1
|
Denis D, Bottary R, Cunningham TJ, Davidson P, Yuksel C, Milad MR, Pace-Schott EF. Slow oscillation-sleep spindle coupling is associated with fear extinction retention in trauma-exposed individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634866. [PMID: 39974936 PMCID: PMC11838212 DOI: 10.1101/2025.01.27.634866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Posttraumatic stress disorder (PTSD) can be characterized as a disorder of fear learning and memory, in which there is a failure to retain memory for the extinction of conditioned fear. Sleep has been implicated in successful extinction retention. The coupling of sleep spindles to slow oscillations (SOs) during non-rapid eye movement sleep has been shown to broadly underpin sleep's beneficial effect on memory consolidation. However, the role of this oscillatory coupling in the retention of extinction memories is unknown. In a large sample of 124 trauma-exposed individuals, we investigated SO-spindle coupling in relation to fear extinction memory. We found that participants with a PTSD diagnosis, relative to trauma-exposed controls, showed significantly altered SO-spindle timing, such that PTSD participants exhibited spindle coupling further away from the peak of the SO. Across participants, the amount of coupling significantly predicted extinction retention, with coupled spindles uniquely predicting successful extinction retention compared to uncoupled spindles. These results suggest that SO-spindle coupling is critical for successful retention of extinguished fear, and that SO-spindle coupling dynamics are altered in PTSD. These alterations in the mechanics of sleep may have substantial clinical implications, meriting further investigation.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York, United Kingdom
| | - Ryan Bottary
- Institute for Graduate Clinical Psychology, Widener University, Chester, PA, USA
| | - Tony J. Cunningham
- Center for Sleep and Cognition, Psychiatry Department, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Per Davidson
- Department of Psychology, Kristianstad University, Kristianstad, Sweden
| | - Cagri Yuksel
- Schizophrenia and Bipolar Research Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Edward F. Pace-Schott
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Mass General Brigham, Charlestown, MA, USA
| |
Collapse
|
2
|
Jourde HR, Coffey EBJ. Auditory processing up to cortex is maintained during sleep spindles. PNAS NEXUS 2024; 3:pgae479. [PMID: 39588317 PMCID: PMC11586671 DOI: 10.1093/pnasnexus/pgae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024]
Abstract
Sleep spindles are transient 11-16 Hz brain oscillations generated by thalamocortical circuits. Their role in memory consolidation is well established, but how they play a role in sleep continuity and protection of memory consolidation against interference is unclear. One theory posits that spindles or a neural refractory period following their offset act as a gating mechanism, blocking sensory information en route to the cortex at the level of the thalamus. An alternative model posits that spindles do not participate in the suppression of neural responses to sound, although they can be produced in response to sound. We present evidence from three experiments using electroencephalography and magnetoencephalography in humans that examine different evoked responses in the presence of and following sleep spindles. The results provide convergent empirical evidence suggesting that auditory processing up to cortex is maintained during sleep spindles, and their refractory periods.
Collapse
Affiliation(s)
- Hugo R Jourde
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Réseau de bio-imagerie du Québec (RBIQ), Sherbrooke, Quebec, Canada
| | - Emily B J Coffey
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Réseau de bio-imagerie du Québec (RBIQ), Sherbrooke, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Leach S, Krugliakova E, Sousouri G, Snipes S, Skorucak J, Schühle S, Müller M, Ferster ML, Da Poian G, Karlen W, Huber R. Acoustically evoked K-complexes together with sleep spindles boost verbal declarative memory consolidation in healthy adults. Sci Rep 2024; 14:19184. [PMID: 39160150 PMCID: PMC11333484 DOI: 10.1038/s41598-024-67701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Over the past decade, phase-targeted auditory stimulation (PTAS), a neuromodulation approach which presents auditory stimuli locked to the ongoing phase of slow waves during sleep, has shown potential to enhance specific aspects of sleep functions. However, the complexity of PTAS responses complicates the establishment of causality between specific electroencephalographic events and observed benefits. Here, we used down-PTAS during sleep to specifically evoke the early, K-complex (KC)-like response following PTAS without leading to a sustained increase in slow-wave activity throughout the stimulation window. Over the course of two nights, one with down-PTAS, the other without, high-density electroencephalography (hd-EEG) was recorded from 14 young healthy adults. The early response exhibited striking similarities to evoked KCs and was associated with improved verbal memory consolidation via stimulus-evoked spindle events nested into the up-phase of ongoing 1 Hz waves in a central region. These findings suggest that the early, KC-like response is sufficient to boost memory, potentially by orchestrating aspects of the hippocampal-neocortical dialogue.
Collapse
Affiliation(s)
- Sven Leach
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Georgia Sousouri
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Selina Schühle
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuel Müller
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Giulia Da Poian
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Ricciardiello A, McKinnon AC, Mowszowski L, LaMonica HM, Schrire ZM, Haroutonian C, Lam A, Hickie IB, D'Rozario A, Naismith SL. Assessing sleep architecture and cognition in older adults with depressive symptoms attending a memory clinic. J Affect Disord 2024; 348:35-43. [PMID: 38123073 DOI: 10.1016/j.jad.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND While depression is intrinsically and bidirectionally linked with both sleep disturbance and cognition, the inter-relationships between sleep, cognition, and brain integrity in older people with depression, especially those with late-onset depression are undefined. METHODS One hundred and seventy-two older adults (mean age 64.3 ± 6.9 years, Depression: n = 66, Control: n = 106) attending a memory clinic underwent a neuropsychological battery of declarative memory, executive function tasks, cerebral magnetic resonance imaging and overnight polysomnography with quantitative electroencephalography. RESULTS The time spent in slow-wave sleep (SWS) and rapid eye movement (REM) sleep, slow-wave activity, sleep spindles, hippocampal volume and prefrontal cortex thickness did not differ between depression and control and depression onset groups. However, sleep onset latency (p = 0.005) and REM onset latency (p = 0.02) were later in the Depression group compared to controls. Less SWS was associated with poorer memory (r = 0.31, p = 0.023) in the depression group, and less SWS was related to better memory in the control group (r = -0.20, p = 0.043; Fishers r-to-z = -3.19). LIMITATIONS Longitudinal studies are needed to determine if changes in sleep in those with depressive symptoms predict cognitive decline and illness trajectory. CONCLUSION Older participants with depressive symptoms had delayed sleep initiation, suggestive of delayed sleep phase. The association between SWS and memory suggests SWS may be a useful target for cognitive intervention in older adults with depression symptoms. Reduced hippocampal volumes did not mediate this relationship, indicating a broader distributed neural network may underpin these associations.
Collapse
Affiliation(s)
- Andrea Ricciardiello
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Camperdown, NSW, Australia.
| | - Andrew C McKinnon
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; CogSleep, Australian National Health and Medical Research Council Centre of Research Excellence, Australia
| | - Loren Mowszowski
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; CogSleep, Australian National Health and Medical Research Council Centre of Research Excellence, Australia
| | - Haley M LaMonica
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Zoe Menczel Schrire
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Camperdown, NSW, Australia; CogSleep, Australian National Health and Medical Research Council Centre of Research Excellence, Australia
| | - Carla Haroutonian
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Camperdown, NSW, Australia
| | - Aaron Lam
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Camperdown, NSW, Australia; School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian B Hickie
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela D'Rozario
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Camperdown, NSW, Australia; CogSleep, Australian National Health and Medical Research Council Centre of Research Excellence, Australia; School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia; Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; CogSleep, Australian National Health and Medical Research Council Centre of Research Excellence, Australia
| |
Collapse
|
5
|
Jourde HR, Merlo R, Brooks M, Rowe M, Coffey EBJ. The neurophysiology of closed-loop auditory stimulation in sleep: A magnetoencephalography study. Eur J Neurosci 2024; 59:613-640. [PMID: 37675803 DOI: 10.1111/ejn.16132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Closed-loop auditory stimulation (CLAS) is a brain modulation technique in which sounds are timed to enhance or disrupt endogenous neurophysiological events. CLAS of slow oscillation up-states in sleep is becoming a popular tool to study and enhance sleep's functions, as it increases slow oscillations, evokes sleep spindles and enhances memory consolidation of certain tasks. However, few studies have examined the specific neurophysiological mechanisms involved in CLAS, in part because of practical limitations to available tools. To evaluate evidence for possible models of how sound stimulation during brain up-states alters brain activity, we simultaneously recorded electro- and magnetoencephalography in human participants who received auditory stimulation across sleep stages. We conducted a series of analyses that test different models of pathways through which CLAS of slow oscillations may affect widespread neural activity that have been suggested in literature, using spatial information, timing and phase relationships in the source-localized magnetoencephalography data. The results suggest that auditory information reaches ventral frontal lobe areas via non-lemniscal pathways. From there, a slow oscillation is created and propagated. We demonstrate that while the state of excitability of tissue in auditory cortex and frontal ventral regions shows some synchrony with the electroencephalography (EEG)-recorded up-states that are commonly used for CLAS, it is the state of ventral frontal regions that is most critical for slow oscillation generation. Our findings advance models of how CLAS leads to enhancement of slow oscillations, sleep spindles and associated cognitive benefits and offer insight into how the effectiveness of brain stimulation techniques can be improved.
Collapse
Affiliation(s)
- Hugo R Jourde
- Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Quebec Bio-Imaging Network (QBIN), Sherbrooke, Quebec, Canada
| | | | - Mary Brooks
- Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Quebec Bio-Imaging Network (QBIN), Sherbrooke, Quebec, Canada
| | | | - Emily B J Coffey
- Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Quebec Bio-Imaging Network (QBIN), Sherbrooke, Quebec, Canada
- McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Harrington MO, Reeve S, Bower JL, Renoult L. How do the sleep features that characterise depression impact memory? Emerg Top Life Sci 2023; 7:499-512. [PMID: 38054537 PMCID: PMC10754336 DOI: 10.1042/etls20230100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Depression is associated with general sleep disturbance and abnormalities in sleep physiology. For example, compared with control subjects, depressed patients exhibit lower sleep efficiency, longer rapid eye movement (REM) sleep duration, and diminished slow-wave activity during non-REM sleep. A separate literature indicates that depression is also associated with many distinguishing memory characteristics, including emotional memory bias, overgeneral autobiographical memory, and impaired memory suppression. The sleep and memory features that hallmark depression may both contribute to the onset and maintenance of the disorder. Despite our rapidly growing understanding of the intimate relationship between sleep and memory, our comprehension of how sleep and memory interact in the aetiology of depression remains poor. In this narrative review, we consider how the sleep signatures of depression could contribute to the accompanying memory characteristics.
Collapse
Affiliation(s)
| | - Sarah Reeve
- Department of Clinical Psychology and Psychological Therapies, Norwich Medical School, University of East Anglia, Norwich, U.K
| | - Joanne L. Bower
- School of Psychology, University of East Anglia, Norwich, U.K
| | - Louis Renoult
- School of Psychology, University of East Anglia, Norwich, U.K
| |
Collapse
|
7
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Abstract
The restorative function of sleep is shaped by its duration, timing, continuity, subjective quality, and efficiency. Current sleep recommendations specify only nocturnal duration and have been largely derived from sleep self-reports that can be imprecise and miss relevant details. Sleep duration, preferred timing, and ability to withstand sleep deprivation are heritable traits whose expression may change with age and affect the optimal sleep prescription for an individual. Prevailing societal norms and circumstances related to work and relationships interact to influence sleep opportunity and quality. The value of allocating time for sleep is revealed by the impact of its restriction on behavior, functional brain imaging, sleep macrostructure, and late-life cognition. Augmentation of sleep slow oscillations and spindles have been proposed for enhancing sleep quality, but they inconsistently achieve their goal. Crafting bespoke sleep recommendations could benefit from large-scale, longitudinal collection of objective sleep data integrated with behavioral and self-reported data.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
9
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
10
|
DiNuzzo M, Mangia S, Giove F. Manipulations of sleep‐like slow‐wave activity by noninvasive brain stimulation. J Neurosci Res 2022; 100:1218-1225. [DOI: 10.1002/jnr.25029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mauro DiNuzzo
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology University of Minnesota Minneapolis Minnesota USA
| | - Federico Giove
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
- Laboratory of Neurophysics and Neuroimaging Fondazione Santa Lucia IRCCS Rome Italy
| |
Collapse
|
11
|
No benefit of auditory closed-loop stimulation on memory for semantically-incongruent associations. Neurobiol Learn Mem 2021; 183:107482. [PMID: 34182134 DOI: 10.1016/j.nlm.2021.107482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023]
Abstract
Auditory closed-loop stimulation has gained traction in recent years as a means of enhancing slow oscillatory activity and, consequently, sleep-associated memory consolidation. Previous studies on this topic have primarily focused on the consolidation of semantically-congruent associations. In this study, we investigated the effect of auditory closed-loop stimulation on the overnight retention of semantically-incongruent associations. Twelve healthy males (age: M = 20.06, SD = 2.02 years) participated in two experimental conditions (simulation and sham). In the stimulation condition, clicks were delivered in phase with slow oscillation up-states, whereas in the sham condition no auditory stimuli were applied. Corroborating earlier work, stimulation (vs. sham) enhanced the slow oscillation rhythm, phase-coupled spindle activity and slow oscillation power. However, there was no benefit of stimulation on overnight memory retention. These findings suggest that closed-loop stimulation does not benefit semantically-incongruent associations.
Collapse
|