1
|
Chiong MAD, Basas AA. Theological and Ethical Perspectives on Gene Editing and the Sanctity of Life: Rare Genetic Diseases in the Philippines as a Model. JOURNAL OF RELIGION AND HEALTH 2025:10.1007/s10943-025-02318-2. [PMID: 40240744 DOI: 10.1007/s10943-025-02318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
This paper examines the interplay between the sacredness of life and gene editing in the context of rare genetic diseases. Rare genetic disorders caused by gene mutations often come with limited treatment options. Gene editing techniques present a promising solution by targeting and repairing defective genes. The discussion begins with an overview of the science behind gene editing and its potential applications in treating rare diseases, highlighting three specific genetic conditions affecting Filipinos. It then explores the ethical and theological dimensions of gene editing, emphasizing the Imago Dei doctrine, which underscores human dignity and moral responsibility as well as ethical principles in light of Christian virtues. A comparative analysis between therapeutic somatic gene editing and germline editing is highlighted in the discussions. Using the See-Judge-Act framework, the paper examines the potential of gene editing through the lens of Catholic Church's teachings on human dignity and offers practical insights for applying the theological and ethical considerations in addressing the therapeutic options for rare genetic diseases righteously.
Collapse
Affiliation(s)
- Mary Anne D Chiong
- Department of Biochemistry, Molecular Biology and Nutrition, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines.
- Graduate School, University of Santo Tomas, Manila, Philippines.
| | - Allan A Basas
- Institute of Religion, University of Santo Tomas, Manila, Philippines
- Graduate School, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
2
|
Lauffer MC, van Roon-Mom W, Aartsma-Rus A. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. COMMUNICATIONS MEDICINE 2024; 4:6. [PMID: 38182878 PMCID: PMC10770028 DOI: 10.1038/s43856-023-00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are incredibly versatile molecules that can be designed to specifically target and modify RNA transcripts to slow down or halt rare genetic disease progression. They offer the potential to target groups of patients or can be tailored for individual cases. Nonetheless, not all genetic variants and disorders are amenable to ASO-based treatments, and hence, it is important to consider several factors before embarking on the drug development journey. Here, we discuss which genetic disorders have the potential to benefit from a specific type of ASO approach, based on the pathophysiology of the disease and pathogenic variant type, as well as those disorders that might not be suitable for ASO therapies. We further explore additional aspects, such as the target tissues, intervention time points, and potential clinical benefits, which need to be considered before developing a compound. Overall, we provide an overview of the current potentials and limitations of ASO-based therapeutics for the treatment of monogenic disorders.
Collapse
Affiliation(s)
- Marlen C Lauffer
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Naseem A, Steinberg Z, Cavazza A. Genome editing for primary immunodeficiencies: A therapeutic perspective on Wiskott-Aldrich syndrome. Front Immunol 2022; 13:966084. [PMID: 36059471 PMCID: PMC9433875 DOI: 10.3389/fimmu.2022.966084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are a group of rare inherited disorders affecting the immune system that can be conventionally treated with allogeneic hematopoietic stem cell transplantation and with experimental autologous gene therapy. With both approaches still facing important challenges, gene editing has recently emerged as a potential valuable alternative for the treatment of genetic disorders and within a relatively short period from its initial development, has already entered some landmark clinical trials aimed at tackling several life-threatening diseases. In this review, we discuss the progress made towards the development of gene editing-based therapeutic strategies for PIDs with a special focus on Wiskott - Aldrich syndrome and outline their main challenges as well as future directions with respect to already established treatments.
Collapse
|
4
|
Wang G, Wen B, Deng Z, Zhang Y, Kolesnichenko OA, Ustiyan V, Pradhan A, Kalin TV, Kalinichenko VV. Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling. Nat Commun 2022; 13:2080. [PMID: 35440116 PMCID: PMC9019054 DOI: 10.1038/s41467-022-29746-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Pulmonary endothelial progenitor cells (EPCs) are critical for neonatal lung angiogenesis and represent a subset of general capillary cells (gCAPs). Molecular mechanisms through which EPCs stimulate lung angiogenesis are unknown. Herein, we used single-cell RNA sequencing to identify the BMP9/ACVRL1/SMAD1 pathway signature in pulmonary EPCs. BMP9 receptor, ACVRL1, and its downstream target genes were inhibited in EPCs from Foxf1WT/S52F mutant mice, a model of alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Expression of ACVRL1 and its targets were reduced in lungs of ACDMPV subjects. Inhibition of FOXF1 transcription factor reduced BMP9/ACVRL1 signaling and decreased angiogenesis in vitro. FOXF1 synergized with ETS transcription factor FLI1 to activate ACVRL1 promoter. Nanoparticle-mediated silencing of ACVRL1 in newborn mice decreased neonatal lung angiogenesis and alveolarization. Treatment with BMP9 restored lung angiogenesis and alveolarization in ACVRL1-deficient and Foxf1WT/S52F mice. Altogether, EPCs promote neonatal lung angiogenesis and alveolarization through FOXF1-mediated activation of BMP9/ACVRL1 signaling.
Collapse
Affiliation(s)
- Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arun Pradhan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Braga LAM, Conte Filho CG, Mota FB. Future of genetic therapies for rare genetic diseases: what to expect for the next 15 years? THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040221100840. [PMID: 37180410 PMCID: PMC10032453 DOI: 10.1177/26330040221100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
Introduction Rare genetic diseases affect millions of people worldwide. Most of them are caused by defective genes that impair quality of life and can lead to premature death. As genetic therapies aim to fix or replace defective genes, they are considered the most promising treatment for rare genetic diseases. Yet, as these therapies are still under development, it is still unclear whether they will be successful in treating these diseases. This study aims to address this gap by assessing researchers' opinions on the future of genetic therapies for the treatment of rare genetic diseases. Methods We conducted a global cross-sectional web-based survey of researchers who recently authored peer-reviewed articles related to rare genetic diseases. Results We assessed the opinions of 1430 researchers with high and good knowledge about genetic therapies for the treatment of rare genetic diseases. Overall, the respondents believed that genetic therapies would be the standard of care for rare genetic diseases before 2036, leading to cures after this period. CRISPR-Cas9 was considered the most likely approach to fixing or replacing defective genes in the next 15 years. The respondents with good knowledge believed that genetic therapies would only have long-lasting effects after 2036, while those with high knowledge were divided on this issue. The respondents with good knowledge on the subject believed that non-viral vectors are more likely to be successful in fixing or replacing defective genes in the next 15 years, while most of the respondents with high knowledge believed viral vectors would be more successful. Conclusion Overall, the researchers who participated in this study expect that in the future genetic therapies will greatly benefit the treatment of patients with rare genetic diseases.
Collapse
Affiliation(s)
| | | | - Fabio Batista Mota
- Laboratory of Cellular Communication, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365, Pavilhão 108,
Manguinhos, Rio de Janeiro RJ 21040-360, Brazil
| |
Collapse
|
6
|
Tozaki T, Hamilton NA. Control of gene doping in human and horse sports. Gene Ther 2021; 29:107-112. [PMID: 34099895 DOI: 10.1038/s41434-021-00267-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, 320-0851, Japan.
| | - Natasha A Hamilton
- Equine Genetics Research Centre, Racing Australia, Flemington, NSW, 2337, Australia
| |
Collapse
|