1
|
Egorikhina MN, Rubtsova YP, Linkova DD, Charykova IN, Farafontova EA, Aleinik DY. Specifics of Cryopreservation of Hydrogel Biopolymer Scaffolds with Encapsulated Mesenchymal Stem Cells. Polymers (Basel) 2024; 16:247. [PMID: 38257046 PMCID: PMC10820988 DOI: 10.3390/polym16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The demand for regenerative medicine products is growing rapidly in clinical practice. Unfortunately, their use has certain limitations. One of these, which significantly constrains the widespread distribution and commercialization of such materials, is their short life span. For products containing suspensions of cells, this issue can be solved by using cryopreservation. However, this approach is rarely used for multicomponent tissue-engineered products due to the complexity of selecting appropriate cryopreservation protocols and the lack of established criteria for assessing the quality of such products once defrosted. Our research is aimed at developing a cryopreservation protocol for an original hydrogel scaffold with encapsulated MSCs and developing a set of criteria for assessing the quality of their functional activity in vitro. The scaffolds were frozen using two alternative types of cryocontainers and stored at either -40 °C or -80 °C. After cryopreservation, the external state of the scaffolds was evaluated in addition to recording the cell viability, visible changes during subsequent cultivation, and any alterations in proliferative and secretory activity. These observations were compared to those of scaffolds cultivated without cryopreservation. It was shown that cryopreservation at -80 °C in an appropriate type of cryocontainer was optimal for the hydrogels/adipose-derived stem cells (ASCs) tested if it provided a smooth temperature decrease during freezing over a period of at least three hours until the target values of the cryopreservation temperature regimen were reached. It was shown that evaluating a set of indicators, including the viability, the morphology, and the proliferative and secretory activity of the cells, enables the characterization of the quality of a tissue-engineered construct after its withdrawal from cryopreservation, as well as indicating the effectiveness of the cryopreservation protocol.
Collapse
Affiliation(s)
| | | | - Daria D. Linkova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), 603600 Nizhny Novgorod, Russia; (M.N.E.); (Y.P.R.); (I.N.C.); (D.Y.A.)
| | | | | | | |
Collapse
|
2
|
Song J, Zhang Q, Li G, Zhang Y. Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8733-8747. [PMID: 35839338 DOI: 10.1021/acs.langmuir.2c00711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This feature article introduces the design of self-assembling peptides that serve as the basic building blocks for the construction of extracellular matrix (ECM)-like structure in the vicinity of the plasma membrane. By covalently conjugating a bioactive motif, such as membrane protein binding ligand or enzymatic responsive building block, with a self-assembling motif, especially the aromatic peptide, a self-assembling peptide that retains bioactivity is obtained. Instructed by the target membrane protein or enzyme, the bioactive peptides self-assemble into ECM-like structure exerting various stimuli to regulate the cellular response via intracellular signaling, especially mechanotransduction. By briefly summarizing the properties and applications (e.g., wound healing, controlling cell motility and cell fate) of these peptides, we intend to illustrate the basic requirements and promises of the peptide assembly as a true bottom-up approach in the construction of artificial ECM.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Qizheng Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Ye Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
3
|
A 3D Mathematical Model of Coupled Stem Cell-Nutrient Dynamics in Myocardial Regeneration Therapy. J Theor Biol 2022; 537:111023. [PMID: 35041851 DOI: 10.1016/j.jtbi.2022.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapy is a promising treatment for the regeneration of myocardial tissue injured by an ischemic event. Mathematical modeling of myocardial regeneration via stem cell therapy is a challenging task, since the mechanisms underlying the processes involved in the treatment are not yet fully understood. Many aspects must be accounted for, such as the spread of stem cells and nutrients, chemoattraction, cell proliferation, stages of cell maturation, differentiation, angiogenesis, stochastic effects, just to name a few. In this paper we propose a 3D mathematical model with a free boundary that aims to provide a qualitative description of some main aspects of the stem cell regenerative therapy in a simplified scenario. The paper mainly focuses on the description of the shrinking of the necrotic core during treatment. The stem cell and nutrients dynamics are described through coupled reaction-diffusion problems. Proliferation, chemoattraction, tissue regeneration and nutrient consumption are included in the model.
Collapse
|
4
|
Egorikhina MN, Rubtsova YP, Charykova IN, Bugrova ML, Bronnikova II, Mukhina PA, Sosnina LN, Aleynik DY. Biopolymer Hydrogel Scaffold as an Artificial Cell Niche for Mesenchymal Stem Cells. Polymers (Basel) 2020; 12:polym12112550. [PMID: 33143320 PMCID: PMC7692241 DOI: 10.3390/polym12112550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of stem cell processes is regulated by internal and external signals of the cell "niche". In general, the niche of stem cells can be represented as the microenvironment of the cells, providing a signal complex, determining the properties of the cells. At the same time, the "niche" concept implies feedback. Cells can modify their microenvironment, supporting homeostasis or remodeling the composition and structure of the extracellular matrix. To ensure the regenerative potential of tissue engineering products the "niche" concept should be taken into account. To investigate interactions in an experimental niche, an original hydrogel biopolymer scaffold with encapsulated mesenchymal adipose-derived stem cells (ASCs) was used in this study. The scaffold provides for cell adhesion, active cell growth, and proliferative activity. Cells cultured within a scaffold are distinguished by the presence of a developed cytoskeleton and they form a cellular network. ASCs cultured within a scaffold change their microenvironment by secreting VEGF-A and remodeling the scaffold structure. Scaffold biodegradation processes were evaluated after previous culturing of the ASCs in the scaffolds for periods of either 24 h or six days. The revealed differences confirmed that changes had occurred in the properties of scaffolds remodeled by cells during cultivation. The mechanisms of the identified changes and the possibility of considering the presented scaffold as an appropriate artificial niche for ASCs are discussed.
Collapse
|
5
|
Novoseletskaya E, Grigorieva O, Nimiritsky P, Basalova N, Eremichev R, Milovskaya I, Kulebyakin K, Kulebyakina M, Rodionov S, Omelyanenko N, Efimenko A. Mesenchymal Stromal Cell-Produced Components of Extracellular Matrix Potentiate Multipotent Stem Cell Response to Differentiation Stimuli. Front Cell Dev Biol 2020; 8:555378. [PMID: 33072743 PMCID: PMC7536557 DOI: 10.3389/fcell.2020.555378] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) provides both structural support and dynamic microenvironment for cells regulating their behavior and fate. As a critical component of stem cell niche ECM maintains stem cells and activates their proliferation and differentiation under specific stimuli. Mesenchymal stem/stromal cells (MSCs) regulate tissue-specific stem cell functions locating in their immediate microenvironment and producing various bioactive factors, including ECM components. We evaluated the ability of MSC-produced ECM to restore stem and progenitor cell microenvironment in vitro and analyzed the possible mechanisms of its effects. Human MSC cell sheets were decellularized by different agents (detergents, enzymes, and apoptosis inductors) to select the optimized combination (CHAPS and DNAse I) based on the conservation of decellularized ECM (dECM) structure and effectiveness of DNA removal. Prepared dECM was non-immunogenic, supported MSC proliferation and formation of larger colonies in colony-forming unit-assay. Decellularized ECM effectively promoted MSC trilineage differentiation (adipogenic, osteogenic, and chondrogenic) compared to plastic or plastic covered by selected ECM components (collagen, fibronectin, laminin). Interestingly, dECM produced by human fibroblasts could not enhance MSC differentiation like MSC-produced dECM, indicating cell-specific functionality of dECM. We demonstrated the significant integrin contribution in dECM-cell interaction by blocking the stimulatory effects of dECM with RGD peptide and suggested the involvement of key intracellular signaling pathways activation (pERK/ERK and pFAK/FAK axes, pYAP/YAP and beta-catenin) in the observed processes based on the results of inhibitory analysis. Taken together, we suppose that MSC-produced dECM may mimic stem cell niche components in vitro and maintain multipotent progenitor cells to insure their effective response to external differentiating stimuli upon activation. The obtained data provide more insights into the possible role of MSC-produced ECM in stem and progenitor cell regulation within their niches. Our results are also useful for the developing of dECM-based cell-free products for regenerative medicine.
Collapse
Affiliation(s)
- Ekaterina Novoseletskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Roman Eremichev
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Irina Milovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin Kulebyakin
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei Rodionov
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Nikolai Omelyanenko
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Bian L. Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL Bioeng 2020; 4:030401. [PMID: 32743233 PMCID: PMC7382604 DOI: 10.1063/5.0018548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong
Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|