1
|
Ye Y, Chen J, Wu Y, Liu J, Cao Y, Zhu X, Li Q, Qian J. Modulating Host-Guest Interactions in Isoreticular Fe(III)-Doped Co-MOF Precatalysts for Electrocatalytic Oxygen Evolution. Inorg Chem 2025; 64:7825-7831. [PMID: 40199583 DOI: 10.1021/acs.inorgchem.5c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The pursuit of sustainable energy solutions to address environmental challenges and energy crises has driven significant interest in electrocatalytic water splitting. However, the efficiency of this process is hindered by the sluggish kinetics of the anodic oxygen evolution reaction (OER). To overcome this, we synthesized two isoreticular cobalt-based metal-organic frameworks (MOFs), MOF-74 and MOF-274, with different pore sizes (16.50 and 23.37 Å, respectively), where MOF-74 exhibited stronger Fe(III) adsorption as a result of its confined nanosized channels. Electrochemical activation transformed these Co-MOF precatalysts into Fe-doped CoOOH nanosheets with uniform elemental distribution, enhancing their OER performance. It revealed strengthened Co-O-Fe electronic interactions in MOF-74-Fe by X-ray photoelectron spectroscopy analysis, where MOF-74-Fe-OER achieved a decent electrocatalytic OER activity to show a lower overpotential of 288 mV at 10 mA cm-2 compared to MOF-274-Fe-OER (357 mV). Furthermore, the long-term stability tests confirmed robust durability, with MOF-74-Fe-OER retaining 96.9% of its initial performance over 10 h. These results underscore the critical role of pore-engineered MOF precatalysts in optimizing electronic modulation and catalytic efficiency for sustainable water oxidation.
Collapse
Affiliation(s)
- Yunan Ye
- College of Chemistry and Materials Engineering & College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Junliang Chen
- College of Chemistry and Materials Engineering & College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yi Wu
- College of Chemistry and Materials Engineering & College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Jie Liu
- College of Chemistry and Materials Engineering & College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yuanjie Cao
- College of Chemistry and Materials Engineering & College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xiangou Zhu
- College of Chemistry and Materials Engineering & College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China
| | - Jinjie Qian
- College of Chemistry and Materials Engineering & College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
2
|
Liu LL, Liu L, Wang CY, Zhang L, Feng JJ, Gao YJ, Wang AJ. Strong coupling Fe 2VO 4 nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction. J Colloid Interface Sci 2025; 684:10-20. [PMID: 39813908 DOI: 10.1016/j.jcis.2025.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the Fe2VO4 nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed Fe2VO4/NIPC. The obtained Fe2VO4/NIPC displayed outstanding catalytic properties in the alkaline media for oxygen reduction reaction with a half-wave potential of 0.86 V. In the parallel, density functional theory (DFT) calculations were performed to illustrate the catalytic mechanism. Moreover, the Fe2VO4/NIPC assembled Zn-air battery showed a high peak power density of 107.7 mW cm-2 and excellent long-cycle stability over a duration of 250 h, which outperformed commercial Pt/C catalyst in the control group. The strong coupling and synergistic effects between the Fe2VO4 nanoparticles and N-doped carbon improved the catalytic performance, coupled by promoting the stability. This study opens a prospect way to develop high-efficiency carbon-based electrocatalysts in energy storage and conversion devices.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Lu Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University 321004 Jinhua, PR China
| | - Chen-Yang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University 321004 Jinhua, PR China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China.
| |
Collapse
|
3
|
Liu S, Shuai Y, Zhang T, Liu X, Ding Z, Liu Y. Optimizing charge pathways by interface engineering in Fe 2O 3/Co 3O 4/Co(PO 3) 2 heterostructures for superior oxygen evolution reaction. Sci Rep 2025; 15:7025. [PMID: 40016315 PMCID: PMC11868503 DOI: 10.1038/s41598-025-89313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
The Oxygen Evolution Reaction (OER) is vital for energy conversion and storage. This study presents a multi-heterostructure catalyst, Fe2O3/Co3O4/Co(PO3)2, created by encapsulating Fe ions in COF/MOF pores through grinding and one-step pyrolysis. The catalyst demonstrates exceptional OER performance, achieving an ultra-low overpotential of 232 mV, outperforming the Co3O4/Co(PO3)2 single heterostructure. The unique design significantly reduces electron transfer resistance (Rct = 5.88 Ω), enhancing electron transfer efficiency at the heterojunction interface. Additionally, the catalyst's increased specific surface area and mesoporosity boost the number of active catalytic sites. Density functional theory (DFT) studies reveal that optimized geometric structures and altered electron density around Co and Fe sites shift the d-band center, facilitating electron migration and improving adsorption and desorption processes. This research provides novel insights into creating high-efficiency OER electrocatalysts with heterogeneous interfaces, advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Shucheng Liu
- School of Big Data and Information Engineering, Guizhou University, 550025, Guiyang, P. R. China
- School of Physical Sciences, Guizhou University, 550025, Guiyang, P. R. China
| | - Yu Shuai
- School of Physical Sciences, Guizhou University, 550025, Guiyang, P. R. China
| | - Tao Zhang
- School of Physical Sciences, Guizhou University, 550025, Guiyang, P. R. China
| | - Xuefei Liu
- School of physics and electronic science, Guizhou Normal University, 550025, Guiyang, China.
- School of Integrated Circuit, Guizhou Normal University, 550025, Guiyang, China.
| | - Zhao Ding
- School of Big Data and Information Engineering, Guizhou University, 550025, Guiyang, P. R. China.
| | - Yi Liu
- School of Physical Sciences, Guizhou University, 550025, Guiyang, P. R. China.
| |
Collapse
|
4
|
Wagh KS, Mane SM, Teli AM, Shin JC, Lee J. Recent Advancements in Co 3O 4-Based Composites for Enhanced Electrocatalytic Water Splitting. MICROMACHINES 2024; 15:1450. [PMID: 39770203 PMCID: PMC11678611 DOI: 10.3390/mi15121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
The pursuit of efficient and economical catalysts for water splitting, a critical step in hydrogen production, has gained momentum with the increasing demand for sustainable energy. Among the various electrocatalysts developed to date, cobalt oxide (Co3O4) has emerged as a promising candidate owing to its availability, stability, and catalytic activity. However, intrinsic limitations, including low catalytic activity and poor electrical conductivity, often hinder its effectiveness in electrocatalytic water splitting. To overcome these challenges, substantial efforts have focused on enhancing the electrocatalytic performance of Co3O4 by synthesizing composites with conductive materials, transition metals, carbon-based nanomaterials, and metal-organic frameworks. This review explores the recent advancements in Co3O4-based composites for the oxygen evolution reaction and the hydrogen evolution reaction, emphasizing strategies such as nanostructuring, doping, hybridization, and surface modification to improve catalytic performance. Additionally, it examines the mechanisms driving the enhanced activity and stability of these composites while also discussing the future potential of Co3O4-based electrocatalysts for large-scale water-splitting applications.
Collapse
Affiliation(s)
- Komal S. Wagh
- Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sagar M. Mane
- Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Aviraj M. Teli
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jae Cheol Shin
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Bayati-Komitaki N, Ganduh SH, Alzaidy AH, Salavati-Niasari M. A comprehensive review of Co 3O 4 nanostructures in cancer: Synthesis, characterization, reactive oxygen species mechanisms, and therapeutic applications. Biomed Pharmacother 2024; 180:117457. [PMID: 39305816 DOI: 10.1016/j.biopha.2024.117457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Nanotechnology involves creating, analyzing, and using tiny materials. Cobalt oxide nanoparticles (Co3O4 NPs) have several medicinal uses due to their unique antifungal, antibacterial, antioxidant, anticancer, larvicidal, anticholinergic, antileishmanial, wound healing, and antidiabetic capabilities. Cobalt oxide nanoparticles (Co3O4 NPs) with attractive magnetic properties have found widespread use in biomedical applications, including magnetic resonance imaging, magnetic hyperthermia, and magnetic targeting. The high surface area of Co3O4 leads to unique electrical, optical, catalytic, and magnetic properties, which make it a promising candidate for biomedical bases. Additionally, cobalt nanoparticles with various oxidation states (i.e., Co2+, Co3+, and Co4+) are beneficial in numerous utilizations. Co3O4 nanoparticles as a catalyzer accelerate the conversion rate of hydrogen peroxide (H2O2) to harmful hydroxyl radicals (•OH), which destroy tumor cells. However, it is also possible to enhance the generation of reactive oxygen species (ROS) and successfully treat cancer by combining these nanoparticles with drugs or other nanoparticles. This review summarizes the past concepts and discusses the present state and development of using Co3O4 NPs in cancer treatments by ROS generation. This review emphasizes the advances and current patterns in ROS generation, remediation, and some different cancer treatments using Co3O4 nanoparticles in the human body. It also discusses synthesis techniques, structure, morphological, optical, and magnetic properties of Co3O4 NPs.
Collapse
Affiliation(s)
| | - Safaa H Ganduh
- Department of Chemistry Pharmaceutical, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Asaad H Alzaidy
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317-51167, Kashan, Iran.
| |
Collapse
|
6
|
Li W, Guo B, Zhang K, Chen X, Zhang H, Chen W, Chen H, Li H, Feng X. Ru-regulated electronic structure CoNi-MOF nanosheets advance water electrolysis kinetics in alkaline and seawater media. J Colloid Interface Sci 2024; 668:181-189. [PMID: 38677207 DOI: 10.1016/j.jcis.2024.04.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Herein, an ion-exchange strategy is utilized to greatly improve the kinetics of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by Ru-modified CoNi- 1,3,5-Benzenetricarboxylic acid (BTC)-metal organic framework nanosheets (Ru@CoNi-MOF). Due to the higher Ni active sites and lower electron transfer impedance, Ru@CoNi-MOF catalyst requires the overpotential as low as 47 and 279 mV, at a current density of 10 mA/cm2 toward HER and OER, respectively. Significantly, the mass activity of Ru@CoNi-MOF for HER and OER are 25.9 and 10.6 mA mg-1, nearly 15.2 and 8.8 times higher than that of Ni-MOF. In addition, the electrolyzer of Ru@CoNi-MOF demonstrates exceptional electrolytic performance in both KOH and seawater environment, surpasses the commercial Pt/C||IrO2 couple. Theoretical calculations prove that introducing Ru atoms in - CoNi-MOF modulates the electronic structure of Ni, optimizes adsorption energy for H* and reduces energy barrier of metal organic frameworks (MOFs). This modification significantly improves the kinetic rate of the Ru@CoNi-MOF during water splitting. Certainly, this study highlights the utilization of MOF nanosheets as advanced HER/OER electrocatalysts with immense potential, and will paves a way to develop more efficient MOFs for catalytic applications.
Collapse
Affiliation(s)
- Wenqiang Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Bowen Guo
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473601, PR China
| | - Ka Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xueyi Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Heng Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Wanyu Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Haipeng Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Huabo Li
- Guangdong Alcohol and Hydrogen New Energy Research Institute Co., Ltd., Guangzhou 511316, PR China
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
7
|
Guo E, Hao L, Huo Y, Nsabimana A, Dong J, Su M, Zhang Y. Simple synthesis of peanut shell-like MoCoFe-HO@CoMo-LDH for efficient alkaline oxygen evolution reaction. J Colloid Interface Sci 2024; 664:748-755. [PMID: 38492376 DOI: 10.1016/j.jcis.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Due to the depletion of fossil energy on earth, it is crucial to develop resource rich and efficient non-precious metal electrocatalysts for oxygen evolution reaction (OER). Herein, we synthesized an efficient and economical electrocatalyst using a simple self-assembly strategy. Firstly, rod-shaped MIL-88A was synthesized by hydrothermal method. Then, the surface of MIL-88A was functionalized and encapsulated in zeolitic imidazolate framework-67 (ZIF-67) by hydrothermal method. The combination of MIL-88A and ZIF-67 resulted in a slight ion-exchange reaction between Co2+ and the surface of MIL-88A to generate CoFe-LDH@ZIF-67 core-shell structure. Afterwards, in the presence of Mo6+, ZIF-67 was converted into CoMo-nanocages through ion-exchange reactions, forming a core-shell structure of MoCoFe hydr (oxy) oxide@CoMo-LDH (MoCoFe-HO@CoMo-LDH). Due to the advantages of core-shell structure and composition, this material exhibits excellent OER characteristics, with a small Tafel slope (45.11 mV dec-1) and low overpotential (324 mV) at 10 mA cm-2. It exhibits good stability in alkaline media. This research work provides a novel approach for the development of efficient and economical non-precious metal electrocatalysts.
Collapse
Affiliation(s)
- Enwei Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, PR China
| | - Youhua Huo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Anaclet Nsabimana
- Chemistry Department, College of Science and Technology, University of Rwanda, Po Box: 3900, Kigali, Rwanda
| | - Jiangxue Dong
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Ming Su
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Yufan Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
8
|
Chen Z, Yang Z, Li X, Li L, Lin H. Dopamine-modified cobalt spinel nanoparticles as an active catalyst for the acidic oxygen evolution reaction. Dalton Trans 2024; 53:9011-9020. [PMID: 38726692 DOI: 10.1039/d4dt00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The development of efficient non-noble metal electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions remains a critical challenge. Herein, we report a N-doped carbonaceous component-engineered Co3O4 (NCEC) catalyst synthesized via the sol-gel method. Dopamine hydrochloride (DA)-derived nitrogen-doped carbonaceous components were found to boost the OER performance of Co3O4. The optimized catalyst can reach an overpotential as low as 330 mV in 1 M H2SO4 at a current density of 10 mA cm-2 and maintains a good long-term stability of 60 hours. In particular, we found that the thermodynamic overpotential was inversely proportional to the content of oxidized N and pyridinic N, whereas it was directly proportional to the pyrrolic-N content. Our experiments and density functional theory (DFT) calculations confirm that the optimized catalyst exhibits enhanced charge transfer and the oxidized N species on Co3O4 is responsible for the high catalytic activity. Our study suggests that the performance of NCEC in acidic media can be further optimized by enhancing the content of oxidized N species.
Collapse
Affiliation(s)
- Zhengle Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhiqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xinyuan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| |
Collapse
|
9
|
de Lima AFV, Lourenço ADA, Silva VD, Menezes de Oliveira AL, Rostas AM, Barbu-Tudoran L, Leostean C, Pana O, da Silva RB, Macedo DA, da Silva FF. Co 3O 4/activated carbon nanocomposites as electrocatalysts for the oxygen evolution reaction. Dalton Trans 2024; 53:8563-8575. [PMID: 38682235 DOI: 10.1039/d3dt03720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The Oxygen Evolution Reaction (OER) is crucial in various processes such as hydrogen production via water splitting. Several electrocatalysts, including metal oxides, have been evaluated to enhance the reaction efficiency. Zeolitic Imidazolate Framework-67 (ZIF-67) has been employed as a precursor to produce Co3O4, showing high OER activity. Additionally, the formation of composites with carbon-based materials improves the activity of these materials. Thus, this work focuses on synthesizing ZIF-67 and commercial activated carbon (AC) composites, which were used as precursors to obtain Co3O4/C electrocatalysts by calculating ZIF-67/CX (X = 10, 30, and 50, the mass percentage of AC). The obtained materials were thoroughly characterized by employing X-ray powder diffraction (XRD), confirming the cobalt oxide structure with a sphere-like morphology as observed in the TEM images. The presence of oxygen vacancies was confirmed by infrared spectroscopy and EPR measurements. The electrocatalytic performance in the OER was investigated by linear sweep voltammetry (LSV), which revealed an overpotential of 325 mV at 10 mA cm-2 and a Tafel slope value of 65.32 mV dec-1 for Co3O4/C10, superior in activity to several previously reported studies in the literature and electrochemical stability of up to 8 hours. The reduced value of charge transfer resistance, high double-layer capacitance, and the presence of Co3+ ions justify the superior performance of the Co3O4/C10 electrocatalyst.
Collapse
Affiliation(s)
- Andrei F V de Lima
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| | - Annaíres de A Lourenço
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| | - Vinícius D Silva
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - André L Menezes de Oliveira
- Núcleo de Pesquisa e Extensão LACOM, Departamento de Química, Universidade Federal da Paraíba, 52051-85, João Pessoa-PB, Brazil
| | - Arpad M Rostas
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Cristian Leostean
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ovidiu Pana
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodolfo B da Silva
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Daniel A Macedo
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Fausthon F da Silva
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| |
Collapse
|
10
|
Zhang Z, Shi F, Ai Y, Li X, Zhang D, Wang L, Sun W. Portable wireless electrochemical sensing of breviscapine using core-shell ZIFs-derived Co nanoparticles embedded in N-doped carbon nanotube polyhedra-modified electrode. Mikrochim Acta 2024; 191:290. [PMID: 38683258 DOI: 10.1007/s00604-024-06298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
A core-shell ZIF-67@ZIF-8-derived Co nanoparticles embedded in N-doped carbon nanotube polyhedra (Co/C-NCNP) hybrid nanostructure was prepared by a pyrolysis method. The synthesized Co/C-NCNP was modified on the screen-printed carbon electrode and used for the portable wireless sensitive determination of breviscapine (BVC) by differential pulse voltammetry. The Co/C-NCNP had a large surface area and excellent catalytic activity with increasing Co sites to combine with BVC for selective determination, which led to the improvement of the sensitivity of the electrochemical sensor. Under optimized conditions, the constructed sensor had linear ranges from 0.15 to 20.0 µmol/L and 20.0 to 100.0 µmol/L with the limit of detection of 0.014 µmol/L (3S0/S). The sensor was successfully applied to BVC tablet sample analysis with satisfactory results. This work provided the potential applications of zeolitic imidazolate framework-derived nanomaterials in the fabrication of electrochemical sensors for the sensitive detection of drug samples.
Collapse
Affiliation(s)
- Zejun Zhang
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657000, China
| | - Fan Shi
- College of Mechanical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yijing Ai
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Xiaoqing Li
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dan Zhang
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| | - Lisi Wang
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
11
|
Zhang M, Wang J, Gong Y. Atomically dispersed silver atoms incorporated in spinel cobalt oxide (Co 3O 4) for boosting oxygen evolution reaction. J Colloid Interface Sci 2024; 659:203-212. [PMID: 38176230 DOI: 10.1016/j.jcis.2023.12.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Incorporating noble metal single atoms into lattice of spinel cobalt oxide (Co3O4) is an attractive way to fabricate oxygen evolution reaction (OER) electrocatalysts because of the high activity and economic benefit. The commonly used high valence noble metal dopants such as ruthenium, iridium and rhodium tend to supersede Co3+ at octahedral site of Co3O4 and result in great activity, the origins of admirable activity were also wildly investigated. However, bare explorations on doping noble metal single atom into tetrahedral site of Co3O4 to construct OER catalyst have been reported, corresponding catalytic activity and mechanism remain mystery. Here, a promising structure that tetrahedrally substituent Ag single atom embedded in Co3O4 nanoparticles on the surface of carbon nanotube (Ag-Co3O4/CNT) was presented, and its performance in OER was probed. The high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption spectroscopy (XAS) demonstrate the successful embeddedness of atomical Ag atom in Co3O4 lattice, the resultant electronic interaction is conducive to promote charge transfer for OER. Theoretical calculations further disclose that atomical Ag dopant prefers to replace tetrahedral Co2+ rather than octahedral Co3+. The substitution Ag acts as the active site through Ag-Co bridge and facilitates the desorption process, which improves the turnover frequency (TOF) and boosts the intrinsic activity of Ag-Co3O4/CNT. Benefiting from the essentials above, Ag-Co3O4/CNT displays remarkable activity (236 mV@10 mA cm-2) and robust stability for alkaline OER. This finding offers a potential direction for the design of noble metal single atom involved Co3O4 based OER electrocatalysts.
Collapse
Affiliation(s)
- Meilin Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Jinlei Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Yaqiong Gong
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China.
| |
Collapse
|
12
|
Tang M, Sun J, Naibao H, Wang B, Ge X, Dong W, Li W, Sun X. An improvement on the electrocatalytic performance of ZIF-67 by in situself-growing CNTs on surface. NANOTECHNOLOGY 2024; 35:235601. [PMID: 38430570 DOI: 10.1088/1361-6528/ad2f73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
Efficient and robust oxygen reduction reaction (ORR) catalysts are essential for the development of high-performance anion-exchange membrane fuel cells (AEMFC). To enhance the electrochemical performance of metal-organic frameworks of cobalt-based zeolite imidazolium skeleton (ZIF-67), this study reported a novel ZIF-67-4@CNT byin situgrowing carbon nanotubes (CNTs) on the surface of ZIF-67 via a mild two-step pyrolysis/oxidation treatment. The electrochemical results showed that the as-prepared ZIF-67-4@CNT after CTAB modification exhibited excellent catalytic activity with good stability, with Eonset, E1/2, and Ilimit, respectively were 0.98 V (versus RHE), 0.87 V (versus RHE) and 6.04 mA cm-2@1600 rpm, and a current retention rate of about 94.21% after polarized at 0.80 V for 10 000 s, which were all superior to that of the commercial 20 wt% Pt/C. The excellent ORR catalytic performance was mainly attributed to the large amount of thein situgrowing CNTs on the surface, encapsulated with a wide range of valence states of metallic cobalt.
Collapse
Affiliation(s)
- Miao Tang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Jintao Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Huang Naibao
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Bin Wang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Xiaowen Ge
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Wenjing Dong
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Wanting Li
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Xiannian Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| |
Collapse
|
13
|
Hu Q, Qi S, Huo Q, Zhao Y, Sun J, Chen X, Lv M, Zhou W, Feng C, Chai X, Yang H, He C. Designing Efficient Nitrate Reduction Electrocatalysts by Identifying and Optimizing Active Sites of Co-Based Spinels. J Am Chem Soc 2024; 146:2967-2976. [PMID: 38155548 DOI: 10.1021/jacs.3c06904] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Cobalt-based spinel oxides (i.e., Co3O4) are emerging as low-cost and selective electrocatalysts for the electrochemical nitrate reduction reaction (NO3-RR) to ammonia (NH3), although their activity is still unsatisfactory and the genuine active site is unclear. Here, we discover that the NO3-RR activity of Co3O4 is highly dependent on the geometric location of the Co site, and the NO3-RR prefers to occur at octahedral Co (CoOh) rather than tetrahedral Co (CoTd) sites. Moreover, CoOhO6 is electrochemically transformed to CoOhO5 along with the formation of O vacancies (Ov) during the process of NO3-RR. Both experimental and theoretic results reveal that in situ generated CoOhO5-Ov configuration is the genuine active site for the NO3-RR. To further enhance the activity of CoOh sites, we replace inert CoTd with different contents of Cu2+ cations, and a volcano-shape correlation between NO3-RR activity and electronic structures of CoOh is observed. Impressively, in 1.0 M KOH, (Cu0.6Co0.4)Co2O4 with optimized CoOh sites achieves a maximum NH3 Faradaic efficiency of 96.5% with an ultrahigh NH3 rate of 1.09 mmol h-1 cm-2 at -0.45 V vs reversible hydrogen electrode, outperforming most of other reported nonprecious metal-based electrocatalysts. Clearly, this work paves new pathways for boosting the NO3-RR activity of Co-based spinels by tuning local electronic structures of CoOh sites.
Collapse
Affiliation(s)
- Qi Hu
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Shuai Qi
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qihua Huo
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yuxin Zhao
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Jianju Sun
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xinbao Chen
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Miaoyuan Lv
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Weiliang Zhou
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chao Feng
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaoyan Chai
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Hengpan Yang
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
14
|
Fan Z, Sun Q, Yang H, Zhu W, Liao F, Shao Q, Zhang T, Huang H, Cheng T, Liu Y, Shao M, Shao M, Kang Z. Layered Quasi-Nevskite Metastable-Phase Cobalt Oxide Accelerates Alkaline Oxygen Evolution Reaction Kinetics. ACS NANO 2024. [PMID: 38286031 DOI: 10.1021/acsnano.3c11199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Å and c = 6.89 Å with a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).
Collapse
Affiliation(s)
- Zhenglong Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
- Energy Institute, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
| | - Qintao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Tianyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
- Energy Institute, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| |
Collapse
|
15
|
Bai J, Zhou W, Xu J, Zhou P, Deng Y, Xiang M, Xiang D, Su Y. RuO 2 Catalysts for Electrocatalytic Oxygen Evolution in Acidic Media: Mechanism, Activity Promotion Strategy and Research Progress. Molecules 2024; 29:537. [PMID: 38276614 PMCID: PMC10819928 DOI: 10.3390/molecules29020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Proton Exchange Membrane Water Electrolysis (PEMWE) under acidic conditions outperforms alkaline water electrolysis in terms of less resistance loss, higher current density, and higher produced hydrogen purity, which make it more economical in long-term applications. However, the efficiency of PEMWE is severely limited by the slow kinetics of anodic oxygen evolution reaction (OER), poor catalyst stability, and high cost. Therefore, researchers in the past decade have made great efforts to explore cheap, efficient, and stable electrode materials. Among them, the RuO2 electrocatalyst has been proved to be a major promising alternative to Ir-based catalysts and the most promising OER catalyst owing to its excellent electrocatalytic activity and high pH adaptability. In this review, we elaborate two reaction mechanisms of OER (lattice oxygen mechanism and adsorbate evolution mechanism), comprehensively summarize and discuss the recently reported RuO2-based OER electrocatalysts under acidic conditions, and propose many advanced modification strategies to further improve the activity and stability of RuO2-based electrocatalytic OER. Finally, we provide suggestions for overcoming the challenges faced by RuO2 electrocatalysts in practical applications and make prospects for future research. This review provides perspectives and guidance for the rational design of highly active and stable acidic OER electrocatalysts based on PEMWE.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Dongsheng Xiang
- School of Medicine and Health, Yancheng Polytechnic College, Yancheng 224005, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
16
|
Yu K, Yang H, Zhang H, Huang H, Wang Z, Kang Z, Liu Y, Menezes PW, Chen Z. Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:186. [PMID: 37515724 PMCID: PMC10387036 DOI: 10.1007/s40820-023-01164-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Efficient and durable oxygen evolution reaction (OER) requires the electrocatalyst to bear abundant active sites, optimized electronic structure as well as robust component and mechanical stability. Herein, a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La2O2S prototype is fabricated as a binder-free precatalyst for alkaline OER. The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La, Ni, O, and S species during OER, which assures the adsorption and stabilization of the oxyanion [Formula: see text] onto the surface of the deeply reconstructed porous heterostructure composed of confining NiOOH nanodomains by La(OH)3 barrier. Such coupling, confinement, porosity and immobilization enable notable improvement in active site accessibility, phase stability, mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates. The optimized electrocatalyst delivers exceptional alkaline OER activity and durability, outperforming most of the Ni-based benchmark OER electrocatalysts.
Collapse
Affiliation(s)
- Kai Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen Laboratory, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| |
Collapse
|
17
|
Zhu Q, Yang G, Tang L, Mi H, Sun L, Zhang Q, Deng L, Zhang P, Ren X, Li Y. Enhanced electrocatalytic performance for oxygen evolution reaction via active interfaces of Co 3O 4arrays@FeO x/Carbon cloth heterostructure by plasma-enhanced atomic layer deposition. NANOTECHNOLOGY 2023; 34:225703. [PMID: 36857776 DOI: 10.1088/1361-6528/acc038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Oxygen evolution reaction (OER) is a necessary procedure in various devices including water splitting and rechargeable metal-air batteries but required a higher potential to improve oxygen evolution efficiency due to its slow reaction kinetics. In order to solve this problem, a heterostructured electrocatalyst (Co3O4@FeOx/CC) is synthesized by deposition of iron oxides (FeOx) on carbon cloth (CC) via plasma-enhanced atomic layer deposition, then growth of the cobalt oxide (Co3O4) nanosheet arrays. The deposition cycle of FeOxon the CC strongly influences thein situgrowth and distribution of Co3O4nanosheets and electronic conductivity of the electrocatalyst. Owing to the high accessible and electroactive areas and improved electrical conductivity, the free-standing electrode of Co3O4@FeOx/CC with 100 deposition cycles of FeOxexhibits excellent electrocatalytic performance for OER with a low overpotential of 314.0 mV at 10 mA cm-2and a small Tafel slope of 29.2 mV dec-1in alkaline solution, which is much better than that of Co3O4/CC (448 mV), and even commercial RuO2(380 mV). This design and optimization strategy shows a promising way to synthesize ideally designed catalytic architectures for application in energy storage and conversion.
Collapse
Affiliation(s)
- Qingying Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Guoyong Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Limin Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Hongwei Mi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lingna Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
18
|
Zhou P, Yan Y, Cheng J, Zhou C. Directional Self-Transportation of Droplets on Superwetting Wedge-Shaped Surface in Air and Underliquid Environments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8742-8750. [PMID: 36740783 DOI: 10.1021/acsami.2c21392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The directional self-transportation of droplets has aroused great attention in microfluidic systems. However, most reported surfaces are mainly designed for driving water droplets to move in air, displaying low adaptability in complex environments. This work presents a wedge-shaped surface with multiple superwettability, i.e., superhydrophilicity/superoleophilicity and underwater superoleophobicity/underoil superhydrophobicity, fabricated by electrodeposition of a metal-organic framework on a copper sheet. This surface exhibited excellent performance for driving droplet self-transportation, regardless of the droplet type (water or oil) and environmental media (air or underliquids). In air, the wedge-shaped surface with wedge angle of 9.2° could move droplets of water and dodecane up to 24.5 mm and 17.9 mm, respectively. The movement of water droplet under dodecane, however, dropped from 24.5 mm to 22.1 mm, while the dodecane droplet underwater increased from 17.9 mm to 20.3 mm in moving displacement, indicating the underliquid environment is in favor of manipulation of oil droplets. Furthermore, the droplet convergence, transportation, and separation were achieved on the well-designed multiple wedge tracks in air with a total movement distance up to 60.0 mm. The test of micro-oil droplets collecting under water demonstrated that a sponge with two wedges has 2.1 times the oil droplet collection capacity over that of the sponge only, providing a new strategy for efficient treatment of the micro-oil droplets contaminated water.
Collapse
Affiliation(s)
- Peizhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Yuanyang Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
19
|
Zhang Q, Jing B, Qiu S, Cui C, Zhu Y, Deng F. A mechanism in boosting H2 generation: nanotip-enhanced local temperature and electric field with the boundary layer. J Colloid Interface Sci 2023; 629:755-765. [DOI: 10.1016/j.jcis.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
|
20
|
Liao Q, Liu X, Deng K, Liu P, Lv X, Tian W, Ji J. Plasma-Induced Surface Reconstruction of NiFe/Co 3O 4 Nanoarrays for High-Current and Ultrastable Oxygen Evolution and the Urea Oxidation Reaction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingdian Liao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kuan Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
21
|
Wei S, Li Y, Wang R, Yang H, Guo Z, Lin R, Huang Q, Zhou Y. Preparation of Cemented Carbide and Study of Copper-Accelerated Salt Spray Corrosion and Erosion Behavior. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7023. [PMID: 36234373 PMCID: PMC9571873 DOI: 10.3390/ma15197023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
(1) Mud pulser carbide rotors, as a core component of ground communication in crude oil exploration, are often subjected to mud erosion and acid corrosion, resulting in pitting pits on the surface, which affects the accuracy. The purpose of this study was to investigate the acid corrosion and erosion behavior of cemented carbide materials and provide a reference for the wider application of cemented carbide materials in the petrochemical industry. (2) Experimental samples of tungsten-cobalt carbide were sintered at a low pressure by powder metallurgy. The petrochemical application environment was simulated by accelerated salt spray corrosion and solid slurry erosion with the aid of acidic copper, and the experimental phenomena were analyzed by SEM (scanning electron microscope), EDS (Energy Dispersive Spectroscopy), and XRD (X-ray diffraction). (3) The experimental results show that the coercivity of the pitted cobalt-cemented tungsten carbide prepared in this study was 17.89 KA/m, and the magnetic saturation strength was 14.42 G·cm3/g. The corrosion rate was the fastest during the acidic copper acceleration experiments from 4 h to 16 h, and the corrosion products of WCo3 and Co3O4 were generated on the corrosion surface. The maximum erosion rate of 0.00104 in the erosion experiment corresponds to a corrosion sample with a corrosion time of 36 h. (4) Therefore, the coercive magnetic force and magnetic saturation strength could be derived from the prepared carbide hard phase grains and carbon content in the appropriate range. The corrosion product in the corrosion process slowed the corrosion rate, and a large amount of cobalt and a small amount of tungsten was lost by oxidation during the corrosion process. The corrosion time had the greatest effect on the erosion performance of the carbide, and the long corrosion time led to surface sparseness, which reduced the erosion resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongchuan Lin
- Correspondence: (R.L.); (Q.H.); (Y.Z.); Tel.: +86-136-0603-3316 (R.L.)
| | - Qingmin Huang
- Correspondence: (R.L.); (Q.H.); (Y.Z.); Tel.: +86-136-0603-3316 (R.L.)
| | - Yuhui Zhou
- Correspondence: (R.L.); (Q.H.); (Y.Z.); Tel.: +86-136-0603-3316 (R.L.)
| |
Collapse
|
22
|
Zhu SQ, Shu JC, Cao MS. Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. NANOSCALE 2022; 14:7322-7331. [PMID: 35535465 DOI: 10.1039/d2nr01024k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The upcoming 5G era will powerfully promote the development of intelligent society in the future, but it will also bring serious electromagnetic pollution. Thus, the development of efficient, lightweight and multifunctional electromagnetic shielding materials and devices is an important research hotspot around the world. Herein, a novel needlelike Co3O4/C array architecture is constructed from MOF precursor via a simple pyrolysis process, and its microstructure is controllably tailored by changing the pyrolysis temperature. The unique 3D hierarchical structure and multiphase components enable the architecture to provide high-efficiency electromagnetic interference (EMI) shielding, along with good thermal insulation. More importantly, the architecture possesses fast ion transport channels, which can be used to construct supercapacitors with high specific capacitance and excellent cycle stability. Obviously, this work offers a new inspiration for the design and construction of multifunctional electromagnetic materials and devices.
Collapse
Affiliation(s)
- Si-Qi Zhu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jin-Cheng Shu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
23
|
Gu X, Wu C, Wang S, Feng L. Cobalt fluoride/nitrogen-doped carbon derived from ZIF-67 for oxygen evolution reaction. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
24
|
Abstract
A rapid, productive, and efficient process was invented to produce hybrid catalysts for transition metal oxide water electrolysis. The microwave-assisted hydrothermal method was applied to synthesize transition metal oxide catalysts by controlling the amount of cobalt and iron. This work solves the cracking problem for the catalytic layer during the water electrolysis. It uses Fe2O3 as the support and covers a catalytic layer outside it and a nanoscale gap between each catalyst, which can help to remove the gas and fill up the water. The unique structure of the catalysts can prevent them from accumulating gas and increasing their efficiency for long-term water electrolysis. By using unique catalysts in the water electrolyzer, the current density reaches higher than 200 mA cm−2 at 2.0 V and does not show a significant decay even after 200 h.
Collapse
|
25
|
Ye J, Dai J, Yang D, Li C, Yan Y, Wang Y. Interfacial engineering of vacancy-rich nitrogen-doped Fe xO y@MoS 2 Co-catalytic carbonaceous beads mediated non-radicals for fast catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126715. [PMID: 34332488 DOI: 10.1016/j.jhazmat.2021.126715] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
How to accelerate the Fe3+/Fe2+ conversion and fabricate recyclable iron-based catalysts with high reactivity and stability is highly desired yet challenging. Herein, vacancy-rich N@FexOy@MoS2 carbonaceous beads were firstly developed via employing sodium alginate, molybdenum disulfide (MoS2), and Fe-ZIFs through sol-gel self-assembly, followed by in-situ growth and pyrolysis strategies. As expected, A series of characterizations reflected that N@FexOy@MoS2 had high dispersibility and conductivity for fast mass and electron transport, and MoS2 as co-catalyst accelerated the circulation of Fe3+ to Fe2+ that attained 99.4% (0.345 min-1) norfloxacin degradation via PMS activation in a synergistic ''adsorption-driven-oxidation'' process, which much outperformed those of pure MoS2 (32.4%) and N@FexOy powder catalyst (45.3%). Moreover, confined Fe species, graphitic N, pyrrolic N, pyridinic N, and sulfur/oxygen vacancies were found as highly exposed active sites that contributed to the activation of PMS to dominate non-radicals (1O2 and O2·-) and other radicals following a contribution order 1O2 > O2·- > SO4·- > ·OH. More importantly, a fluidized-bed catalytic unit was evaluated and maintained the continuous zero discharge of NX. Overall, this study offered a generally applicable approach to fabricate removable Fe-based catalysts for contaminants remediation.
Collapse
Affiliation(s)
- Jian Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Dayi Yang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
26
|
Hu Z, Hao L, Quan F, Guo R. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The demand for the development of clean and efficient energy is becoming increasingly pressing due to depleting fossil fuels and environmental concerns.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fan Quan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
27
|
Zoller F, Häringer S, Böhm D, Luxa J, Sofer Z, Fattakhova-Rohlfing D. Carbonaceous Oxygen Evolution Reaction Catalysts: From Defect and Doping-Induced Activity over Hybrid Compounds to Ordered Framework Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007484. [PMID: 33942507 DOI: 10.1002/smll.202007484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Oxygen evolution reaction (OER) is expected to be of great importance for the future energy conversion and storage in form of hydrogen by water electrolysis. Besides the traditional noble-metal or transition metal oxide-based catalysts, carbonaceous electrocatalysts are of great interest due to their huge structural and compositional variety and unrestricted abundance. This review provides a summary of recent advances in the field of carbon-based OER catalysts ranging from "pure" or unintentionally doped carbon allotropes over heteroatom-doped carbonaceous materials and carbon/transition metal compounds to metal oxide composites where the role of carbon is mainly assigned to be a conductive support. Furthermore, the review discusses the recent developments in the field of ordered carbon framework structures (metal organic framework and covalent organic framework structures) that potentially allow a rational design of heteroatom-doped 3D porous structures with defined composition and spatial arrangement of doping atoms to deepen the understanding on the OER mechanism on carbonaceous structures in the future. Besides introducing the structural and compositional origin of electrochemical activity, the review discusses the mechanism of the catalytic activity of carbonaceous materials, their stability under OER conditions, and potential synergistic effects in combination with metal (or metal oxide) co-catalysts.
Collapse
Affiliation(s)
- Florian Zoller
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| | - Sebastian Häringer
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU Munich), Butenandtstrasse 5-13 (E), Munich, 81377, Germany
| | - Daniel Böhm
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Dina Fattakhova-Rohlfing
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| |
Collapse
|
28
|
Bai L, Zhang J, He J, Zheng H, Yang Q. ZnO-Co 3O 4/N-C Cage Derived from the Hollow Zn/Co ZIF for Enhanced Degradation of Bisphenol A with Persulfate. Inorg Chem 2021; 60:13041-13050. [PMID: 34375075 DOI: 10.1021/acs.inorgchem.1c01481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The zeolitic imidazolate framework (ZIF)-67 microcrystal was employed as a precursor to synthesize the hollow ZIF-8/ZIF-67 composite via the epitaxial growth of ZIF-8 on ZIF-67, in situ self-sacrifice, and excavation of ZIF-67. The hollow ZIF-8/ZIF-67 composite was successfully transformed to the ZnO-Co3O4/N-C cage by thermal treatment, which was further used as the catalyst for the oxidative degradation of bisphenol A (BPA) in the presence of potassium persulfate (PS). In comparison with the Co3O4/N-C and Co3O4 obtained from pure ZIF-67 and cobalt nitrate, the ZnO-Co3O4/N-C cage demonstrated a more than four fold-higher activity and robust reusability. Based on structural analysis, the enhanced catalytic performance could be ascribed to the small, highly dispersed cobalt oxide particles, the hollow structure that facilitated the transportation of the molecules, and the synergistic effect between cobalt oxide and nitrogen-doped carbon in the composite. Besides, the effect of dosage of PS, BPA, and the co-existing components such as chloride ion, methanol, and t-butyl alcohol was carefully investigated to propose the possible mechanism. This study would give new insights into the design of functional composite materials from metal organic frameworks and the development of their application in environmental pollution disposal.
Collapse
Affiliation(s)
- Lei Bai
- School of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China
| | - Junru Zhang
- School of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China
| | - Jiaxin He
- School of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China
| | - Hongxing Zheng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qiuyun Yang
- School of Electrical Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China
| |
Collapse
|
29
|
Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution? ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Wen H, Zhang S, Yu T, Yi Z, Guo R. ZIF-67-based catalysts for oxygen evolution reaction. NANOSCALE 2021; 13:12058-12087. [PMID: 34231644 DOI: 10.1039/d1nr01669e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a new type of crystalline porous material, the imidazole zeolite framework (ZIF) has attracted widespread attention due to its ultra-high surface area, large pore volume, and unique advantage of easy functionalization. Developing different methods to control the shape and composition of ZIF is very important for its practical application as catalyst. In recent years, nano-ZIF has been considered an electrode material with excellent oxygen evolution reaction (OER) performance, which provides a new way to research electrolyzed water. This review focuses on the morphological engineering of the original ZIF-67 and its derivatives (core-shell, hollow, and array structures) through doping (cation doping, anion doping, and co-doping), derivative composition engineering (metal oxide, phosphide, sulfide, selenide, and telluride), and the corresponding single-atom catalysis. Besides, combined with DFT calculations, it emphasizes the in-depth understanding of actual active sites and provides insights into the internal mechanism of enhancing the OER and proposes the challenges and prospects of ZIF-67 based electrocatalysts. We summarize the application of ZIF-67 and its derivatives in the OER for the first time, which has significantly guided research in this field.
Collapse
Affiliation(s)
- Hui Wen
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | | | | | | | | |
Collapse
|
31
|
Díaz‐Duran AK, Roncaroli F. The Influence of Particle Size and Shape in Cobalt 2‐Methylimidazolate Polymers on Catalytic Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana Katherine Díaz‐Duran
- Departamento de Física de la Materia Condensada Instituto de Nanociencia y Nanotecnología Centro Atómico Constituyentes Comisión Nacional de Energía Atómica (CNEA) Avenida General Paz 1499 1650 San Martín, Buenos Aires Argentina
- Departamento de Química Inorgánica Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón II (1428) Ciudad de Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET Godoy Cruz 2290 (1425) Ciudad de Buenos Aires Argentina
| | - Federico Roncaroli
- Departamento de Física de la Materia Condensada Instituto de Nanociencia y Nanotecnología Centro Atómico Constituyentes Comisión Nacional de Energía Atómica (CNEA) Avenida General Paz 1499 1650 San Martín, Buenos Aires Argentina
- Departamento de Química Inorgánica Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón II (1428) Ciudad de Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET Godoy Cruz 2290 (1425) Ciudad de Buenos Aires Argentina
| |
Collapse
|
32
|
Borate Anion Dopant Inducing Oxygen Vacancies over Co3O4 Nanocages for Enhanced Oxygen Evolution. Catalysts 2021. [DOI: 10.3390/catal11060659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The rational design of cost effective and highly efficient oxygen evolution reaction (OER) catalysts plays an extremely important role in promoting the commercial applications of electrochemical water splitting. Herein we reported a sacrificial template strategy for the preparation of borate anion doped Co3O4@ZIF-67 nanocages assembled with nanosheets (B-Co3O4@ZIF-67) by hydrothermal boronation of zeolitic imidazolate framework-67 (ZIF-67). During the preparation process, two different kinds of borate anion sources were found to regulate the morphological structures by tuning the etching rate between ZIF precursors and the borate anion. Moreover, borate anion doping was also found to induce oxygen vacancy defects, which is beneficial for modulating the electronic structure and accelerating electron transport. Meanwhile, the resultant B-Co3O4@ZIF-67 nanocages possess a large specific surface area, which is beneficial for the mass transfer of the electrolyte and exposing more catalytic active sites. Benefiting from the advantages above, the resultant B-Co3O4@ZIF-67 nanocages exhibit impressive OER performance with a small overpotential of 334 mV, a current density of 10 mA cm−2, a small Tafel slope of 73.88 mV dec−1, as well as long-term durability in an alkaline electrolyte.
Collapse
|
33
|
Wang A, Shi Y, Yang L, Fan G, Li F. Ordered macroporous Co3O4-supported Ru nanoparticles: A robust catalyst for efficient hydrodeoxygenation of anisole. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Fe(III) Ions-Assisted Aniline Polymerization Strategy to Nitrogen-Doped Carbon-Supported Bimetallic CoFeP Nanospheres as Efficient Bifunctional Electrocatalysts toward Overall Water Splitting. MATERIALS 2021; 14:ma14061473. [PMID: 33803013 PMCID: PMC8002635 DOI: 10.3390/ma14061473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022]
Abstract
It remains an urgent demand and challenging task to design and fabricate efficient, stable, and inexpensive catalysts toward sustainable electrochemical water splitting for hydrogen production. Herein, we explored the use of Fe(III) ion-assisted aniline polymerization strategy to embed bimetallic CoFeP nanospheres into the nitrogen-doped porous carbon framework (referred CoFeP-NC). The as-prepared CoFeP-NC possesses excellent hydrogen evolution reaction (HER) performance with the small overpotential (η10) of 81 mV and 173 mV generated at a current density of 10 mA cm-2 in acidic and alkaline media, respectively. Additionally, it can also efficiently catalyze water oxidation (OER), which shows an ideal overpotential (η10) of 283 mV in alkaline electrolyte (pH = 14). The remarkable catalytic property of CoFeP-NC mainly stems from the strong synergetic effects of CoFeP nanospheres and carbon network. On the one hand, the interaction between the two can make better contact between the electrolyte and the catalyst, thereby providing a large number of available active sites. On the other hand, it can also form a network to offer better durability and electrical conductivity (8.64 × 10-1 S cm-1). This work demonstrates an efficient method to fabricate non-noble electrocatalyst towards overall water splitting, with great application prospect.
Collapse
|
35
|
MOF Embedded and Cu Doped CeO2 Nanostructures as Efficient Catalyst for Adipic Acid Production: Green Catalysis. Catalysts 2021. [DOI: 10.3390/catal11030304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Greatly efficient chemical processes are customarily based upon a catalyst activating the process pathway to achieve higher yields of a product with desired specifications. Catalysts capable of achieving good performance without compromising green credentials are a pre-requisite for the development of a sustainable process. In this study, CeO2 nanoparticles were tested for their catalytic activity with two different configurations, one as a hybrid of CeO2 nanoparticles with Zeolitic Immidazole Framework (ZIF-67) and second being doped Cu cations into CeO2 nanoparticles. Physicochemical and catalytic activity was investigated and compared for both systems. Each hybrid was synthesized by embedding the CeO2 nanoparticles into the microporous structure of ZIF-67, and Cu doped CeO2 nanoparticles were prepared by a facile hydrothermal route. As a catalytic test, it was employed for the oxidation of cyclohexene to adipic acid (AA) as an alternative to expensive noble metal-based catalysts. Heterogeneous ZIF-67/CeO2 found catalytical activity towards the oxidation of cyclohexene with nearly complete conversion of cyclohexene into AA under moderate and co-catalyst free reaction conditions, whereas Cu doped CeO2 nanoparticles have shown no catalytic activity towards cyclohexene conversion, depicting the advantages of the porous ZIF-67 structure and its synergistic effect with CeO2 nanoparticles. The large surface area catalyst could be a viable option for the green synthesis of many other chemicals.
Collapse
|
36
|
Qi L, Wang M, Li X. Graphene-induced growth of Co3O4 nanoplates with modulable oxygen vacancies for improved OER properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00255d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene-induced growth of Co(OH)2 nanoplates from Co3O4 nanospheres was reported, showing an ultralow overpotential of 240 mV at 10 mA cm−2 and a Tafel slope of 107.8 mV dec−1.
Collapse
Affiliation(s)
- Lei Qi
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinheng Li
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
37
|
Bai L, Guan Z, Li S, Zhang S, Huang Q, Li Z. Nest-like Co3O4 and PdO /Co3O4 synthesized via metal organic framework with cyclodextrin for catalytic removal of Bisphenol A by persulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Zhang Q, Fu M, Ning G, Sun Y, Wang H, Fan X, Lu H, Zhang Y, Wang H. Co/FeC core-nitrogen doped hollow carbon shell structure with tunable shell-thickness for oxygen evolution reaction. J Colloid Interface Sci 2020; 580:794-802. [PMID: 32731163 DOI: 10.1016/j.jcis.2020.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
Herein, multi-core-shell structure Co/FeC@N-doped hollow carbon (Co/FeC@NHC) with tunable carbon shell thickness is well crafted by a novel and simple strategy. Novel core-shell structure consisting of polydopamine (PDA) shell with different thickness and bimetal-based metal-organic frameworks (MOFs) Co/Fe core with cubic morphology are first prepared, followed by a thermal and etching treatments to fabricate hollow composite materials composed of multiple Co/FeC cores evenly distributed in N-doped carbon shell. PDA acts as a carbon and nitrogen source simultaneously to form N-doped hollow carbon in this procedure. Creatively, the N-doped hollow carbon shell protects Co/FeC core and against the degradation, in addition to enhance the conductivity of Co/FeC@NHC. Through adjusting the PDA shell thickness simply, Co/FeC@NHC with tunable N-doped carbon shell thickness is well crafted. The Co/FeC@NHC-1 with the best electrocatalytic performance is obtained by optimizing the thickness of N-doped hollow carbon shell. The Co/FeC@NHC-1 exhibits the highest activity for the oxygen evolution reaction (OER) and outstanding stability and durability. Hence, this research may establish a promising path for the rational design of metals@carbon composite with controllable structure which can act as highly efficient electrocatalysts for (OER).
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China
| | - Mingxuan Fu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China
| | - Guyang Ning
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China
| | - Yuena Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China
| | - Haiyang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China
| | - Xinyu Fan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China
| | - Haijun Lu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China
| | - Yufan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China
| | - Huan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
39
|
Dong B, Xie JY, Tong Z, Chi JQ, Zhou YN, Ma X, Lin ZY, Wang L, Chai YM. Synergistic effect of metallic nickel and cobalt oxides with nitrogen-doped carbon nanospheres for highly efficient oxygen evolution. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63621-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Wei H, Tian Y, An Y, Feng J, Xiong S, Qian Y. Porous lithium cobalt oxide fabricated from metal-organic frameworks as a high-rate cathode for lithium-ion batteries. RSC Adv 2020; 10:31889-31893. [PMID: 35518155 PMCID: PMC9056570 DOI: 10.1039/d0ra05615d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/16/2020] [Indexed: 01/07/2023] Open
Abstract
Porous materials have many applications, such as energy storage, as catalysts and adsorption etc. Nevertheless, facile synthesis of porous materials remains a challenge. In this work, porous lithium cobalt oxide (LiCoO2) is fabricated directly from Co-based metal-organic frameworks (MOFs, ZIF-67) and lithium salt via a facile solid state annealing approach. The temperature affect on the microstructure of LiCoO2 is also investigated. The as-prepared LiCoO2 shows a uniform porous structure. As a cathode for a lithium-ion battery (LIB), the LiCoO2 delivers excellent stability and superior rate capability. The as-prepared porous LiCoO2 delivers a reversible capacity of 106.5 mA h g-1 at 2C and with stable capacity retention of 96.4% even after 100 cycles. This work may provide an alternative pathway for the preparation of porous materials with broader applications.
Collapse
Affiliation(s)
- Hao Wei
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering China
| | - Yuan Tian
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering China
| | - Yongling An
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250061 China
| | - Yitai Qian
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250061 China
| |
Collapse
|
41
|
Yang H, Fan J, Zhou C, Luo R, Liu H, Wan Y, Zhang J, Chen J, Wang G, Wang R, Jiang C. Co 3O 4@CdS Hollow Spheres Derived from ZIF-67 with a High Phenol and Dye Photodegradation Activity. ACS OMEGA 2020; 5:17160-17169. [PMID: 32715201 PMCID: PMC7377639 DOI: 10.1021/acsomega.0c01131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The Co3O4@CdS double-layered hollow spheres were first prepared by the template-removal method with the assistance of the ZIF-67 material; the structure has been proved by transmission electron microscopy (TEM). The Co3O4@CdS hollow spheres calcinated at 400 °C exhibited the highest photodegradation activity. Nearly 90% phenol was degraded after 2 h of visible-light irradiation. More than 80% rhodamine-B (RhB) was degraded within the first 30 min and nearly eliminated after 1 h of irradiation. The mechanism of the photodegradation reaction was investigated. Based on the analysis of electron spin resonance (ESR) spectra and radical trapping test, it was found that superoxide radicals are the major oxidative species for dye degradation and holes and hydroxyl radicals are the major oxidative species for phenol degradation. These results may be used in industrial wastewater treatment. The reaction obeys first-order reaction kinetics, and the rate constant of the Co3O4@CdS hollow sphere in dye degradation is 0.05 min-1 and that in phenol degradation is 0.02 min-1, which is three times higher than that of CdS nanoparticles. These results indicated the high oxidizing ability of the samples.
Collapse
Affiliation(s)
- Haowei Yang
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Jinlong Fan
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Chengxin Zhou
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Rui Luo
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Hongwei Liu
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Yingfei Wan
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Jin Zhang
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Jinwei Chen
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Gang Wang
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Ruilin Wang
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Chunping Jiang
- West
China School of Public Health No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
42
|
Tan S, Long Y, Han Q, Guan H, Liang Q, Ding M. Designed Fabrication of Polymer-Mediated MOF-Derived Magnetic Hollow Carbon Nanocages for Specific Isolation of Bovine Hemoglobin. ACS Biomater Sci Eng 2020; 6:1387-1396. [PMID: 33455361 DOI: 10.1021/acsbiomaterials.9b01793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is highly required to develop well-designed separation materials for the specific isolation of certain proteins in proteomic research. Herein, the new type of metal-organic framework (MOF)-derived polymer-mediated magnetic hollow nanocages was fabricated via stress-induced orientation contraction, which was further applied for specific enrichment of proteins. The core-shell nanocomposites comprised of polymer-mediated ZIF-67 cores and polydopamine (PDA) shells, after annealing, generated magnetic hollow carbon nanocages with hierarchical pores and structures. Particularly, the magnetic carbonized PDA@F127/ZIF-67 hollow nanocages exhibited a remarkable adsorption capacity toward bovine hemoglobin (BHB) up to 834.3 mg g-1, which was significantly greater than that of the directed carbonized ZIF-67 nanoparticles. The results also exhibited the notable specificity of the obtained nanocages on complex biosamples, including intact mixed proteins and fetal calf serum. The hierarchically hollow porous structure greatly improves the specific surface area and reduces the mass transfer resistance, leading to enhanced high adsorption for target protein BHB. This novel method will be promising for the applications in purification and enrichment of biomacromolecules for complex biosamples, which successfully solve the problem of low adsorption efficiency and tedious separating process of the previous MOF-derived materials.
Collapse
Affiliation(s)
- Siyuan Tan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Long
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Han
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huiyuan Guan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
43
|
Mussa Y, Ahmed F, Arsalan M, Alsharaeh E. Two dimensional (2D) reduced graphene oxide (RGO)/hexagonal boron nitride (h-BN) based nanocomposites as anodes for high temperature rechargeable lithium-ion batteries. Sci Rep 2020; 10:1882. [PMID: 32024851 PMCID: PMC7002573 DOI: 10.1038/s41598-020-58439-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
With lithium-ion (li-ion) batteries as energy storage devices, operational safety from thermal runaway remains a major obstacle especially for applications in harsh environments such as in the oil industry. In this approach, a facile method via microwave irradiation technique (MWI) was followed to prepare Co3O4/reduced graphene oxide (RGO)/hexagonal boron nitride (h-BN) nanocomposites as anodes for high temperature li-ion batteries. Results showed that the addition of h-BN not only enhanced the thermal stability of Co3O4/RGO nanocomposites but also enhanced the specific surface area. Co3O4/RGO/h-BN nanocomposites displayed the highest specific surface area of 191 m2/g evidencing the synergistic effects between RGO and h-BN. Moreover, Co3O4/RGO/h-BN also displayed the highest specific capacity with stable reversibility on the high performance after 100 cycles and lower internal resistance. Interestingly, this novel nanocomposite exhibits outstanding high temperature performances with excellent cycling stability (100% capacity retention) and a decreased internal resistance at 150 °C.
Collapse
Affiliation(s)
- Yasmin Mussa
- College of Science and General Studies, Alfaisal University, P. O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Faheem Ahmed
- College of Science and General Studies, Alfaisal University, P. O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Muhammad Arsalan
- EXPEC Advanced Research Center, Saudi Aramco, P. O. Box 5000, Dhahran, 31311, Saudi Arabia
| | - Edreese Alsharaeh
- College of Science and General Studies, Alfaisal University, P. O. Box 50927, Riyadh, 11533, Saudi Arabia.
| |
Collapse
|
44
|
Guo Q, Mao J, Huang J, Wang Z, Zhang Y, Hu J, Dong J, Sathasivam S, Zhao Y, Xing G, Pan H, Lai Y, Tang Y. Reducing Oxygen Evolution Reaction Overpotential in Cobalt-Based Electrocatalysts via Optimizing the "Microparticles-in-Spider Web" Electrode Configurations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907029. [PMID: 31984658 DOI: 10.1002/smll.201907029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Sluggish kinetics of the multielectron transfer process is still a bottleneck for efficient oxygen evolution reaction (OER) activity, and the reduction of reaction overpotential is crucial to boost reaction kinetics. Herein, a correlation between the OER overpotential and the cobalt-based electrode composition in a "Microparticles-in-Spider Web" (MSW) superstructure electrode is revealed. The overpotential is dramatically decreased first and then slightly increased with the continuous increase ratio of Co/Co3 O4 in the cobalt-based composite electrode, corresponding to the dynamic change of electrochemically active surface area and charge-transfer resistance with the electrode composition. As a proof-of-concept, the optimized electrode displays a low overpotential of 260 mV at 10.0 mA cm-2 in alkaline conditions with a long-time stability. This electrochemical performance is comparable and even superior to the most currently reported Co-based OER electrocatalysts. The remarkable electrocatalytic activity is attributed to the optimization of the electrochemically active sites and electron transfer in the MSW superstructure. Theoretical calculations identify that the metallic Co and Co3 O4 surface catalytic sites play a vital role in improving electron transport and reaction Gibbs free energies for reducing overpotential, respectively. A general way of boosting OER kinetics via optimizing the electrode configurations to mitigate reaction overpotential is offered in this study.
Collapse
Affiliation(s)
- Qi Guo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Jiajun Mao
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zixi Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Yanyan Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China
| | - Jianing Dong
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | | | - Yan Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuxin Tang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| |
Collapse
|
45
|
Jing Y, Lei Q, Xia C, Guan Y, Yang Y, He J, Yang Y, Zhang Y, Yan M. Synthesis of Ag and AgCl co-doped ZIF-8 hybrid photocatalysts with enhanced photocatalytic activity through a synergistic effect. RSC Adv 2020; 10:698-704. [PMID: 35494447 PMCID: PMC9048217 DOI: 10.1039/c9ra10100d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, Ag/AgCl composites with different structures have been widely studied and used as photocatalysts to degrade dye pollutants, due to their high separation efficiency of electron-hole pairs under visible light irradiation. Herein, we adopted a nucleation, precipitation, growth and photoreduction method to prepare Ag and AgCl co-doped ZIF-8 hybrid photocatalysts and explored the influence of Ag content on their physical and chemical properties. All as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) measurements, energy dispersive spectroscopy (EDS), UV-vis diffuse reflectance and X-ray photoelectron spectroscopy (XPS). XRD indicated that ZIF-8 and AgCl were formed and some of the AgCl was reduced into Ag0 after 30 min of UV light irradiation. SEM and TEM images verified that Ag/AgCl nanoparticles were inlaid in the body of ZIF-8 and Ag ions could hinder the growth of the ZIF-8 crystal. BET data indicated that Ag/AgCl nanoparticles did not alter the pore size of ZIF-8. The UV-vis diffuse reflectance spectra showed that Ag/AgCl@ZIF-8 has excellent ability to absorb visible light, indicating the high efficiency of the electron-hole pair separation of Ag/AgCl@ZIF-8. Finally, the photocatalytic activities of all of the as-synthesized samples were evaluated by degradation of RhB under visible light irradiation. Ag and AgCl co-doped ZIF-8 hybrid photocatalysts exhibited high photocatalytic activity due to the synergistic effect of ZIF-8, AgCl and Ag. After 60 min of visible light irradiation, Ag/AgCl(15)@ZIF-8 exhibited the best photocatalytic activity and could degrade 99.12% RhB, which was higher than Ag/AgCl (94.24%) and ZIF-8 (5.17%). Additionally, a photocatalytic mechanism for dye pollutant degradation over the Ag and AgCl co-doped ZIF-8 hybrid photocatalysts was proposed.
Collapse
Affiliation(s)
- Yanqiu Jing
- College of Tobacco Science, Henan Agricultural University Zhengzhou Henan province China
| | - Qiang Lei
- Sichuan Provincial Branch of China National Tobacco Corporation Chengdu Sichuan province China
| | - Chun Xia
- Sichuan Provincial Branch of China National Tobacco Corporation Chengdu Sichuan province China
| | - Yu Guan
- Sichuan Provincial Branch of China National Tobacco Corporation Chengdu Sichuan province China
| | - Yide Yang
- Sichuan Provincial Branch of China National Tobacco Corporation Chengdu Sichuan province China
| | - Jixian He
- Sichuan Provincial Branch of China National Tobacco Corporation Chengdu Sichuan province China
| | - Yang Yang
- Sichuan Provincial Branch of China National Tobacco Corporation Chengdu Sichuan province China
| | - Yonghui Zhang
- Sichuan Provincial Branch of China National Tobacco Corporation Chengdu Sichuan province China
| | - Min Yan
- Sichuan Provincial Branch of China National Tobacco Corporation Chengdu Sichuan province China
| |
Collapse
|
46
|
Yue X, Ke W, Xie M, Shen X, Yan Z, Ji Z, Zhu G, Xu K, Zhou H. Amorphous CoFe(OH)x hollow hierarchical structure: an efficient and durable electrocatalyst for oxygen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02092f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amorphous CoFe(OH)x hollow hierarchical microspheres are fabricated by using a polyhedral Cu2O template. CoFe(OH)x shows excellent OER activity and long-term durability due to its unique hollow hierarchical structure and composition.
Collapse
Affiliation(s)
- Xiaoyang Yue
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wentao Ke
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Minghua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Zhenyu Yan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Zhenyuan Ji
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Keqiang Xu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Hu Zhou
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| |
Collapse
|
47
|
Zhao C, Li N, Zhang R, Zhu Z, Lin J, Zhang K, Zhao C. Surface Reconstruction of La 0.8Sr 0.2Co 0.8Fe 0.2O 3-δ for Superimposed OER Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47858-47867. [PMID: 31790190 DOI: 10.1021/acsami.9b13834] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perovskites have become important OER electrocatalysts. Herein, as-prepared La0.8Sr0.2Co0.8Fe0.2O3-δ (LSCF-0) is chosen as a sample to exhibit the superimposed effect of surface reconstruction accompanied by reduction of Co3+ to Co2+ on the further improvement of its activity and stability. As-synthesized LSCF-0 perovskite is chemically treated by simply immersing in an aqueous solution of NaBH4 for 1.0 h at room temperature. The optimized LSCF (LSCF-2) owns an amorphous layer consisting of nanosized particles of ∼20 nm (vs smooth bulk crystalline surface for untreated LSCF), which exhibits superior OER performance to LSCF-0. LSCF-2 has an overpotential of 248 mV (10 mA cm-2) and a Tafel slope of 51 mV dec-1 (vs 355 mV and 76 mV dec-1 for LSCF-0 and 381 mV and 91 mV dec-1 for LCO) and an excellent cycle stability for 20 h running. This work supplies a new strategy to enhance OER performance through surface reconstruction of as-prepared perovskites.
Collapse
Affiliation(s)
- Chunhua Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Nan Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Ruizhi Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Zhaoqiang Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Jiahao Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Kefu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Chongjun Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| |
Collapse
|
48
|
Li Y, Wang C, Cui M, Chen S, Ma T. A novel strategy to synthesize CoMoO4 nanotube as highly efficient oxygen evolution reaction electrocatalyst. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
|
50
|
Urchin-like Ni@N-doped carbon composites with Ni nanoparticles encapsulated in N-doped carbon nantubes as high-efficient electrocatalyst for oxygen evolution reaction. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|