1
|
Lee CY, Hsu CC, Wang CH, Jeng US, Tung SH, Hu CC, Liu CL. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407622. [PMID: 39358979 DOI: 10.1002/smll.202407622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Thermoelectric generators (TEGs) based on thermogalvanic cells can convert low-temperature waste heat into electricity. Organic redox couples are well-suited for wearable devices due to their nontoxicity and the potential to enhance the ionic Seebeck coefficient through functional-group modifications. Pyrazine-based organic redox couples with different functional groups is comparatively analyzed through cyclic voltammetry under varying temperatures. The results reveal substantial differences in entropy changes with temperature and highlight 2,5-pyrazinedicarboxylic acid dihydrate (PDCA) as the optimal candidate. How the functional groups of the pyrazine compounds impact the ionic Seebeck coefficient is examined, by calculating the electrostatic potential based on density functional theory. To evaluate the thermoelectric properties, PDCA is integrated in different concentrations into a double-network hydrogel comprising poly(vinyl alcohol) and polyacrylamide. The resulting champion device exhibits an impressive ionic Seebeck coefficient (Si) of 2.99 mV K-1, with ionic and thermal conductivities of ≈67.6 µS cm-1 and ≈0.49 W m-1 K-1, respectively. Finally, a TEG is constructed by connecting 36 pieces of 20 × 10-3 m PDCA-soaked hydrogel in series. It achieves a maximum power output of ≈0.28 µW under a temperature gradient of 28.3 °C and can power a small light-emitting diode. These findings highlight the significant potential of TEGs for wearable devices.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Chieh Hsu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Jia S, Qian W, Yu P, Li K, Tang W, Li M, Lan J, Lin YH, Yang X. Realization of Hydrogel Electrolytes with High Thermoelectric Properties: Utilization of the Hofmeister Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69519-69528. [PMID: 39636741 DOI: 10.1021/acsami.4c18790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ionic thermoelectric materials, renowned for their high Seebeck coefficients, are gaining prominence for their potential in harvesting low-grade waste heat. However, the theoretical underpinnings for enhancing the performance of these materials remain underexplored. In this study, the Hoffmeister effect was leveraged to augment the thermoelectric properties of hydrogel-based ionic thermoelectric materials. A series of PAAm-x Zn(CF3SO3)2, PAAm-x ZnSO4, and PAAm-x Zn(ClO4)2 hydrogels were synthesized, using polyacrylamide (PAAm) as the matrix and three distinct zinc salts with varying anion volumes to impart the Hoffmeister effect. Exceptionally, the most cost-effective ZnSO4 yielded the highest ionic Seebeck coefficient among the hydrogels, with PAAm-1 ZnSO4 achieving a remarkable value of -3.72 mV K-1. To elucidate the underlying mechanism, we conducted an innovative analysis correlating the Seebeck coefficient with the zinc ion transfer number. Additionally, the hydrogel materials demonstrated outstanding mechanical properties, including high elongation at break (>1400% at its peak), exceptional resilience (virtually no hysteresis loops), and robust fatigue resistance (overlapping cyclic tensile curves). This work not only advances the understanding of ionic thermoelectric materials but also showcases the potential of hydrogels for practical waste heat recovery applications.
Collapse
Affiliation(s)
- Shuanglin Jia
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Wanyu Qian
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Penglu Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Ke Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Wenxin Tang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Mingxuan Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Jinle Lan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Yuan-Hua Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Shuangqing Road 30, Haidian District, Beijing 100084, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Ma X, Wang W, Cui X, Li Y, Yang K, Huang Z, Zhang H. Machine Learning Assisted Self-Powered Identity Recognition Based on Thermogalvanic Hydrogel for Intelligent Security. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402700. [PMID: 38726773 DOI: 10.1002/smll.202402700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
Identity recognition as the first barrier of intelligent security plays a vital role, which is facing new challenges that are unable to meet the need of intelligent era due to low accuracy, complex configuration and dependence on power supply. Here, a finger temperature-driven intelligent identity recognition strategy is presented based on a thermogalvanic hydrogel (TGH) by actively discerning biometric characteristics of fingers. The TGH is a dual network PVA/Agar hydrogel in an H2O/glycerol binary solvent with [Fe(CN)6]3-/4- as a redox couple. Using a concave-arranged TGH array, the characteristics of users can be distinguished adequately even under an open environment by extracting self-existent intrinsic temperature features from five typical sites of fingers. Combined with machine learning, the TGH array can recognize different users with a high average accuracy of 97.6%. This self-powered identity recognition strategy is further applied to a smart lock, attaining a more reliable security protection from biometric characteristics than bare passwords. This work provides a promising solution for achieving better identity recognition, which has great advantages in intelligent security and human-machine interaction toward future Internet of everything.
Collapse
Affiliation(s)
- Xueliang Ma
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenxu Wang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaojing Cui
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 030031, China
| | - Yunsheng Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Kun Yang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhiquan Huang
- School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Hulin Zhang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
5
|
Wang J, Song Y, Yu F, Zeng Y, Wu C, Qin X, Peng L, Li Y, Zhou Y, Tao R, Liu H, Zhu H, Sun M, Xu W, Zhang C, Wang Z. Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8. Nat Commun 2024; 15:6704. [PMID: 39112454 PMCID: PMC11306227 DOI: 10.1038/s41467-024-51002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Body heat, a clean and ubiquitous energy source, is promising as a renewable resource to supply wearable electronics. Emerging tough thermogalvanic device could be a sustainable platform to convert body heat energy into electricity for powering wearable electronics if its Carnot-relative efficiency (ηr) reaches ~5%. However, maximizing both the ηr and mechanical strength of the device are mutually exclusive. Here, we develop a rational strategy to construct a flexible thermogalvanic armor (FTGA) with a ηr over 8% near room temperature, yet preserving mechanical robustness. The key to our design lies in simultaneously realizing the thermosensitive-crystallization and salting-out effect in the elaborately designed ion-transport highway to boost ηr and improve mechanical strength. The FTGA achieves an ultrahigh ηr of 8.53%, coupling with impressive mechanical toughness of 70.65 MJ m-3 and substantial elongation (~900%) together. Our strategy holds sustainable potential for harvesting body heat and powering wearable electronics without recharging.
Collapse
Affiliation(s)
- Jinpei Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yuxin Song
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
| | - Fanfei Yu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
| | - Yijun Zeng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chenyang Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xuezhi Qin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Liang Peng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yitan Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yongsen Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ran Tao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
| | - Hangchen Liu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
| | - Hong Zhu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
| | - Ming Sun
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
| | - Wanghuai Xu
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Chao Zhang
- MOE Key Lab of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China.
- Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, P. R. China.
| |
Collapse
|
6
|
Lu X, Mo Z, Liu Z, Hu Y, Du C, Liang L, Liu Z, Chen G. Robust, Efficient, and Recoverable Thermocells with Zwitterion-Boosted Hydrogel Electrolytes for Energy-Autonomous and Wearable Sensing. Angew Chem Int Ed Engl 2024; 63:e202405357. [PMID: 38682802 DOI: 10.1002/anie.202405357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)6]3-/4--based TECs. By introducing Hofmeister effect and multiple non-covalent interactions via betaine zwitterions, the mechanical strength of the conventional brittle gelatin hydrogel electrolytes is substantially improved from 50 to 440 kPa, with a high stretchability approaching 250 %. Meanwhile, the betaine zwitterions strongly affect the solvation structure of [Fe(CN)6]3- ions, thus enlarging the entropy difference and raising the thermoelectrochemical Seebeck coefficient from 1.47 to 2.2 mV K-1. The resultant quasi-solid-state TECs exhibit a normalized output power density of 0.48 mW m-2 K-2, showing a notable improvement in overall performance compared to their counterparts without zwitterion regulation. The intrinsic thermo-reversible property also allows the TECs to repeatedly self-recover through sol-gel transformations, ensuring reliable energy output and even recycling of TECs in case of extreme mechanical damages. An energy-autonomous smart glove consisting of eighteen individual TECs is further designed, which can simultaneously monitor the temperature of different positions on any touched object, demonstrating high potential in wearable applications.
Collapse
Affiliation(s)
- Xin Lu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Ziwei Mo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhaopeng Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Yifeng Hu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Chunyu Du
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Lirong Liang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhuoxin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangming Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
7
|
Xiao M, Tao P, Wang Y, Sha W, Wang S, Zeng W, Zhao J, Ruan L. Intricate Ionic Behaviors in High-Performance Self-Powered Hydrothermal Chemical Generator Using Water and Iron (III) Gate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400477. [PMID: 38402438 DOI: 10.1002/smll.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 02/26/2024]
Abstract
Utilizing the ionic flux to generate voltage output has been confirmed as an effective way to meet the requirements of clean energy sources. Different from ionic thermoelectric (i-TE) and hydrovoltaic devices, a new hydrothermal chemical generator is designed by amorphous FeCl3 particles dispersing in MWCNT and unique ferric chloride or water gate. In the presence of gate, the special ion behaviors enable the cell to present a constant voltage of 0.60 V lasting for over 96 h without temperature difference. Combining the differences of cation concentration, humidity and temperature between the right and left side of sample, the maximum short-circuit current and power output can be obtained to 168.46 µA and 28.11 µW, respectively. The generator also can utilize the low-grade heat to produce electricity wherein Seebeck coefficient is 6.79 mV K-1. The emerged hydrothermal chemical generator offers a novel approach to utilize the low-grade heat, water and salt solution resources, which provides a simple, sustainable and low-cost strategy to realize energy supply.
Collapse
Affiliation(s)
- Ming Xiao
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Panmeng Tao
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Yuqin Wang
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, 230601, P. R. China
| | - Wenqi Sha
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, 230601, P. R. China
| | - Siliang Wang
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Wei Zeng
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Jinling Zhao
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
- National Engineering Research Center for Analysis and Application of Agro-Ecological Big Data, Anhui University, Hefei, 230601, P. R. China
| | - Limin Ruan
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, 230601, P. R. China
- National Engineering Research Center for Analysis and Application of Agro-Ecological Big Data, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
8
|
Xu Y, Li Z, Wu L, Dou H, Zhang X. Solvation Engineering via Fluorosurfactant Additive Toward Boosted Lithium-Ion Thermoelectrochemical Cells. NANO-MICRO LETTERS 2024; 16:72. [PMID: 38175313 PMCID: PMC10766582 DOI: 10.1007/s40820-023-01292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Lithium-ion thermoelectrochemical cell (LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant (FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li+ solvation with the aggregated double anions through a crowded electrolyte environment, resulting in an enhanced mobility kinetics of Li+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K-1 and a normalized output power density of 3.99 mW m-2 K-2 as well as an outstanding output energy density of 607.96 J m-2 can be obtained. These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.
Collapse
Affiliation(s)
- Yinghong Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China.
| |
Collapse
|
9
|
Ding Z, Du C, Long W, Cao CF, Liang L, Tang LC, Chen G. Thermoelectrics and thermocells for fire warning applications. Sci Bull (Beijing) 2023; 68:3261-3277. [PMID: 37722927 DOI: 10.1016/j.scib.2023.08.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
Historically, fire disasters have killed numerous human lives, and caused tremendous property loss. Fire warning systems play a vital role in predicting fire risks, and are strongly desired to effectively prevent the disaster occurrence and significantly reduce the loss. Among the developed fire warning systems, thermoelectrics (TEs) and thermocells (TECs)-based fire warning materials are extremely important and indispensable in future research, owing to their unique capability of direct conversion between heat and electricity. Here, we present this review of the recent progress of TEs and TECs in fire warning field. Firstly, a brief introduction of existing fire warning systems is provided, including the mechanisms and features of various types. Then, the mechanisms of electronic TE (eTE), ionic TE (iTE) and TEC are elucidated. Next, the basic principles for the material preparation and device fabrication are discussed in their dimension sequence. Subsequently, some important advances or examples of TE fire warnings are highlighted in details. Finally, the challenges and prospects are outlooked.
Collapse
Affiliation(s)
- Zhaofu Ding
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China
| | - Chunyu Du
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China
| | - Wujian Long
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China
| | - Cheng-Fei Cao
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia
| | - Lirong Liang
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Guangming Chen
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
10
|
Wu Z, Wang B, Li J, Jia Y, Chen S, Wang H, Chen L, Shuai L. Stretchable and Durable Bacterial Cellulose-Based Thermocell with Improved Thermopower Density for Low-Grade Heat Harvesting. NANO LETTERS 2023; 23:10297-10304. [PMID: 37955657 DOI: 10.1021/acs.nanolett.3c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Low-grade heat exists ubiquitously in the environment, and gel-state thermogalvanic cells (GTCs) can directly convert thermal energy into electricity by a redox reaction. However, their low ionic conductivity and poor mechanical properties are still insufficient for their potential applications. Here, we designed a bacterial cellulose (BC) nanofiber-macromolecular entanglement network to balance the GTC's thermopower and mechanical properties. Therefore, the BC-GTC shows a Seebeck coefficient of 3.84 mV K-1, an ionic conductivity of 108.5 mS cm-1, and a high specific output power density of 1760 μW m-2 K-2, which are much higher than most current literature. Further connecting 15 units of BC-GTCs, the output voltage of 3.35 V can be obtained at a temperature gradient of 65 K, which can directly power electronic devices such as electronic calculators, thermohydrometers, fans, and light-emitting diodes (LEDs). This work offers a promising method for developing high-performance and durable GTC in sustainable green energy.
Collapse
Affiliation(s)
- Zhuotong Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Baoxiu Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yuhang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Li Shuai
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| |
Collapse
|
11
|
Huo B, Kuang F, Guo CY. Design and Optimization Strategies for Flexible Quasi-Solid-State Thermo-Electrochemical Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6574. [PMID: 37834712 PMCID: PMC10573773 DOI: 10.3390/ma16196574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Currently, efficient utilization of low-grade thermal energy is a great challenge. Thermoelectricity is an extremely promising method of generating electrical energy from temperature differences. As a green energy conversion technology, thermo-electrochemical cells (TECs) have attracted much attention in recent years for their ability to convert thermal energy directly into electricity with high thermal power. Within TECs, anions and cations gain and lose electrons, respectively, at the electrodes, using the potential difference between the hot and cold terminals of the electrodes by redox couples. Additionally, the anions and cations therein are constantly circulating and mobile via concentration diffusion and thermal diffusion, providing an uninterrupted supply of power to the exterior. This review article focuses mainly on the operation of TECs and recent advances in redox couples, electrolytes, and electrodes. The outlook for optimization strategies regarding TECs is also outlined in this paper.
Collapse
Affiliation(s)
- Bingchen Huo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450003, China
| | - Fengxia Kuang
- Guangzhou Health Science College, Guangzhou 510925, China;
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
12
|
Li Z, Yang C, Zhang Q, Chen G, Xu J, Peng Y, Guo H. Standardized Volume Power Density Boost in Frequency-Up Converted Contact-Separation Mode Triboelectric Nanogenerators. RESEARCH (WASHINGTON, D.C.) 2023; 6:0237. [PMID: 37746657 PMCID: PMC10516179 DOI: 10.34133/research.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
The influence of a mechanical structure's volume increment on the volume power density (VPD) of triboelectric nanogenerators (TENGs) is often neglected when considering surface charge density and surface power density. This paper aims to address this gap by introducing a standardized VPD metric for a more comprehensive evaluation of TENG performance. The study specifically focuses on 2 frequency-up mechanisms, namely, the integration of planetary gears (PG-TENG) and the implementation of a double-cantilever structure (DC-TENG), to investigate their impact on VPD. The study reveals that the PG-TENG achieves the highest volume average power density, measuring at 0.92 W/m3. This value surpasses the DC-TENG by 1.26 times and the counterpart TENG by a magnitude of 69.9 times. Additionally, the PG-TENG demonstrates superior average power output. These findings introduce a new approach for enhancing TENGs by incorporating frequency-up mechanisms, and highlight the importance of VPD as a key performance metric for evaluating TENGs.
Collapse
Affiliation(s)
- Zhongjie Li
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, P.R. China
- Institute of Artificial Intelligence,
Shanghai University, Shanghai 200444, P.R. China
| | - Chao Yang
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, P.R. China
| | - Qin Zhang
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, P.R. China
| | - Geng Chen
- National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment,
Southeast University, Nanjing 210096, P.R. China
| | - Jingyuan Xu
- Institute of Microstructure Technology,
Karlsruhe Institute of Technology, Karlsruhe 76344, Germany
| | - Yan Peng
- Institute of Artificial Intelligence,
Shanghai University, Shanghai 200444, P.R. China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200444, P.R. China
| | - Hengyu Guo
- Department of Applied Physics,
Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
13
|
Lu X, Xie D, Zhu K, Wei S, Mo Z, Du C, Liang L, Chen G, Liu Z. Swift Assembly of Adaptive Thermocell Arrays for Device-Level Healable and Energy-Autonomous Motion Sensors. NANO-MICRO LETTERS 2023; 15:196. [PMID: 37566154 PMCID: PMC10421839 DOI: 10.1007/s40820-023-01170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
The evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvents the complicated fabrication of typical wearable electronics. Our findings underscore the hydrogel electrolyte's superior thermoelectrochemical performance under substantial deformations and repeated self-healing cycles. The resulting hydrogel-based TEC yields a maximum power output of 1032.1 nW under the ΔT of 20 K when being stretched to 500% for 1000 cycles, corresponding to 80% of its initial state; meanwhile, it sustains 1179.1 nW under the ΔT of 20 K even after 60 cut-healing cycles, approximately 92% of its initial state. The as-assembled TEC array exhibits device-level self-healing capability and high adaptability to human body. It is readily applied for touch-based encrypted communication where distinct voltage signals can be converted into alphabet letters; it is also employed as a self-powered sensor to in-situ monitor a variety of body motions for complex human actions. The swift assembly approach, combined with the versatile functionality of the TEC device, paves the way for future advancements in wearable electronics targeting at fitness monitoring and human-machine interfaces.
Collapse
Affiliation(s)
- Xin Lu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Daibin Xie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Kaihua Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Shouhao Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Ziwei Mo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhuoxin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
14
|
Shi J, Mao K, Zhang Q, Liu Z, Long F, Wen L, Hou Y, Li X, Ma Y, Yue Y, Li L, Zhi C, Gao Y. An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode. NANO-MICRO LETTERS 2023; 15:53. [PMID: 36795246 PMCID: PMC9935787 DOI: 10.1007/s40820-023-01023-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention. To solve the disadvantages of the traditional integrated system, such as highly dependent on energy supply and complex structure, an air-rechargeable Zn battery based on MoS2/PANI cathode is reported. Benefited from the excellent conductivity desolvation shield of PANI, the MoS2/PANI cathode exhibits ultra-high capacity (304.98 mAh g-1 in N2 and 351.25 mAh g-1 in air). In particular, this battery has the ability to collect, convert and store energy simultaneously by an air-rechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air. The air-rechargeable Zn batteries display a high open-circuit voltage (1.15 V), an unforgettable discharge capacity (316.09 mAh g-1 and the air-rechargeable depth is 89.99%) and good air-recharging stability (291.22 mAh g-1 after 50 air recharging/galvanostatic current discharge cycle). Most importantly, both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability. This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system.
Collapse
Affiliation(s)
- Junjie Shi
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Ke Mao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Qixiang Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Zunyu Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Fei Long
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Li Wen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yixin Hou
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Xinliang Li
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yanan Ma
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Yang Yue
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, People's Republic of China.
| | - Luying Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Chunyi Zhi
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yihua Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| |
Collapse
|
15
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
16
|
Xia ZX, Tian GS, Xian-Yu WX, Huang X, Fu P, Zhang YF, Du FP. Enhancement Effect of the C 60 Derivative on the Thermoelectric Properties of n-Type Single-Walled Carbon Nanotube-Based Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54969-54980. [PMID: 36469489 DOI: 10.1021/acsami.2c17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Obtaining air-stable and high-performance flexible n-type single-walled carbon nanotube (SWCNT)-based thermoelectric films used in wearable electronic devices is a challenge. In this work, the microstructure and thermoelectric properties of n-type SWCNT-based films have been optimized via doping C60 and its derivative into polyethylenimine/single-walled carbon nanotube (PEI/SWCNT) films. The result demonstrated that the dispersity of triethylene glycol-modified C60 (TEG-C60) was better in PEI/SWCNT films than that of pure C60. Among the prepared composite films, TEG-C60-doped PEI/SWCNT (TEG-C60/PEI/SWCNT) films exhibited the highest TE performance, achieving a peak electrical conductivity of 923 S cm-1 with a Seebeck coefficient of -42 μV K-1 at a TEG-C60/SWCNT mass ratio of 1:100. Compared to that of PEI/SWCNT, the power factor was increased significantly from 40 to 162 μW m-1 K-2 after the addition of TEG-C60, which was higher than that of films after the addition of C60. In addition, the n-type doped SWCNT films had good air stability at high temperatures, and the Seebeck coefficients of C60/PEI/SWCNT and TEG-C60/PEI/SWCNT at 120 °C were still negative and remained at 92% and 85%, respectively, after 20 days. Furthermore, a flexible TE device consisting of five pairs of p-n junctions was assembled using the optimum hybrid film, which generated a maximum output power of 3.6 μW at a temperature gradient of 50.2 K. Therefore, this study provides a facile way to enhance the thermoelectric properties of n-type carbon nanotube-based materials, which have potential application in flexible power generators.
Collapse
Affiliation(s)
- Zhi-Xiang Xia
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Gui-Sen Tian
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Wan-Xin Xian-Yu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Xiao Huang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Ping Fu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Yun-Fei Zhang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Fei-Peng Du
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| |
Collapse
|
17
|
Liao Z, Zhou X, Wei G, Wang S, Gao C, Wang L. Intrinsically Self-Healable and Wearable All-Organic Thermoelectric Composite with High Electrical Conductivity for Heat Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43421-43430. [PMID: 36121696 DOI: 10.1021/acsami.2c13593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of wearable electronics has led to the growing demand for the self-powered and maintenance-free power sources. Under these circumstances, thermoelectric generators are considered promising candidates, which can directly convert body heat into electricity to power wearable electronics. However, most of the thermoelectric materials are either brittle or unrecoverable under external physical damage. It is urgent to develop thermoelectric materials that possess both stretchability and intrinsic self-healing property, and the remaining challenge is to combine the high mechanical robustness and excellent electrical conductivity. Herein, a self-healing and wearable all-organic thermoelectric composite is reported. The composite film exhibits high electrical conductivity of 238 S cm-1, high flexibility of up to 119% strain, and a maximum tensile strength of 23 MPa. When the composite film is subjected to external physical damage, most functionalities can be maintained after self-healing, 78% recovery in electrical conductivity, and 80% recovery in tensile strength. Using the self-healing composite, we fabricated a thermoelectric generator with a power output of 85.5 nW at a temperature difference of 48 K, which is a significant advance over the recently reported thermoelectric generators based on intrinsic self-healing thermoelectric materials. This work represents a crucial step toward achieving intrinsic self-healing all-organic thermoelectric materials with high electrical conductivity.
Collapse
Affiliation(s)
- Zhixiong Liao
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xingyi Zhou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gongyi Wei
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shichao Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chunmei Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
18
|
Cho Y, Nagatsuka S, Murakami Y. Thermoelectrochemical Seebeck coefficient and viscosity of Co-complex electrolytes rationalized by the Einstein relation, Jones-Dole B coefficient, and quantum-chemical calculations. Phys Chem Chem Phys 2022; 24:21396-21405. [PMID: 36047310 DOI: 10.1039/d2cp02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Seebeck coefficient (Se) and the viscosity of a redox electrolyte are the key characteristics of thermoelectrochemical cells that generate electric power from waste thermal energy. However, the recent upsurge of research in this field is seriously disconnected from the knowledge of solution chemistry explored in the previous century. Herein, we systematically investigate five redox couples of cobalt complexes containing different aromatic ligands and anions in γ-butyrolactone solvent to demonstrate how the Einstein relation of hydrodynamic theory and the Jones-Dole B coefficient obtained from viscosity measurements can be used to account for such electrolyte properties. In essence, we reveal that the outer-shell (solvent reorganization) and inner-shell (metal-ligand reorganization) contributions to the redox reaction entropy ΔSrc (∝Se) can be quantified by the analyses using the B-coefficients and quantum-chemical simulations, respectively, while the distinct regimes found in the viscosity and conductivity are well accounted for by the Einstein relation, despite its classical hydrodynamic origin.
Collapse
Affiliation(s)
- Yuki Cho
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinya Nagatsuka
- Nippon Kayaku Co., Ltd., 3-31-12 Shimo, Kita-ku, Tokyo 115-8588, Japan
| | - Yoichi Murakami
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.,Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
19
|
Chen J, Shi C, Wu L, Deng Y, Wang Y, Zhang L, Zhang Q, Peng F, Tao XM, Zhang M, Zeng W. Environmentally Tolerant Ionic Hydrogel with High Power Density for Low-Grade Heat Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34714-34721. [PMID: 35876495 DOI: 10.1021/acsami.2c07423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Harvesting low-grade heat by an ionic hydrogel thermoelectric generator (ITEG) into useful electricity is promising to power flexible electronics. However, the poor environmental tolerance of the ionic hydrogel limits its application. Herein, we demonstrate an ITEG with high thermoelectric properties, as well as excellent capabilities of water retention, freezing resistance, and self-regeneration. The obtained ITEG can maintain the original water content at ambient conditions (302 K, 65% relative humidity (RH)) for 7 days and keep unfreezing at a low temperature (253 K). It can even be self-regenerated and recovered to its original state after a water loss in high-temperature conditions. Furthermore, a high ionic Seebeck coefficient of 11.3 mV K-1 and an impressive power density of 167.90 mW m-2 are achieved under a temperature difference of 20 K. A high power density of 60.00 mW m-2 can also be maintained even at 258 K. After drying and regeneration, ITEG-re could even exhibit a higher ionic Seebeck coefficient of 11.8 mV K-1. Successful lighting of light-emitting diodes (LEDs) and charging of capacitors demonstrate the great potential of ITEG to provide continuous energy supply for powering flexible electronics.
Collapse
Affiliation(s)
- Jianhao Chen
- Department of Flexible Sensing Technology, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chaosheng Shi
- Department of Flexible Sensing Technology, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Lian Wu
- Department of Flexible Sensing Technology, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Yuchan Deng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yaozhi Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lei Zhang
- Department of Flexible Sensing Technology, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiao-Ming Tao
- Research Centre for Smart Wearable Systems, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mingqiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Zeng
- Department of Flexible Sensing Technology, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| |
Collapse
|