1
|
Kang L, Zhang Y, Dong L, Yin S, Li B, Fan M, He H, Chen Z. Boron-Doping Engineering in AgCd Bimetallic Catalyst Enabling Efficient CO 2 Electroreduction to CO and Aqueous Zn-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406510. [PMID: 39377316 DOI: 10.1002/smll.202406510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Indexed: 10/09/2024]
Abstract
The limited adsorption and activation of CO2 on catalyst and the high energy barrier for intermediate formation hinder the development of electrochemical CO2 reduction reactions (CO2RR). Herein, this work reports a boron (B) doping engineering in AgCd bimetals to alleviate the above limitations for efficient CO2 electroreduction to CO and aqueous Zn-CO2 batteries. Specifically, the B-doped AgCd bimetallic catalyst (AgCd-B) is prepared via a simple reduction reaction at room temperature. A combination of in situ experiments and density functional theory (DFT) calculations demonstrates that B-doping simultaneously enhances the adsorption and activation of CO2 and reduces the binding energy of the intermediates by moderating the electronic structure of bimetals. As a result, the AgCd-B catalyst exhibits a high CO Faraday efficiency (FECO) of 99% at -0.8 V versus reversible hydrogen electrode (RHE). Additionally, it maintains a FECO over 92% at a wide potential window of 600 mV (-0.6 to -1.1 V versus RHE). Furthermore, the AgCd-B catalyst coupled with the Zn anode to assemble aqueous Zn-CO2 batteries shows a power density of 20.18 mW cm-2 and a recharge time of 33 h.
Collapse
Affiliation(s)
- Lan Kang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yonghao Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Lihui Dong
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Bin Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
| | - Minguang Fan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Huibing He
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Zhengjun Chen
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
2
|
Guan Y, Wu SQ, Huang HZ, Zhu Z, Tian W, Yin AX. Promotion of CO 2 Electroreduction on Bismuth Nanosheets with Cerium Oxide nanoparticles. Chem Asian J 2024; 19:e202400296. [PMID: 38889347 DOI: 10.1002/asia.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Formic acid (HCOOH) is a highly energy efficient product of the electrochemical CO2 reduction reaction (CO2RR). Bismuth-based catalysts have shown promise in the conversion of CO2 to formic acid, but there is still a great need for further improvement in selectivity and activity. Herein, we report the preparation of Bi nanosheets decorated by cerium oxide nanoparticles (CeOx) with high Ce3+/Ce4+ ratio and rich oxygen vacancies. The CeOx nanoparticles affect the electronic structures of bismuth, enhance CO2 adsorption, and thus promote the CO2RR properties of Bi nanosheets. Compared with elemental Bi nanosheets, the hetero-structured CeOx/Bi nanosheets exhibit much higher activity over a wide potential window, showing a current density of 16.1 mA cm-2 with a Faradaic efficiency of 91.1% at -0.9 V vs. reversible hydrogen electrode.
Collapse
Affiliation(s)
- Yue Guan
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 (P. R. China)
| | - Si-Qian Wu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 (P. R. China)
| | - Hui-Zi Huang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 (P. R. China)
| | - Zhejiaji Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 (P. R. China)
| | - Wenjing Tian
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 (P. R. China)
| | - An-Xiang Yin
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 (P. R. China)
| |
Collapse
|
3
|
Zhou W, Feng C, Li X, Jiang X, Jing L, Qi S, Huo Q, Lv M, Chen X, Huang T, Zhao J, Meng N, Yang H, Hu Q, He C. Boosting Electrochemical Urea Synthesis via Constructing Ordered Pd-Zn Active Pair. NANO-MICRO LETTERS 2024; 16:247. [PMID: 39008133 PMCID: PMC11250753 DOI: 10.1007/s40820-024-01462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024]
Abstract
Electrochemical co-reduction of nitrate (NO3-) and carbon dioxide (CO2) has been widely regarded as a promising route to produce urea under ambient conditions, however the yield rate of urea has remained limited. Here, we report an atomically ordered intermetallic pallium-zinc (PdZn) electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis. It is found that Pd and Zn are responsible for the adsorption and activation of NO3- and CO2, respectively, and thus the co-adsorption and co-activation NO3- and CO2 are achieved in ordered PdZn pairs. More importantly, the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier, as demonstrated on both operando measurements and theoretical calculations. Consequently, the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78% and a urea yield rate of 1274.42 μg mg-1 h-1, and the latter is 1.5-fold larger than disordered pairs in PdZn alloys. This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.
Collapse
Affiliation(s)
- Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Xuan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xingxing Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Qihua Huo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Miaoyuan Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xinbao Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Tianchi Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Jingwen Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Na Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303492. [PMID: 37328779 DOI: 10.1002/adma.202303492] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the emergence of novel 2D monoelemental materials (Xenes), e.g., graphdiyne, borophene, phosphorene, antimonene, bismuthene, and stanene, has exhibited unprecedented potentials for their versatile applications as well as addressing new discoveries in fundamental science. Owing to their unique physicochemical, optical, and electronic properties, emerging Xenes have been regarded as promising candidates in the community of single-atom catalysts (SACs) as single-atom active sites or support matrixes for significant improvement in intrinsic activity and selectivity. In order to comprehensively understand the relationships between the structure and property of Xene-based SACs, this review represents a comprehensive summary from theoretical predictions to experimental investigations. Firstly, theoretical calculations regarding both the anchoring of Xene-based single-atom active sites on versatile support matrixes and doping/substituting heteroatoms at Xene-based support matrixes are briefly summarized. Secondly, controlled synthesis and precise characterization are presented for Xene-based SACs. Finally, current challenges and future opportunities for the development of Xene-based SACs are highlighted.
Collapse
Affiliation(s)
- Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
6
|
Li C, Ji Y, Wang Y, Liu C, Chen Z, Tang J, Hong Y, Li X, Zheng T, Jiang Q, Xia C. Applications of Metal-Organic Frameworks and Their Derivatives in Electrochemical CO 2 Reduction. NANO-MICRO LETTERS 2023; 15:113. [PMID: 37121938 PMCID: PMC10149437 DOI: 10.1007/s40820-023-01092-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Electrochemically reducing CO2 to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels, but also helps to build a closed-loop anthropogenic carbon cycle. Among various electrocatalysts for electrochemical CO2 reduction, multifunctional metal-organic frameworks (MOFs) have been employed as highly efficient and selective heterogeneous electrocatalysts due to their ultrahigh porosity and topologically diverse structures. Up to now, great progress has been achieved in the design and synthesis of highly active and selective MOF-related catalysts for electrochemical CO2 reduction reaction (CO2RR), and their corresponding reaction mechanisms have been thoroughly studied. In this review, we summarize the recent progress of applying MOFs and their derivatives in CO2RR, with a focus on the design strategies for electrocatalysts and electrolyzers. We first discussed the reaction mechanisms for different CO2RR products and introduced the commonly applied electrolyzer configurations in the current CO2RR system. Then, an overview of several categories of products (CO, HCOOH, CH4, CH3OH, and multi-carbon chemicals) generated from MOFs or their derivatives via CO2RR was discussed. Finally, we offer some insights and perspectives for the future development of MOFs and their derivatives in electrochemical CO2 reduction. We aim to provide new insights into this field and further guide future research for large-scale applications.
Collapse
Affiliation(s)
- Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Youpeng Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhaoyang Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jialin Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yawei Hong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- Research Center for Carbon-Neutral Environmental and Energy Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| |
Collapse
|
7
|
Yang J, Yang Z, Yang K, Yu Q, Zhu X, Xu H, Li H. Indium-based ternary metal sulfide for photocatalytic CO2 reduction application. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Liu S, Tian B, Wang X, Sun Y, Wang Y, Ma J, Ding M. The Critical Role of Initial/Operando Oxygen Loading in General Bismuth-Based Catalysts for Electroreduction of Carbon Dioxide. J Phys Chem Lett 2022; 13:9607-9617. [PMID: 36206518 DOI: 10.1021/acs.jpclett.2c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Operando reconstruction of solid catalyst into a distinct active state frequently occurs during electrocatalytic processes. The correlation between initial and operando states, if ever existing, is critical for the understanding and precise design of a catalytic system. Inspired by recently established intermediate metallic state of Bi-based catalysts during electrocatalytic carbon dioxide reduction (CO2RR), here we investigate a series of Bi oxide catalysts (Bi, Bi2O3, BiO2) and demonstrate that the operando surface/subsurface oxygen loading, positively correlated to the initial oxygen content, plays a critical role in determining Bi-based CO2RR performance. Higher initial oxygen loading indicates a better electrocatalytic efficiency. Further analysis shows that this conclusion generally applies to all Bi-based electrocatalysts reported up to date. Following this principle, cost-effective BiO2 nanocrystals demonstrated the highest formate Faradaic efficiency (FE) and current density compared to Bi/Bi2O3, further allowing a pair-electrolysis system with 800 mA/cm2 current density and an overall 175% FE for formate production.
Collapse
Affiliation(s)
- Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinzhu Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqi Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Cui R, Yuan Q, Zhang C, Yang X, Ji Z, Shi Z, Han X, Wang Y, Jiao J, Lu T. Revealing the Behavior of Interfacial Water in Te-Doped Bi via Operando Infrared Spectroscopy for Improving Electrochemical CO 2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruixue Cui
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qing Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Zhouru Ji
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhaolin Shi
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoqian Han
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yunying Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jiqing Jiao
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Tongbu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
10
|
Qiu C, Qian K, Yu J, Sun M, Cao S, Gao J, Yu R, Fang L, Yao Y, Lu X, Li T, Huang B, Yang S. MOF-Transformed In 2O 3-x@C Nanocorn Electrocatalyst for Efficient CO 2 Reduction to HCOOH. NANO-MICRO LETTERS 2022; 14:167. [PMID: 35976472 PMCID: PMC9385936 DOI: 10.1007/s40820-022-00913-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 05/05/2023]
Abstract
For electrochemical CO2 reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (JHCOOH) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In2O3-x@C nanocatalyst, wherein In2O3-x nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm-2 JHCOOH at a low potential of - 0.4 V versus RHE. At the current density of 100 mA cm-2, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In2O3-x has exposed more In3+ sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In3+ as the active site and the key intermediate of HCOO* during the process of CO2 reduction to HCOOH.
Collapse
Affiliation(s)
- Chen Qiu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Kun Qian
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Jun Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, People's Republic of China
| | - Jinqiang Gao
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Rongxing Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Youwei Yao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, People's Republic of China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA.
- X-Ray Science Division and Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
11
|
Boosting the Electrocatalytic CO2 Reduction Reaction by Nanostructured Metal Materials via Defects Engineering. NANOMATERIALS 2022; 12:nano12142389. [PMID: 35889615 PMCID: PMC9324018 DOI: 10.3390/nano12142389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most effective methods to convert CO2 into useful fuels. Introducing defects into metal nanostructures can effectively improve the catalytic activity and selectivity towards CO2RR. This review provides the recent progress on the use of metal nanomaterials with defects towards electrochemical CO2RR and defects engineering methods. Accompanying these ideas, we introduce the structure of defects characterized by electron microscopy techniques as the characterization and analysis of defects are relatively difficult. Subsequently, we present the intrinsic mechanism of how the defects affect CO2RR performance. Finally, to promote a wide and deep study in this field, the perspectives and challenges concerning defects engineering in metal nanomaterials towards CO2RR are put forward.
Collapse
|
12
|
Li X, Wang J, Lv X, Yang Y, Xu Y, Liu Q, Wu HB. Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO 2 to Multi-Carbon Products. NANO-MICRO LETTERS 2022; 14:134. [PMID: 35699835 PMCID: PMC9198171 DOI: 10.1007/s40820-022-00879-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to multi-carbon products would simultaneously reduce CO2 emission and produce high-value chemicals. Herein, we report Cu electrodes modified by metal-organic framework (MOF) exhibiting enhanced electrocatalytic performance to convert CO2 into ethylene and ethanol. The Zr-based MOF, UiO-66 would in situ transform into amorphous ZrOx nanoparticles (a-ZrOx), constructing a-ZrOx/Cu hetero-interface as a dual-site catalyst. The Faradaic efficiency of multi-carbon (C2+) products for optimal UiO-66-coated Cu (0.5-UiO/Cu) electrode reaches a high value of 74% at - 1.05 V versus RHE. The intrinsic activity for C2+ products on 0.5-UiO/Cu electrode is about two times higher than that of Cu foil. In situ surface-enhanced Raman spectra demonstrate that UiO-66-derived a-ZrOx coating can promote the stabilization of atop-bound CO* intermediates on Cu surface during CO2 electrolysis, leading to increased CO* coverage and facilitating the C-C coupling process. The present study gives new insights into tailoring the adsorption configurations of CO2RR intermediate by designing dual-site electrocatalysts with hetero-interfaces.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jianghao Wang
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiangzhou Lv
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yue Yang
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yifei Xu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qian Liu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Hao Bin Wu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
13
|
|
14
|
Fu HQ, Liu J, Bedford NM, Wang Y, Wright J, Liu PF, Wen CF, Wang L, Yin H, Qi D, Liu P, Yang HG, Zhao H. Operando Converting BiOCl into Bi 2O 2(CO 3) xCl y for Efficient Electrocatalytic Reduction of Carbon Dioxide to Formate. NANO-MICRO LETTERS 2022; 14:121. [PMID: 35505158 PMCID: PMC9065225 DOI: 10.1007/s40820-022-00862-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 05/19/2023]
Abstract
Bismuth-based materials (e.g., metallic, oxides and subcarbonate) are emerged as promising electrocatalysts for converting CO2 to formate. However, Bio-based electrocatalysts possess high overpotentials, while bismuth oxides and subcarbonate encounter stability issues. This work is designated to exemplify that the operando synthesis can be an effective means to enhance the stability of electrocatalysts under operando CO2RR conditions. A synthetic approach is developed to electrochemically convert BiOCl into Cl-containing subcarbonate (Bi2O2(CO3)xCly) under operando CO2RR conditions. The systematic operando spectroscopic studies depict that BiOCl is converted to Bi2O2(CO3)xCly via a cathodic potential-promoted anion-exchange process. The operando synthesized Bi2O2(CO3)xCly can tolerate - 1.0 V versus RHE, while for the wet-chemistry synthesized pure Bi2O2CO3, the formation of metallic Bio occurs at - 0.6 V versus RHE. At - 0.8 V versus RHE, Bi2O2(CO3)xCly can readily attain a FEHCOO- of 97.9%, much higher than that of the pure Bi2O2CO3 (81.3%). DFT calculations indicate that differing from the pure Bi2O2CO3-catalyzed CO2RR, where formate is formed via a *OCHO intermediate step that requires a high energy input energy of 2.69 eV to proceed, the formation of HCOO- over Bi2O2(CO3)xCly has proceeded via a *COOH intermediate step that only requires low energy input of 2.56 eV.
Collapse
Affiliation(s)
- Huai Qin Fu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Junxian Liu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yun Wang
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Joshua Wright
- Department of Physics, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liang Wang
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Huajie Yin
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Dongchen Qi
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Porun Liu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|