1
|
Qian W, Dai S, Wang H, Hu T, Liu K, Wang Y, Guo Q, Yue X, Wang Y, Li C, Hu Z, Liu R, Qin S, Wang J, Qin J, Zhang J, Yu A, Zhan Y. Suppressing the Bottom Small n Phases of Quasi-2D Perovskites for High-Performance Photovoltaic Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16932-16941. [PMID: 40045449 DOI: 10.1021/acsami.5c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The bottom small n phases in quasi-two-dimensional (Q-2D) perovskite films significantly hinder their photovoltaic performance development due to their severely low conductivity and nonideal band alignment in the corresponding solar cells. In this study, we successfully suppressed the growth of small n phases in Q-2D Ruddlesden-Popper (RP) perovskite (BA2MA4Pb5I16, ⟨n⟩ = 5) films by introducing 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13) as an additive into the perovskite precursor solution. It is interesting to find that the hole transport layer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) in our p-i-n device can attract the SPPO13 due to the π-π stacking effect. As a result, the SPPO13 concentrates at the bottom, and the coordination between SPPO13 and PbI2 leads to more [PbI6]4- octahedra gathering at the downside of the Q-2D perovskite film. Thereby, more large n phases remain at the bottom, and the unwanted small n phases are suppressed. The optimized device achieves a remarkable power conversion efficiency of 18.41%, which, according to our knowledge, is the highest value for the BA-MA-based perovskite. Moreover, our device also demonstrates outstanding stability, maintaining 99.5% and 95.3% of the initial efficiency after being stored for over 3500 h and under maximum power point tracking operation for over 400 h, respectively. Unlike conventional methods that primarily address bulk or interface properties, this approach uniquely combines π-π stacking effects and defect passivation through phosphine oxide groups, leading to enhanced crystallinity, vertical orientation, and suppressed nonradiative recombination. This work provides a new approach to regulate n-phase growth and promote the photovoltaic behavior of Q-2D perovskite solar cells.
Collapse
Affiliation(s)
- Weifan Qian
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Shijie Dai
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Haoliang Wang
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Tianxiang Hu
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Kai Liu
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Yixi Wang
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Qiang Guo
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Xiaofei Yue
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Yanyan Wang
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Chongyuan Li
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Zhijie Hu
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Ruochen Liu
- Institute for Electric Light Sources, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Shoukun Qin
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Jiao Wang
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Jiajun Qin
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Jia Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200438, China
| | - Anran Yu
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
| | - Yiqiang Zhan
- Center for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200438, China
- The State Key Laboratory of Photovoltaic Science and Technology, Institute of Optoelectronics, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Liu P, Li X, Cai T, Xing W, Yang N, Arandiyan H, Shao Z, Wang S, Liu S. Molecular Structure Tailoring of Organic Spacers for High-Performance Ruddlesden-Popper Perovskite Solar Cells. NANO-MICRO LETTERS 2024; 17:35. [PMID: 39387997 PMCID: PMC11469732 DOI: 10.1007/s40820-024-01500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
Layer-structured Ruddlesden-Popper (RP) perovskites (RPPs) with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell (PSC) technology. However, two-dimensional (2D) or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy, blocked charge transport and poor film quality, which restrict their photovoltaic performance. Fortunately, these issues can be readily resolved by rationally designing spacer cations of RPPs. This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications. We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics, charge transporting ability and stability of RPPs. Then we brought three aspects to attention for designing organic spacers. Finally, we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs. These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
Collapse
Affiliation(s)
- Pengyun Liu
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Xuejin Li
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Tonghui Cai
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Wei Xing
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Naitao Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Hamidreza Arandiyan
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
- School of Engineering, Great Bay University, Dongguan, 523000, People's Republic of China.
| |
Collapse
|
3
|
Wei X, Li Q, Pi M, Zhu X, Yu P, Wu W, Du J, Yang J, Liu Z, Zhang D. Enhanced amplified spontaneous emission performance through effective regulation of phase distribution in Ruddlesden-Popper perovskite films. OPTICS LETTERS 2024; 49:4134-4137. [PMID: 39090877 DOI: 10.1364/ol.528691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 08/04/2024]
Abstract
Ruddlesden-Popper (RP) perovskites promise next-generation gain media for laser devices. However, most RP perovskite lasers are still suffering from inferior performance characteristics, such as inadequate energy transfer, unstable emission, and short lifetime. To address the above problems, high crystalline quality, compact, and smooth PEA2FA2Pb3Br10 films with uniform phase distribution were successfully prepared by ionic liquid (IL) methylammonium acetate (MAAc) in an air environment. Compared with the PEA2FA2Pb3Br10 film prepared by the traditional solvent dimethyl sulfoxide (DMSO), an enhanced amplified spontaneous emission (ASE) with a lower threshold of 58 µJ·cm-2 from the MAAc-treated film was obtained under nanosecond laser excitation. The transient absorption (TA) spectroscopy revealed that a uniform phase distribution and more efficient energy transfer processes were achieved in the PEA2FA2Pb3Br10-MAAc film, leading to an enhanced band-to-band spontaneous emission process. Furthermore, the films exhibited better stability, showing no signs of degradation under the 120 min pulsed laser pumping in air and stability of ASE spectra at even 95% humidity conditions. This study provides an important foundation for achieving high-performance optically pumped lasers based on the unique RP perovskites.
Collapse
|
4
|
Yang L, Zheng F, Wu J, Hou Y, Qi X, Miao Y, Wang X, Huang L, Liu X, Zhang J, Zhu Y, Hu Z. Unveiling Local Current Behavior and Manipulating Grain Homogenization of Perovskite Films for Efficient Solar Cells. ACS NANO 2024; 18:17547-17556. [PMID: 38935688 DOI: 10.1021/acsnano.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Achieving high power conversion efficiency in perovskite solar cells (PSCs) heavily relies on fabricating homogeneous perovskite films. However, understanding microscopic-scale properties such as current generation and open-circuit voltage within perovskite crystals has been challenging due to difficulties in quantifying intragrain behavior. In this study, the local current intensity within state-of-the-art perovskite films mapped by conductive atomic force microscopy reveals a distinct heterogeneity, which exhibits a strong anticorrelation to the external biases. Particularly under different external bias polarities, specific regions in the current mapping show contrasting conductivity. Moreover, grains oriented differently exhibit varied surface potentials and currents, leading us to associate this local current heterogeneity with the grain orientation. It was found that the films treated with isopropanol exhibit ordered grain orientation, demonstrating minimized lattice heterogeneity, fewer microstructure defects, and reduced electronic disorder. Importantly, devices exhibiting an ordered orientation showcase elevated macroscopic optoelectronic properties and boosted device performance. These observations underscore the critical importance of fine-tuning the grain homogenization of perovskite films, offering a promising avenue for further enhancing the efficiency of PSCs.
Collapse
Affiliation(s)
- Liu Yang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Fei Zheng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Jun Wu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Yanna Hou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Xiaorong Qi
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Yuchen Miao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Xu Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Like Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Xiaohui Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Jing Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Yuejin Zhu
- School of Science and Engineering, College of Science and Technology, Ningbo University, Ningbo 315300, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Li Z, Lin Y, Gu H, Zhang N, Wang B, Cai H, Liao J, Yu D, Chen Y, Fang G, Liang C, Yang S, Xing G. Large-n quasi-phase-pure two-dimensional halide perovskite: A toolbox from materials to devices. Sci Bull (Beijing) 2024; 69:382-418. [PMID: 38105163 DOI: 10.1016/j.scib.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Despite their excellent environmental stability, low defect density, and high carrier mobility, large-n quasi-two-dimensional halide perovskites (quasi-2DHPs) feature a limited application scope because of the formation of self-assembled multiple quantum wells (QWs) due to the similar thermal stabilities of large-n phases. However, large-n quasi-phase-pure 2DHPs (quasi-PP-2DHPs) can solve this problem perfectly. This review discusses the structures, formation mechanisms, and photoelectronic and physical properties of quasi-PP-2DHPs, summarises the corresponding single crystals, thin films, and heterojunction preparation methods, and presents the related advances. Moreover, we focus on applications of large-n quasi-PP-2DHPs in solar cells, photodetectors, lasers, light-emitting diodes, and field-effect transistors, discuss the challenges and prospects of these emerging photoelectronic materials, and review the potential technological developments in this area.
Collapse
Affiliation(s)
- Zijia Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Lin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Nan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dejian Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Guojia Fang
- Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
| |
Collapse
|