1
|
Shi F, Jiang J, Wang X, Gao Y, Chen C, Chen G, Dudko N, Nevar AA, Zhang D. Development of plasma technology for the preparation and modification of energy storage materials. Chem Commun (Camb) 2024; 60:2700-2715. [PMID: 38352985 DOI: 10.1039/d3cc05341e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The development of energy storage material technologies stands as a decisive measure in optimizing the structure of clean and low-carbon energy systems. The remarkable activity inherent in plasma technology imbues it with distinct advantages in surface modification, functionalization, synthesis, and interface engineering of materials. This review systematically expounds upon the principles, classifications, and application scenarios of plasma technology, while thoroughly discussing its unique merits in the realm of modifying electrode materials, solid-state electrolytes, and conductive carbon materials, which are widely used in lithium-ion batteries, sodium ion batteries, metal air batteries and other fields. Finally, considering the existing constraints associated with lithium-ion batteries, some application prospects of plasma technology in the energy storage field are suggested. This work is of great significance for the development of clean plasma technology in the field of energy storage.
Collapse
Affiliation(s)
- Fengchun Shi
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiaqi Jiang
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Xuan Wang
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Yan Gao
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Chen Chen
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Guorong Chen
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Natallia Dudko
- Head of the Inter-University R&D Marketing Centre Science and Technology Park of BNTU, Minsk 220013, Belarus
| | - Alena A Nevar
- B. I. Stepanov Institute of Physics National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Dengsong Zhang
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Kryuchkov M, Adamcik J, Katanaev VL. Bactericidal and Antiviral Bionic Metalized Nanocoatings. NANOMATERIALS 2022; 12:nano12111868. [PMID: 35683724 PMCID: PMC9182136 DOI: 10.3390/nano12111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023]
Abstract
In diverse living organisms, bionanocoatings provide multiple functionalities, to the surfaces they cover. We have, previously, identified the molecular mechanisms of Turing-based self-assembly of insect corneal nanocoatings and developed forward-engineering approaches to construct multifunctional soft bionic nanocoatings, encompassing the Drosophila protein Retinin. Here, we expand the versatility of the bionic nanocoatings, by identifying and using diverse Retinin-like proteins and different methods of their metallization, using nickel, silver, and copper ions. Comparative assessment, of the resulting bactericidal, antiviral, and cytotoxic properties, identifies the best protocols, to construct safe and anti-infective metalized bionic nanocoatings. Upscaled application of these protocols, to various public surfaces, may represent a safe and economic approach to limit hazardous infections.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Jozef Adamcik
- National Center of Competence in Research Bio-Inspired Materials, Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Correspondence: ; Tel.: +41-22-379-5353
| |
Collapse
|
3
|
Dai C, Cho JH. Electron Beam Maneuvering of a Single Polymer Layer for Reversible 3D Self-Assembly. NANO LETTERS 2021; 21:2066-2073. [PMID: 33630613 DOI: 10.1021/acs.nanolett.0c04723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reversible self-assembly that allows materials to switch between structural configurations has triggered innovation in various applications, especially for reconfigurable devices and robotics. However, reversible motion with nanoscale controllability remains challenging. This paper introduces a reversible self-assembly using stress generated by electron irradiation triggered degradation (shrinkage) of a single polymer layer. The peak position of the absorbed energy along the depth of a polymer layer can be modified by tuning the electron energy; the peak absorption location controls the position of the shrinkage generating stress along the depth of the polymer layer. The stress gradient can shift between the top and bottom surface of the polymer by repeatedly tuning the irradiation location at the nanoscale and the electron beam voltage, resulting in reversible motion. This reversible self-assembly process paves the path for the innovation of small-scale machines and reconfigurable functional devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Campos RM, Alves ACPM, Lima MAL, Farinha AFM, Cardoso JPS, Mendes A, Costa JCS, Santos LMNBF. Morphology, Structure, and Dynamics of Pentacene Thin Films and Their Nanocomposites with [C
2
C
1
im][NTf
2
] and [C
2
C
1
im][OTF] Ionic Liquids. Chemphyschem 2020; 21:1814-1825. [DOI: 10.1002/cphc.202000431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Ricardo M. Campos
- CIQUP – Centro de Investigação em Química Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Portugal
| | - Alexandre C. P. M. Alves
- CIQUP – Centro de Investigação em Química Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Portugal
| | - Marco A. L. Lima
- CIQUP – Centro de Investigação em Química Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Portugal
| | - Artur F. M. Farinha
- CIQUP – Centro de Investigação em Química Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Portugal
| | - João P. S. Cardoso
- CIQUP – Centro de Investigação em Química Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Portugal
| | - Adélio Mendes
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy Faculdade de Engenharia Universidade do Porto Portugal
| | - José C. S. Costa
- CIQUP – Centro de Investigação em Química Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy Faculdade de Engenharia Universidade do Porto Portugal
| | - Luís M. N. B. F. Santos
- CIQUP – Centro de Investigação em Química Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Portugal
| |
Collapse
|
5
|
Dai C, Li L, Wratkowski D, Cho JH. Electron Irradiation Driven Nanohands for Sequential Origami. NANO LETTERS 2020; 20:4975-4984. [PMID: 32502353 DOI: 10.1021/acs.nanolett.0c01075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sequence plays an important role in self-assembly of 3D complex structures, particularly for those with overlap, intersection, and asymmetry. However, it remains challenging to program the sequence of self-assembly, resulting in geometric and topological constrains. In this work, a nanoscale, programmable, self-assembly technique is reported, which uses electron irradiation as "hands" to manipulate the motion of nanostructures with the desired order. By assigning each single assembly step in a particular order, localized motion can be selectively triggered with perfect timing, making a component accurately integrate into the complex 3D structure without disturbing other parts of the assembly process. The features of localized motion, real-time monitoring, and surface patterning open the possibility for the further innovation of nanomachines, nanoscale test platforms, and advanced optical devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lianbi Li
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Science, Xi'an Polytechnic University, Xi'an 710000, People's Republic of China
| | - Daniel Wratkowski
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Dai C, Agarwal K, Cho JH. Ion-Induced Localized Nanoscale Polymer Reflow for Three-Dimensional Self-Assembly. ACS NANO 2018; 12:10251-10261. [PMID: 30207695 DOI: 10.1021/acsnano.8b05283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thermal reflow of polymers is a well-established phenomenon that has been used in various microfabrication processes. However, present techniques have critical limitations in controlling the various attributes of polymer reflow, such as the position and extent of reflow, especially at the nanoscale. These challenges primarily result from the reflow heat source supplying heat energy to the entire substrate rather than a specific area. In this work, a focused ion beam (FIB) microscope is used to achieve controllable localized heat generation, leading to precise control over the nanoscale polymer reflow. Through the use of the patterning capability of FIB microscopy, dramatically different reflow performances within nanoscale distances of each other are demonstrated in both discrete periodic and continuous polymer structures. Further, we utilize a self-assembly process induced by nanoscale polymer reflow to realize 3D optical devices, specifically, vertically aligned nanoresonators and graphene-based nanocubes. HFSS and Comsol simulations have been carried out to analyze the advantages of the polymer-based 3D metamaterials as opposed to those fabricated with a metallic hinge. The simulation results clearly demonstrate that the polymer hinges have a dual advantage; first, the removal of any interference from the transmission spectrum leading to strong and distinct resonance peaks and, second, the elimination of parasitic leeching of the enhanced field by the metallic hinge resulting in stronger volumetric enhancement. Thus, the 2-fold advantages existing in 3D polymer-hinge optical metamaterials can open pathways for applications in 3D optoelectronic devices and sensors, vibrational molecular spectroscopy, and other nanoscale 3D plasmonic devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Kriti Agarwal
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
7
|
Agarwal K, Hwang S, Bartnik A, Buchele N, Mishra A, Cho JH. Small-Scale Biological and Artificial Multidimensional Sensors for 3D Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801145. [PMID: 30062866 DOI: 10.1002/smll.201801145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/08/2018] [Indexed: 06/08/2023]
Abstract
A vast majority of existing sub-millimeter-scale sensors have a planar, 2D geometry as a result of conventional top-down lithographic procedures. However, 2D sensors often suffer from restricted sensing capability, allowing only partial measurements of 3D quantities. Here, nano/microscale sensors with different geometric (1D, 2D, and 3D) configurations are reviewed to introduce their advantages and limitations when sensing changes in quantities in 3D space. This Review categorizes sensors based on their geometric configuration and sensing capabilities. Among the sensors reviewed here, the 3D configuration sensors defined on polyhedral structures are especially advantageous when sensing spatially distributed 3D quantities. The nano- and microscale vertex configuration forming polyhedral structures enable full 3D spatial sensing due to orthogonally aligned sensing elements. Particularly, the cubic configuration leveraged in 3D sensors offers an array of diverse applications in the field of biosensing for micro-organisms and proteins, optical metamaterials for invisibility cloaking, 3D imaging, and low-power remote sensing of position and angular momentum for use in microbots. Here, various 3D sensors are compared to assess the advantages of their geometry and its impact on sensing mechanisms. 3D biosensors in nature are also explored to provide vital clues for the development of novel 3D sensors.
Collapse
Affiliation(s)
- Kriti Agarwal
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sehyun Hwang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Aaron Bartnik
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nicholas Buchele
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Avishek Mishra
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|