMC11277005 DOI: 10.3390/ijms25147995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing exposure to unfavorable temperatures and water deficit imposes major constraints on most crops worldwide. Despite several studies regarding coffee responses to abiotic stresses, transcriptome modulation due to simultaneous stresses remains poorly understood. This study unravels transcriptomic responses under the combined action of drought and temperature in leaves from the two most traded species: Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Substantial transcriptomic changes were found, especially in response to the combination of stresses that cannot be explained by an additive effect. A large number of genes were involved in stress responses, with photosynthesis and other physiologically related genes usually being negatively affected. In both genotypes, genes encoding for protective proteins, such as dehydrins and heat shock proteins, were positively regulated. Transcription factors (TFs), including MADS-box genes, were down-regulated, although responses were genotype-dependent. In contrast to Icatu, only a few drought- and heat-responsive DEGs were recorded in CL153, which also reacted more significantly in terms of the number of DEGs and enriched GO terms, suggesting a high ability to cope with stresses. This research provides novel insights into the molecular mechanisms underlying leaf Coffea responses to drought and heat, revealing their influence on gene expression.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Isabel Fernandes
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Octávio S. Paulo
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Dora Batista
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Ana P. Rodrigues
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Fábio L. Partelli
- Centro Universitário do Norte do Espírito Santo (CEUNES), Departmento Ciências Agrárias e Biológicas (DCAB), Universidade Federal Espírito Santo (UFES), São Mateus 29932-540, ES, Brazil;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| |
Collapse
|
5
|
Rodrigues AP, Pais IP, Leitão AE, Dubberstein D, Lidon FC, Marques I, Semedo JN, Rakocevic M, Scotti-Campos P, Campostrini E, Rodrigues WP, Simões-Costa MC, Reboredo FH, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Uncovering the wide protective responses in Coffea spp. leaves to single and superimposed exposure of warming and severe water deficit. FRONTIERS IN PLANT SCIENCE 2024; 14:1320552. [PMID: 38259931 PMCID: PMC10801242 DOI: 10.3389/fpls.2023.1320552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Climate changes boosted the frequency and severity of drought and heat events, with aggravated when these stresses occur simultaneously, turning crucial to unveil the plant response mechanisms to such harsh conditions. Therefore, plant responses/resilience to single and combined exposure to severe water deficit (SWD) and heat were assessed in two cultivars of the main coffee-producing species: Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered plants (WW) were exposed to SWD under an adequate temperature of 25/20°C (day/night), and thereafter submitted to a gradual increase up to 42/30°C, and a 14-d recovery period (Rec14). Greater protective response was found to single SWD than to single 37/28°C and/or 42/30°C (except for HSP70) in both cultivars, but CL153-SWD plants showed the larger variations of leaf thermal imaging crop water stress index (CWSI, 85% rise at 37/28°C) and stomatal conductance index (IG, 66% decline at 25/20°C). Both cultivars revealed great resilience to SWD and/or 37/28°C, but a tolerance limit was surpassed at 42/30°C. Under stress combination, Icatu usually displayed lower impacts on membrane permeability, and PSII function, likely associated with various responses, usually mostly driven by drought (but often kept or even strengthened under SWD and 42/30°C). These included the photoprotective zeaxanthin and lutein, antioxidant enzymes (superoxide dismutase, Cu,Zn-SOD; ascorbate peroxidase, APX), HSP70, arabinose and mannitol (involving de novo sugar synthesis), contributing to constrain lipoperoxidation. Also, only Icatu showed a strong reinforcement of glutathione reductase activity under stress combination. In general, the activities of antioxidative enzymes declined at 42/30°C (except Cu,Zn-SOD in Icatu and CAT in CL153), but HSP70 and raffinose were maintained higher in Icatu, whereas mannitol and arabinose markedly increased in CL153. Overall, a great leaf plasticity was found, especially in Icatu that revealed greater responsiveness of coordinated protection under all experimental conditions, justifying low PIChr and absence of lipoperoxidation increase at 42/30°C. Despite a clear recovery by Rec14, some aftereffects persisted especially in SWD plants (e.g., membranes), relevant in terms of repeated stress exposure and full plant recovery to stresses.
Collapse
Affiliation(s)
- Ana P. Rodrigues
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Isabel P. Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - António E. Leitão
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Danielly Dubberstein
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
- Assistência Técnica e Gerencial em Cafeicultura - Serviço Nacional de Aprendizagem Rural (SENAR), Porto Velho, RO, Brazil
| | - Fernando C. Lidon
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Isabel Marques
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - José N. Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Miroslava Rakocevic
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Weverton P. Rodrigues
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Maranhão, Brazil
| | - Maria Cristina Simões-Costa
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Fernando H. Reboredo
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - José C. Ramalho
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
6
|
Marques I, Fernandes I, Paulo OS, Batista D, Lidon FC, Partelli F, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Overexpression of Water-Responsive Genes Promoted by Elevated CO 2 Reduces ROS and Enhances Drought Tolerance in Coffea Species. Int J Mol Sci 2023; 24:ijms24043210. [PMID: 36834624 PMCID: PMC9966387 DOI: 10.3390/ijms24043210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Drought is a major constraint to plant growth and productivity worldwide and will aggravate as water availability becomes scarcer. Although elevated air [CO2] might mitigate some of these effects in plants, the mechanisms underlying the involved responses are poorly understood in woody economically important crops such as Coffea. This study analyzed transcriptome changes in Coffea canephora cv. CL153 and C. arabica cv. Icatu exposed to moderate (MWD) or severe water deficits (SWD) and grown under ambient (aCO2) or elevated (eCO2) air [CO2]. We found that changes in expression levels and regulatory pathways were barely affected by MWD, while the SWD condition led to a down-regulation of most differentially expressed genes (DEGs). eCO2 attenuated the impacts of drought in the transcripts of both genotypes but mostly in Icatu, in agreement with physiological and metabolic studies. A predominance of protective and reactive oxygen species (ROS)-scavenging-related genes, directly or indirectly associated with ABA signaling pathways, was found in Coffea responses, including genes involved in water deprivation and desiccation, such as protein phosphatases in Icatu, and aspartic proteases and dehydrins in CL153, whose expression was validated by qRT-PCR. The existence of a complex post-transcriptional regulatory mechanism appears to occur in Coffea explaining some apparent discrepancies between transcriptomic, proteomic, and physiological data in these genotypes.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Isabel Fernandes
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Octávio S. Paulo
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Dora Batista
- Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Fábio Partelli
- Centro Universitário do Norte do Espírito Santo (CEUNES), Departmento Ciências Agrárias e Biológicas (DCAB), Universidade Federal Espírito Santo (UFES), São Mateus 29932-540, ES, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
- Correspondence: (A.I.R.-B.); or (J.C.R.)
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
- Correspondence: (A.I.R.-B.); or (J.C.R.)
| |
Collapse
|
7
|
Bilen C, El Chami D, Mereu V, Trabucco A, Marras S, Spano D. A Systematic Review on the Impacts of Climate Change on Coffee Agrosystems. PLANTS (BASEL, SWITZERLAND) 2022; 12:102. [PMID: 36616231 PMCID: PMC9824350 DOI: 10.3390/plants12010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Coffee production is fragile, and the Intergovernmental Panel on Climate Change (IPCC) reports indicate that climate change (CC) will reduce worldwide yields on average and decrease coffee-suitable land by 2050. This article adopted the systematic review approach to provide an update of the literature available on the impacts of climate change on coffee production and other ecosystem services following the framework proposed by the Millenium Ecosystem Assessment. The review identified 148 records from literature considering the effects of climate change and climate variability on coffee production, covering countries mostly from three continents (America, Africa, and Asia). The current literature evaluates and analyses various climate change impacts on single services using qualitative and quantitative methodologies. Impacts have been classified and described according to different impact groups. However, available research products lacked important analytical functions on the precise relationships between the potential risks of CC on coffee farming systems and associated ecosystem services. Consequently, the manuscript recommends further work on ecosystem services and their interrelation to assess the impacts of climate change on coffee following the ecosystem services framework.
Collapse
Affiliation(s)
- Christine Bilen
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, 70126 Bari, BA, Italy
| | | | - Valentina Mereu
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), 07100 Sassari, SS, Italy
| | - Antonio Trabucco
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), 07100 Sassari, SS, Italy
| | - Serena Marras
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), 07100 Sassari, SS, Italy
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, SS, Italy
| | - Donatella Spano
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), 07100 Sassari, SS, Italy
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, SS, Italy
| |
Collapse
|
8
|
Koutouleas A, Sarzynski T, Bordeaux M, Bosselmann AS, Campa C, Etienne H, Turreira-García N, Rigal C, Vaast P, Ramalho JC, Marraccini P, Ræbild A. Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.877476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coffee is deemed to be a high-risk crop in light of upcoming climate changes. Agroforestry practices have been proposed as a nature-based strategy for coffee farmers to mitigate and adapt to future climates. However, with agroforestry systems comes shade, a highly contentious factor for coffee production in terms of potential yield reduction, as well as additional management needs and interactions between shade trees and pest and disease. In this review, we summarize recent research relating to the effects of shade on (i) farmers' use and perceptions, (ii) the coffee microenvironment, (iii) pest and disease incidence, (iv) carbon assimilation and phenology of coffee plants, (v) coffee quality attributes (evaluated by coffee bean size, biochemical compounds, and cup quality tests), (vi) breeding of new Arabica coffee F1 hybrids and Robusta clones for future agroforestry systems, and (vii) coffee production under climate change. Through this work, we begin to decipher whether shaded systems are a feasible strategy to improve the coffee crop sustainability in anticipation of challenging climate conditions. Further research is proposed for developing new coffee varieties adapted to agroforestry systems (exhibiting traits suitable for climate stressors), refining extension tools by selecting locally-adapted shade trees species and developing policy and economic incentives enabling the adoption of sustainable agroforestry practices.
Collapse
|
9
|
Benti F, Diga GM, Feyisa GL, Tolesa AR. Modeling coffee (Coffea arabica L.) climate suitability under current and future scenario in Jimma zone, Ethiopia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:271. [PMID: 35275266 DOI: 10.1007/s10661-022-09895-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Climate suitability is important for coffee (Coffea arabica L.) production in climate variability-prone regions like Ethiopia. The aim of this study was to assess the current and future climate suitability for the species in the Jimma zone under moderate (RCP4.5) and worst (RCP8.5) climate change scenarios. Field surveys and Worldclim and Paleoclim databases were used to capture 224 C. arabica species' location points and 9 bioclimatic data, respectively. The MaxEnt model with integration of ArcGis was used to simulate and characterize these data. The diagnostic outcome of the model showed that the anticipated climate change will increase the areas of suitability in the first and third coffee sub-zones, while there will be a decrease in the second sub-zone. Net suitability under the RCP4.5 would be decreased by 4.75 and 6.09% in the 2050s and 2070s, respectively. Indeed, under the RCP8.5, total suitability will be expected to be increased by 2.52% and 2.25% in the 2050s and 2070s, respectively. For the 2050s and 2070s, the suitability gap between RCP4.5 and RCP8.5 was estimated to be 401 km2 and 1567 km2, respectively. To summarize, with the exemption of RCP 8.5 within the 2070s, the suitability would be improved and come up short in all circumstances. To keep Arabica coffee in its original habitat, we suggest that the entire climate change adjustment procedures that are prearranged under the RCP4.5 ought to be executed to sustain the crop trees in its origin. Otherwise, moving the crop plant from impeded areas to suitable ones is crucial.
Collapse
Affiliation(s)
- Fedhasa Benti
- Department of Natural Resource Management, Jimma University, Jimma, Ethiopia.
| | - Girma Mamo Diga
- Departments of Climate, Geospatial and Biometrics, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | | | | |
Collapse
|
10
|
de Sousa GF, Silva MA, de Morais EG, Van Opbergen GAZ, Van Opbergen GGAZ, de Oliveira RR, Amaral D, Brown P, Chalfun-Junior A, Guilherme LRG. Selenium enhances chilling stress tolerance in coffee species by modulating nutrient, carbohydrates, and amino acids content. FRONTIERS IN PLANT SCIENCE 2022; 13:1000430. [PMID: 36172560 PMCID: PMC9511033 DOI: 10.3389/fpls.2022.1000430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
The effects of selenium (Se) on plant metabolism have been reported in several studies triggering plant tolerance to abiotic stresses, yet, the effects of Se on coffee plants under chilling stress are unclear. This study aimed to evaluate the effects of foliar Se application on coffee seedlings submitted to chilling stress and subsequent plant recovery. Two Coffea species, Coffea arabica cv. Arara, and Coffea canephora clone 31, were submitted to foliar application of sodium selenate solution (0.4 mg plant-1) or a control foliar solution, then on day 2 plants were submitted to low temperature (10°C day/4°C night) for 2 days. After that, the temperature was restored to optimal (25°C day/20°C night) for 2 days. Leaf samples were collected three times (before, during, and after the chilling stress) to perform analyses. After the chilling stress, visual leaf injury was observed in both species; however, the damage was twofold higher in C. canephora. The lower effect of cold on C. arabica was correlated to the increase in ascorbate peroxidase and higher content of starch, sucrose, and total soluble sugars compared with C. canephora, as well as a reduction in reducing sugars and proline content during the stress and rewarming. Se increased the nitrogen and sulfur content before stress but reduced their content during low temperature. The reduced content of nitrogen and sulfur during stress indicates that they were remobilized to stem and roots. Se supply reduced the damage in C. canephora leaves by 24% compared with the control. However, there was no evidence of the Se effects on antioxidant enzymatic pathways or ROS activity during stress as previously reported in the literature. Se increased the content of catalase during the rewarming. Se foliar supply also increased starch, amino acids, and proline, which may have reduced symptom expression in C. canephora in response to low temperature. In conclusion, Se foliar application can be used as a strategy to improve coffee tolerance under low-temperature changing nutrient remobilization, carbohydrate metabolism, and catalase activity in response to rewarming stress, but C. arabica and C. canephora respond differently to chilling stress and Se supply.
Collapse
Affiliation(s)
| | | | | | | | | | - Raphael R. de Oliveira
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Douglas Amaral
- Agriculture and Natural Resources, University of California, Hanford, Hanford, CA, United States
| | - Patrick Brown
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Antonio Chalfun-Junior
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|
11
|
Rodrigues AM, Jorge T, Osorio S, Pott DM, Lidon FC, DaMatta FM, Marques I, Ribeiro-Barros AI, Ramalho JC, António C. Primary Metabolite Profile Changes in Coffea spp. Promoted by Single and Combined Exposure to Drought and Elevated CO 2 Concentration. Metabolites 2021; 11:metabo11070427. [PMID: 34209624 PMCID: PMC8303404 DOI: 10.3390/metabo11070427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Climate change scenarios pose major threats to many crops worldwide, including coffee. We explored the primary metabolite responses in two Coffea genotypes, C. canephora cv. Conilon Clone 153 and C. arabica cv. Icatu, grown at normal (aCO2) or elevated (eCO2) CO2 concentrations of 380 or 700 ppm, respectively, under well-watered (WW), moderate (MWD), or severe (SWD) water deficit conditions, in order to assess coffee responses to drought and how eCO2 can influence such responses. Primary metabolites were analyzed with a gas chromatography time-of-flight mass spectrometry metabolomics platform (GC-TOF-MS). A total of 48 primary metabolites were identified in both genotypes (23 amino acids and derivatives, 10 organic acids, 11 sugars, and 4 other metabolites), with differences recorded in both genotypes. Increased metabolite levels were observed in CL153 plants under single and combined conditions of aCO2 and drought (MWD and SWD), as opposed to the observed decreased levels under eCO2 in both drought conditions. In contrast, Icatu showed minor differences under MWD, and increased levels (especially amino acids) only under SWD at both CO2 concentration conditions, although with a tendency towards greater increases under eCO2. Altogether, CL153 demonstrated large impact under MWD, and seemed not to benefit from eCO2 in either MWD and SWD, in contrast with Icatu.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
| | - Tiago Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga—Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; (S.O.); (D.M.P.)
| | - Delphine M. Pott
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga—Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; (S.O.); (D.M.P.)
| | - Fernando C. Lidon
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-090, Brazil;
| | - Isabel Marques
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Ana I. Ribeiro-Barros
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| | - José C. Ramalho
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| |
Collapse
|
12
|
A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO 2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora. Int J Mol Sci 2021; 22:ijms22063125. [PMID: 33803866 PMCID: PMC8003141 DOI: 10.3390/ijms22063125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 °C and at two supra-optimal temperatures (37 °C, 42 °C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 °C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 °C. Although eCO2 helped to release stress, 42 °C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42°C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 °C) than previously assumed.
Collapse
|
13
|
Machado Filho JA, Rodrigues WP, Baroni DF, Pireda S, Campbell G, de Souza GAR, Verdin Filho AC, Arantes SD, de Oliveira Arantes L, da Cunha M, Gambetta GA, Rakocevic M, Ramalho JC, Campostrini E. Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153355. [PMID: 33581558 DOI: 10.1016/j.jplph.2020.153355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Knowing the key hydraulic traits of different genotypes at early seedling stages can potentially provide crucial information and save time for breeding programs. In the current study we investigated: (1) how root, stem and whole plant conductivities are linked to xylem traits, and (2) how the integrated hydraulic system impacts leaf water potential, gas exchange, chlorophyll a fluorescence and the growth of three coffee cultivars (clones of Coffea canephora Pierre ex Froehner cv. Conilon) with known differences in drought tolerance. The Conilon clones CL 14, CL 5 V and CL 109A, classified as tolerant, moderately tolerant, and sensitive to drought respectively, were grown under non-limiting soil-water supply but high atmospheric demand (i.e., high VPDair). CL 14 and CL 5 V displayed higher root and stem hydraulic conductance and conductivity, and higher whole plant conductivity than CL 109A, and these differences were associated with higher root growth traits. In addition, CL 109A exhibited a non-significant trend towards wider vessels. Collectively, these responses likely contributed to reduce leaf water potential in CL 109A, and in turn, reduced leaf gas exchange, especially during elevated VPDair. Even when grown under well-watered conditions, the elevated VPDair observed during this study resulted in key differences in the hydraulic traits between the cultivars corresponding to differences in plant water status, gas exchange, and photochemical activity. Together these results suggest that coffee hydraulic traits, even when grown under non-water stress conditions, can be considered in breeding programs targeting more productive and efficient genotypes under drought and high atmospheric demand.
Collapse
Affiliation(s)
- José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| | - Danilo Força Baroni
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Saulo Pireda
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Glaziele Campbell
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Guilherme Augusto Rodrigues de Souza
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Sara Dousseau Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Lúcio de Oliveira Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Maura da Cunha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Gregory A Gambetta
- EGFV (UMR 1287), Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Miroslava Rakocevic
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Centro de Estudos Florestais (CEF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, 2784-505, Oeiras, Portugal; GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eliemar Campostrini
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| |
Collapse
|
14
|
Marques I, Fernandes I, David PH, Paulo OS, Goulao LF, Fortunato AS, Lidon FC, DaMatta FM, Ramalho JC, Ribeiro-Barros AI. Transcriptomic Leaf Profiling Reveals Differential Responses of the Two Most Traded Coffee Species to Elevated [CO 2]. Int J Mol Sci 2020; 21:ijms21239211. [PMID: 33287164 PMCID: PMC7730880 DOI: 10.3390/ijms21239211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
As atmospheric [CO2] continues to rise to unprecedented levels, understanding its impact on plants is imperative to improve crop performance and sustainability under future climate conditions. In this context, transcriptional changes promoted by elevated CO2 (eCO2) were studied in genotypes from the two major traded coffee species: the allopolyploid Coffea arabica (Icatu) and its diploid parent, C. canephora (CL153). While Icatu expressed more genes than CL153, a higher number of differentially expressed genes were found in CL153 as a response to eCO2. Although many genes were found to be commonly expressed by the two genotypes under eCO2, unique genes and pathways differed between them, with CL153 showing more enriched GO terms and metabolic pathways than Icatu. Divergent functional categories and significantly enriched pathways were found in these genotypes, which altogether supports contrasting responses to eCO2. A considerable number of genes linked to coffee physiological and biochemical responses were found to be affected by eCO2 with the significant upregulation of photosynthetic, antioxidant, and lipidic genes. This supports the absence of photosynthesis down-regulation and, therefore, the maintenance of increased photosynthetic potential promoted by eCO2 in these coffee genotypes.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| | - Isabel Fernandes
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Pedro H.C. David
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Luis F. Goulao
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Ana S. Fortunato
- GREEN-IT—Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa (UNL), Av. da República, 2780-157 Oeiras, Portugal;
| | - Fernando C. Lidon
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900 (MG), Brazil;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| |
Collapse
|
15
|
Dubberstein D, Lidon FC, Rodrigues AP, Semedo JN, Marques I, Rodrigues WP, Gouveia D, Armengaud J, Semedo MC, Martins S, Simões-Costa MC, Moura I, Pais IP, Scotti-Campos P, Partelli FL, Campostrini E, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. Resilient and Sensitive Key Points of the Photosynthetic Machinery of Coffea spp. to the Single and Superimposed Exposure to Severe Drought and Heat Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:1049. [PMID: 32733525 PMCID: PMC7363965 DOI: 10.3389/fpls.2020.01049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
This study unveils the single and combined drought and heat impacts on the photosynthetic performance of Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered (WW) potted plants were gradually submitted to severe water deficit (SWD) along 20 days under adequate temperature (25/20°C, day/night), and thereafter exposed to a gradual temperature rise up to 42/30°C, followed by a 14-day water and temperature recovery. Single drought affected all gas exchanges (including Amax ) and most fluorescence parameters in both genotypes. However, Icatu maintained Fv/Fm and RuBisCO activity, and reinforced electron transport rates, carrier contents, and proton gradient regulation (PGR5) and chloroplast NADH dehydrogenase-like (NDH) complex proteins abundance. This suggested negligible non-stomatal limitations of photosynthesis that were accompanied by a triggering of protective cyclic electron transport (CEF) involving both photosystems (PSs). These findings contrasted with declines in RuBisCO and PSs activities, and cytochromes (b559 , f, b563 ) contents in CL153. Remarkable heat tolerance in potential photosynthetic functioning was detected in WW plants of both genotypes (up to 37/28°C or 39/30°C), likely associated with CEF in Icatu. Yet, at 42/30°C the tolerance limit was exceeded. Reduced Amax and increased Ci values reflected non-stomatal limitations of photosynthesis, agreeing with impairments in energy capture (F0 rise), PSII photochemical efficiency, and RuBisCO and Ru5PK activities. In contrast to PSs activities and electron carrier contents, enzyme activities were highly heat sensitive. Until 37/28°C, stresses interaction was largely absent, and drought played the major role in constraining photosynthesis functioning. Harsher conditions (SWD, 42/30°C) exacerbated impairments to PSs, enzymes, and electron carriers, but uncontrolled energy dissipation was mitigated by photoprotective mechanisms. Most parameters recovered fully between 4 and 14 days after stress relief in both genotypes, although some aftereffects persisted in SWD plants. Icatu was more drought tolerant, with WW and SWD plants usually showing a faster and/or greater recovery than CL153. Heat affected both genotypes mostly at 42/30°C, especially in SWD and Icatu plants. Overall, photochemical components were highly tolerant to heat and to stress interaction in contrast to enzymes that deserve special attention by breeding programs to increase coffee sustainability in climate change scenarios.
Collapse
Affiliation(s)
- Danielly Dubberstein
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, Brazil
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana P. Rodrigues
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - José N. Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Isabel Marques
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - Weverton P. Rodrigues
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Estreito, Brazil
| | - Duarte Gouveia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols-sur-Cèze, France
| | - Magda C. Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Maria C. Simões-Costa
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - I. Moura
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - Isabel P. Pais
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Paula Scotti-Campos
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, Brazil
| | - Ana I. Ribeiro-Barros
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio M. DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), Viçosa, Brazil
| | - José C. Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
16
|
Acidri R, Sawai Y, Sugimoto Y, Handa T, Sasagawa D, Masunaga T, Yamamoto S, Nishihara E. Exogenous Kinetin Promotes the Nonenzymatic Antioxidant System and Photosynthetic Activity of Coffee ( Coffea arabica L.) Plants Under Cold Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E281. [PMID: 32098166 PMCID: PMC7076472 DOI: 10.3390/plants9020281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
Coffee plants are seasonally exposed to low chilling temperatures in many coffee-producing regions. In this study, we investigated the ameliorative effects of kinetin-a cytokinin elicitor compound on the nonenzymatic antioxidants and the photosynthetic physiology of young coffee plants subjected to cold stress conditions. Although net CO2 assimilation rates were not significantly affected amongst the treatments, the subjection of coffee plants to cold stress conditions caused low gas exchanges and photosynthetic efficiency, which was accompanied by membrane disintegration and the breakdown of chlorophyll pigments. Kinetin treatment, on the other hand, maintained a higher intercellular-to-ambient CO2 concentration ratio with concomitant improvement in stomatal conductance and mesophyll efficiency. Moreover, the leaves of kinetin-treated plants maintained slightly higher photochemical quenching (qP) and open photosystem II centers (qL), which was accompanied by higher electron transfer rates (ETRs) compared to their non-treated counterparts under cold stress conditions. The exogenous foliar application of kinetin also stimulated the metabolism of caffeine, trigonelline, 5-caffeoylquinic acid, mangiferin, anthocyanins and total phenolic content. The contents of these nonenzymatic antioxidants were highest under cold stress conditions in kinetin-treated plants than during optimal conditions. Our results further indicated that the exogenous application of kinetin increased the total radical scavenging capacity of coffee plants. Therefore, the exogenous application of kinetin has the potential to reinforce antioxidant capacity, as well as modulate the decline in photosynthetic productivity resulting in improved tolerance under cold stress conditions.
Collapse
Affiliation(s)
- Robert Acidri
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Yumiko Sawai
- Sawai Coffee Limited, 278-6, Takenouchi danchi, Sakaiminato City, Tottori 648-0046, Japan;
| | - Yuko Sugimoto
- Tottori Institute of Industrial Technology, 2032-3, Nakano-cho, Sakaiminato-shi, Tottori 684-0041, Japan
| | - Takuo Handa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Daisuke Sasagawa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-01 Koyama-cho Minami, Tottori 680-8553, Japan; (R.A.); (T.H.); (D.S.)
| | - Tsugiyaki Masunaga
- Faculty of Soil Eco-engineering and Plant Nutrition, Shimane University, 1060, Nishikawatsucho, Matsue 690-8504, Japan;
| | - Sadahiro Yamamoto
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan;
| | - Eiji Nishihara
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan;
| |
Collapse
|
17
|
Graça I, Mendes VM, Marques I, Duro N, da Costa M, Ramalho JC, Pawlowski K, Manadas B, Pinto Ricardo CP, Ribeiro-Barros AI. Comparative Proteomic Analysis of Nodulated and Non-Nodulated Casuarina glauca Sieb. ex Spreng. Grown under Salinity Conditions Using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS). Int J Mol Sci 2019; 21:E78. [PMID: 31861944 PMCID: PMC6982049 DOI: 10.3390/ijms21010078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Casuarina glauca displays high levels of salt tolerance, but very little is known about how this tree adapts to saline conditions. To understand the molecular basis of C. glauca response to salt stress, we have analyzed the proteome from branchlets of plants nodulated by nitrogen-fixing Frankia Thr bacteria (NOD+) and non-nodulated plants supplied with KNO3 (KNO3+), exposed to 0, 200, 400, and 600 mM NaCl. Proteins were identified by Short Gel, Long Gradient Liquid Chromatography coupled to Tandem Mass Spectrometry and quantified by Sequential Window Acquisition of All Theoretical Mass Spectra -Mass Spectrometry. 600 proteins were identified and 357 quantified. Differentially Expressed Proteins (DEPs) were multifunctional and mainly involved in Carbohydrate Metabolism, Cellular Processes, and Environmental Information Processing. The number of DEPs increased gradually with stress severity: (i) from 7 (200 mM NaCl) to 40 (600 mM NaCl) in KNO3+; and (ii) from 6 (200 mM NaCl) to 23 (600 mM NaCl) in NOD+. Protein-protein interaction analysis identified different interacting proteins involved in general metabolic pathways as well as in the biosynthesis of secondary metabolites with different response networks related to salt stress. Salt tolerance in C. glauca is related to a moderate impact on the photosynthetic machinery (one of the first and most important stress targets) as well as to an enhancement of the antioxidant status that maintains cellular homeostasis.
Collapse
Affiliation(s)
- Inês Graça
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- Plant Biochemistry Lab, Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, UC Biotech—Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Isabel Marques
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
| | - Nuno Duro
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- Plant Biochemistry Lab, Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Mário da Costa
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- Plant Biochemistry Lab, Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - José C. Ramalho
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- GeoBioTec, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden;
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, UC Biotech—Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Cândido P. Pinto Ricardo
- Plant Biochemistry Lab, Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Ana I. Ribeiro-Barros
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- GeoBioTec, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Identification and Expression Analysis of the NAC Gene Family in Coffea canephora. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NAC gene family is one of the largest families of transcriptional regulators in plants, and it plays important roles in the regulation of growth and development as well as in stress responses. Genome-wide analyses have been performed in diverse plant species, but there is still no systematic analysis of the NAC genes of Coffea canephora Pierre ex A. Froehner. In this study, we identified 63 NAC genes from the genome of C. canephora. The basic features and comparison analysis indicated that the NAC gene members increased via duplication events during the evolution of the plant. Phylogenetic analysis divided the NAC proteins from C. canephora, Arabidopsis and rice into 16 subgroups. Analysis of the expression patterns of CocNACs under cold stress and coffee bean development indicated that 38 CocNACs were differentially expressed under cold stress; six genes may play important roles in the process of cold acclimation, and four genes among 54 CocNACs showing a variety of expression patterns during different developmental stages of coffee beans may be positively related to the bean development. This study can expand our understanding of the functions of the CocNAC gene family in cold responses and bean development, thereby potentially intensifying the molecular breeding programs of Coffea spp. plants.
Collapse
|
19
|
Genome-Wide Identification of WRKY Genes and Their Response to Cold Stress in Coffea canephora. FORESTS 2019. [DOI: 10.3390/f10040335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
WRKY transcription factors are known to play roles in diverse stress responses in plants. Low temperatures limit the geographic distribution of Coffea canephora Pierre ex A.Froehner. The WRKYs of C. canephora are still not well characterized, and the response of C. canephora WRKYs (CcWRKYs) under cold stress is still largely unknown. We identified 49 CcWRKYs from the C. canephora genome to gain insight into these mechanisms. These CcWRKYs were divided into three groups that were based on the conserved WRKY domains and zinc-finger structure. Gene expression analysis demonstrated that 14 CcWRKYs were induced during the cold acclimation stage, 17 CcWRKYs were preferentially upregulated by 4 °C treatment, and 12 CcWRKYs were downregulated by cold stress. Subsequently, we carried out a genome-wide analysis to predict 14,513 potential CcWRKY target genes in C. canephora. These isolated genes were involved in multiple biological processes, and most of them could be grouped by the response to stimulus. Among the putative CcWRKY target genes, 235 genes were categorized into response to the cold process, including carbohydrate metabolic, lipid metabolic, and photosynthesis process-related genes. Furthermore, the qRT-PCR and correlation analysis indicated that CcWRKY might control their putative targets that respond to cold stress. These results provide a basis for understanding the molecular mechanism for CcWRKY-mediated cold responses.
Collapse
|
20
|
Ramalho JC, Rodrigues AP, Lidon FC, Marques LMC, Leitão AE, Fortunato AS, Pais IP, Silva MJ, Scotti-Campos P, Lopes A, Reboredo FH, Ribeiro-Barros AI. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS One 2018; 13:e0198694. [PMID: 29870563 PMCID: PMC5988331 DOI: 10.1371/journal.pone.0198694] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022] Open
Abstract
The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.
Collapse
Affiliation(s)
- José C. Ramalho
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana P. Rodrigues
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Luís M. C. Marques
- Colóides Polimeros e Superficies, Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa (UNL), Oeiras, Portugal
| | - A. Eduardo Leitão
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana S. Fortunato
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
| | - Isabel P. Pais
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Maria J. Silva
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Paula Scotti-Campos
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - António Lopes
- Colóides Polimeros e Superficies, Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa (UNL), Oeiras, Portugal
| | - F. H. Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
21
|
DaMatta FM, Avila RT, Cardoso AA, Martins SCV, Ramalho JC. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018. [PMID: 29517900 DOI: 10.1021/acs.jafc.7b04537] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coffee is one of the most important global crops and provides a livelihood to millions of people living in developing countries. Coffee species have been described as being highly sensitive to climate change, as largely deduced from modeling studies based on predictions of rising temperatures and changing rainfall patterns. Here, we discuss the physiological responses of the coffee tree in the context of present and ongoing climate changes, including drought, heat, and light stresses, and interactions between these factors. We also summarize recent insights on the physiological and agronomic performance of coffee at elevated atmospheric CO2 concentrations and highlight the key role of CO2 in mitigating the harmful effects of heat stress. Evidence is shown suggesting that warming, per se, may be less harmful to coffee suitability than previously estimated, at least under the conditions of an adequate water supply. Finally, we discuss several mitigation strategies to improve crop performance in a changing world.
Collapse
Affiliation(s)
- Fábio M DaMatta
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Rodrigo T Avila
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Amanda A Cardoso
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - José C Ramalho
- Interações Planta-Ambiente & Biodiversidade Lab (Plant Stress & Biodiversity), Linking Landscape, Environment, Agriculture and Food, (LEAF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA) , Universidade de Lisboa (ULisboa) , Av. República , 2784-505 Oeiras , Portugal
- GeoBioTec, Faculdade de Ciências Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal
| |
Collapse
|
22
|
Ramalho JC, Pais IP, Leitão AE, Guerra M, Reboredo FH, Máguas CM, Carvalho ML, Scotti-Campos P, Ribeiro-Barros AI, Lidon FJC, DaMatta FM. Can Elevated Air [CO 2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean? FRONTIERS IN PLANT SCIENCE 2018; 9:287. [PMID: 29559990 PMCID: PMC5845708 DOI: 10.3389/fpls.2018.00287] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/19/2018] [Indexed: 05/05/2023]
Abstract
Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios.
Collapse
Affiliation(s)
- José C. Ramalho
- Plant Stress & Biodiversity Group, Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Departamento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Departamento de Ciências da Terra (GeoBioTec), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- *Correspondence: José C. Ramalho, ;
| | - Isabel P. Pais
- Unidades de Investigação e Serviços, Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I. P., Oeiras, Portugal
| | - António E. Leitão
- Plant Stress & Biodiversity Group, Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Departamento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Departamento de Ciências da Terra (GeoBioTec), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Mauro Guerra
- Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Fernando H. Reboredo
- Departamento de Ciências da Terra (GeoBioTec), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Cristina M. Máguas
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Maria L. Carvalho
- Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Scotti-Campos
- Unidades de Investigação e Serviços, Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I. P., Oeiras, Portugal
| | - Ana I. Ribeiro-Barros
- Plant Stress & Biodiversity Group, Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Departamento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Departamento de Ciências da Terra (GeoBioTec), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Fernando J. C. Lidon
- Departamento de Ciências da Terra (GeoBioTec), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
23
|
Jayakumar M, Rajavel M, Surendran U. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1943-1952. [PMID: 27378280 DOI: 10.1007/s00484-016-1181-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 04/04/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.
Collapse
Affiliation(s)
- M Jayakumar
- Regional Coffee Research Station, Coffee Board, Chundale, Wayanad, Kerala, India.
| | - M Rajavel
- Meteorological Centre, India Meteorological Department, Raipur, Chhattisgarh, India
| | - U Surendran
- Water Management (Agriculture) Division, Centre for Water Resources Development and Management (CWRDM), Kozhikode, Kerala, India
| |
Collapse
|
24
|
Martins MQ, Rodrigues WP, Fortunato AS, Leitão AE, Rodrigues AP, Pais IP, Martins LD, Silva MJ, Reboredo FH, Partelli FL, Campostrini E, Tomaz MA, Scotti-Campos P, Ribeiro-Barros AI, Lidon FJC, DaMatta FM, Ramalho JC. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. FRONTIERS IN PLANT SCIENCE 2016; 7:947. [PMID: 27446174 PMCID: PMC4925694 DOI: 10.3389/fpls.2016.00947] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 05/18/2023]
Abstract
Modeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown at 25/20°C (day/night), under 380 or 700 μL CO2 L(-1), and then gradually submitted to 31/25, 37/30, and 42/34°C. Relevant heat tolerance up to 37/30°C for both [CO2] and all coffee genotypes was observed, likely supported by the maintenance or increase of the pools of several protective molecules (neoxanthin, lutein, carotenes, α-tocopherol, HSP70, raffinose), activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and the upregulated expression of some genes (ELIP, Chaperonin 20). However, at 42/34°C a tolerance threshold was reached, mostly in the 380-plants and Icatu. Adjustments in raffinose, lutein, β-carotene, α-tocopherol and HSP70 pools, and the upregulated expression of genes related to protective (ELIPS, HSP70, Chape 20, and 60) and antioxidant (CAT, CuSOD2, APX Cyt, APX Chl) proteins were largely driven by temperature. However, enhanced [CO2] maintained higher activities of GR (Icatu) and CAT (Icatu and IPR108), kept (or even increased) the Cu,Zn-SOD, APX, and CAT activities, and promoted a greater upregulation of those enzyme genes, as well as those related to HSP70, ELIPs, Chaperonins in CL153, and Icatu. These changes likely favored the maintenance of reactive oxygen species (ROS) at controlled levels and contributed to mitigate of photosystem II photoinhibition at the highest temperature. Overall, our results highlighted the important role of enhanced [CO2] on the coffee crop acclimation and sustainability under predicted future global warming scenarios.
Collapse
Affiliation(s)
- Madlles Q. Martins
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- Departamento Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal Espírito SantoSão Mateus, Brazil
| | - Weverton P. Rodrigues
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte FluminenseRio de Janeiro, Brazil
| | - Ana S. Fortunato
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
| | - António E. Leitão
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Ana P. Rodrigues
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
| | - Isabel P. Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e VeterináriaOeiras, Portugal
| | - Lima D. Martins
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito SantoAlegre, Brazil
| | - Maria J. Silva
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Fernando H. Reboredo
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Fábio L. Partelli
- Departamento Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal Espírito SantoSão Mateus, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte FluminenseRio de Janeiro, Brazil
| | - Marcelo A. Tomaz
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito SantoAlegre, Brazil
| | - Paula Scotti-Campos
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e VeterináriaOeiras, Portugal
| | - Ana I. Ribeiro-Barros
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Fernando J. C. Lidon
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Fábio M. DaMatta
- Departamento Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
| | - José C. Ramalho
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| |
Collapse
|
25
|
An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing Frankia Thr. Symbiosis 2016. [DOI: 10.1007/s13199-016-0386-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Rodrigues WP, Martins MQ, Fortunato AS, Rodrigues AP, Semedo JN, Simões-Costa MC, Pais IP, Leitão AE, Colwell F, Goulao L, Máguas C, Maia R, Partelli FL, Campostrini E, Scotti-Campos P, Ribeiro-Barros AI, Lidon FC, DaMatta FM, Ramalho JC. Long-term elevated air [CO2 ] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. GLOBAL CHANGE BIOLOGY 2016; 22:415-31. [PMID: 26363182 DOI: 10.1111/gcb.13088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 05/05/2023]
Abstract
The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown for ca. 10 months at 25/20°C (day/night) and 380 or 700 μl CO2 l(-1) and then subjected to temperature increase (0.5°C day(-1) ) to 42/34°C. Leaf impacts related to stomatal traits, gas exchanges, C isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20, 31/25, 37/30 and 42/34°C. The results showed that (1) both species were remarkably heat tolerant up to 37/30°C, but at 42/34°C a threshold for irreversible nonstomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. (2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO2 ], (3) strongly mitigated the impact of temperature on both species, particularly at 42/34°C, modifying the response to supra-optimal temperatures, (4) promoted higher water-use efficiency under moderately higher temperature (31/25°C) and (5) did not provoke photosynthetic downregulation. Instead, enhancements in [CO2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios.
Collapse
Affiliation(s)
- Weverton P Rodrigues
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, RJ, Brazil
| | - Madlles Q Martins
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil
| | - Ana S Fortunato
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Ana P Rodrigues
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - José N Semedo
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Maria C Simões-Costa
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Isabel P Pais
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - António E Leitão
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Filipe Colwell
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Luis Goulao
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty Sciences, Univ. Lisbon, Campo Grande, Lisboa, 1749-016, Portugal
| | - Rodrigo Maia
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty Sciences, Univ. Lisbon, Campo Grande, Lisboa, 1749-016, Portugal
| | - Fábio L Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, RJ, Brazil
| | - Paula Scotti-Campos
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Ana I Ribeiro-Barros
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Fernando C Lidon
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Fábio M DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), Viçosa, 36570-000, MG, Brazil
| | - José C Ramalho
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|