1
|
Li Q, Zhang X, Zhang J, Huang H, Li L, Guo C, Li W, Guo Y. Deep learning-based hyperspectral technique identifies metastatic lymph nodes in oral squamous cell carcinoma-A pilot study. Oral Dis 2025; 31:417-425. [PMID: 39005220 DOI: 10.1111/odi.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
AIMS To establish a system based on hyperspectral imaging and deep learning for the detection of cancer cells in metastatic lymph nodes. MAIN METHODS The continuous sections of metastatic lymph nodes from 45 oral squamous cell carcinoma (OSCC) patients were collected. An improved ResUNet algorithm was established for deep learning to analyze the spectral curve differences between cancer cells and lymphocytes, and that between tumor tissue and normal tissue. KEY FINDINGS It was found that cancer cells, lymphocytes, and erythrocytes in the metastatic lymph nodes could be distinguished basing hyperspectral image, with overall accuracy (OA) as 87.30% and average accuracy (AA) as 85.46%. Cancerous area could be recognized by hyperspectral image and deep learning, and the average intersection over union (IOU) and accuracy were 0.6253 and 0.7692, respectively. SIGNIFICANCE This study indicated that deep learning-based hyperspectral techniques can identify tumor tissue in OSCC metastatic lymph nodes, achieving high accuracy of pathological diagnosis, high work efficiency, and reducing work burden. But these are preliminary results limited to a small sample.
Collapse
Affiliation(s)
- Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xueyu Zhang
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
- Beijing Key Laboratory of Fractional Signals and Systems, Beijing, China
| | - Jianyun Zhang
- National Center for Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hongyuan Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Liangliang Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
- Beijing Key Laboratory of Fractional Signals and Systems, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wei Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
- Beijing Key Laboratory of Fractional Signals and Systems, Beijing, China
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
2
|
Fan S, Zhang H, Meng Z, Li A, Luo Y, Liu Y. Comparing the diagnostic efficacy of optical coherence tomography and frozen section for margin assessment in breast-conserving surgery: a meta-analysis. J Clin Pathol 2024; 77:517-527. [PMID: 38862215 DOI: 10.1136/jcp-2024-209597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
AIMS This meta-analysis assessed the relative diagnostic accuracy of optical coherence tomography (OCT) versus frozen section (FS) in evaluating surgical margins during breast-conserving procedures. METHODS PubMed and Embase were searched for relevant studies published up to October 2023. The inclusion criteria encompassed studies evaluating the diagnostic accuracy of OCT or FS in patients undergoing breast-conserving surgery. Sensitivity and specificity were analysed using the DerSimonian and Laird method and subsequently transformed through the Freeman-Tukey double inverse sine method. RESULTS The meta-analysis encompassed 36 articles, comprising 16 studies on OCT and 20 on FS, involving 10 289 specimens from 8058 patients. The overall sensitivity of OCT was 0.93 (95% CI: 0.90 to 0.96), surpassing that of FS, which was 0.82 (95% CI: 0.71 to 0.92), indicating a significantly higher sensitivity for OCT (p=0.04). Conversely, the overall specificity of OCT was 0.89 (95% CI: 0.83 to 0.94), while FS exhibited a higher specificity at 0.97 (95% CI: 0.95 to 0.99), suggesting a superior specificity for FS (p<0.01). CONCLUSIONS Our meta-analysis reveals that OCT offers superior sensitivity but inferior specificity compared with FS in assessing surgical margins in breast-conserving surgery patients. Further larger well-designed prospective studies are needed, especially those employing a head-to-head comparison design. PROSPERO REGISTRATION NUMBER CRD42023483751.
Collapse
Affiliation(s)
- Shishun Fan
- Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huirui Zhang
- Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenyu Meng
- Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ang Li
- Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuqing Luo
- Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Tudor M, Popescu RC, Negoita RD, Gilbert A, Ilisanu MA, Temelie M, Dinischiotu A, Chevalier F, Mihailescu M, Savu DI. In vitro hyperspectral biomarkers of human chondrosarcoma cells in nanoparticle-mediated radiosensitization using carbon ions. Sci Rep 2023; 13:14878. [PMID: 37689817 PMCID: PMC10492786 DOI: 10.1038/s41598-023-41991-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
New therapeutic approaches are needed for the management of the highly chemo- and radioresistant chondrosarcoma (CHS). In this work, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the intracellular delivery of the chemotherapeutic doxorubicin (IONPDOX) to augment the cytotoxic effects of carbon ions in comparison to photon radiation therapy. The in vitro biological effects were investigated in SW1353 chondrosarcoma cells focusing on the following parameters: cell survival using clonogenic test, detection of micronuclei (MN) by cytokinesis blocked micronucleus assay and morphology together with spectral fingerprints of nuclei using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module. The combination of IONPDOX with ion carbon or photon irradiation increased the lethal effects of irradiation alone in correlation with the induction of MN. Alterations in the hyperspectral images and spectral profiles of nuclei reflected the CHS cell biological modifications following the treatments, highlighting possible new spectroscopic markers of cancer therapy effects. These outcomes showed that the proposed combined treatment is promising in improving CHS radiotherapy.
Collapse
Affiliation(s)
- Mihaela Tudor
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125, Magurele, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| | - Roxana Cristina Popescu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125, Magurele, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Gheorghe Polizu Street, 1-7, 011061, Bucharest, Romania
| | - Raluca D Negoita
- Applied Sciences Doctoral School, Politehnica University Bucharest, Bucharest, Romania
| | - Antoine Gilbert
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000, Caen, France
| | - Mihaela A Ilisanu
- Doctoral School of Computer Sciences, Politehnica University Bucharest, Bucharest, Romania
| | - Mihaela Temelie
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125, Magurele, Romania
| | - Anca Dinischiotu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania.
| | - François Chevalier
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000, Caen, France
| | - Mona Mihailescu
- Holographic Imaging and Processing Laboratory, Physics Department, Politehnica University Bucharest, Bucharest, Romania
- Centre for Research in Fundamental Sciences Applied in Engineering, Politehnica University Bucharest, Bucharest, Romania
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125, Magurele, Romania.
| |
Collapse
|
4
|
Intraoperative Assessment of Tumor Margins in Tissue Sections with Hyperspectral Imaging and Machine Learning. Cancers (Basel) 2022; 15:cancers15010213. [PMID: 36612208 PMCID: PMC9818424 DOI: 10.3390/cancers15010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The intraoperative assessment of tumor margins of head and neck cancer is crucial for complete tumor resection and patient outcome. The current standard is to take tumor biopsies during surgery for frozen section analysis by a pathologist after H&E staining. This evaluation is time-consuming, subjective, methodologically limited and underlies a selection bias. Optical methods such as hyperspectral imaging (HSI) are therefore of high interest to overcome these limitations. We aimed to analyze the feasibility and accuracy of an intraoperative HSI assessment on unstained tissue sections taken from seven patients with oral squamous cell carcinoma. Afterwards, the tissue sections were subjected to standard histopathological processing and evaluation. We trained different machine learning models on the HSI data, including a supervised 3D convolutional neural network to perform tumor detection. The results were congruent with the histopathological annotations. Therefore, this approach enables the delineation of tumor margins with artificial HSI-based histopathological information during surgery with high speed and accuracy on par with traditional intraoperative tumor margin assessment (Accuracy: 0.76, Specificity: 0.89, Sensitivity: 0.48). With this, we introduce HSI in combination with ML hyperspectral imaging as a potential new tool for intraoperative tumor margin assessment.
Collapse
|
5
|
Tumor cell identification and classification in esophageal adenocarcinoma specimens by hyperspectral imaging. Sci Rep 2022; 12:4508. [PMID: 35296685 PMCID: PMC8927097 DOI: 10.1038/s41598-022-07524-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is the sixth leading cause of cancer-related death worldwide. Histopathological confirmation is a key step in tumor diagnosis. Therefore, simplification in decision-making by discrimination between malignant and non-malignant cells of histological specimens can be provided by combination of new imaging technology and artificial intelligence (AI). In this work, hyperspectral imaging (HSI) data from 95 patients were used to classify three different histopathological features (squamous epithelium cells, esophageal adenocarcinoma (EAC) cells, and tumor stroma cells), based on a multi-layer perceptron with two hidden layers. We achieved an accuracy of 78% for EAC and stroma cells, and 80% for squamous epithelium. HSI combined with machine learning algorithms is a promising and innovative technique, which allows image acquisition beyond Red–Green–Blue (RGB) images. Further method validation and standardization will be necessary, before automated tumor cell identification algorithms can be used in daily clinical practice.
Collapse
|
6
|
Banana spoilage benchmark determination method and early warning potential based on hyperspectral data during its storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Ortega S, Halicek M, Fabelo H, Callico GM, Fei B. Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:3195-3233. [PMID: 32637250 PMCID: PMC7315999 DOI: 10.1364/boe.386338] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 05/08/2020] [Indexed: 05/06/2023]
Abstract
Hyperspectral imaging (HSI) and multispectral imaging (MSI) technologies have the potential to transform the fields of digital and computational pathology. Traditional digitized histopathological slides are imaged with RGB imaging. Utilizing HSI/MSI, spectral information across wavelengths within and beyond the visual range can complement spatial information for the creation of computer-aided diagnostic tools for both stained and unstained histological specimens. In this systematic review, we summarize the methods and uses of HSI/MSI for staining and color correction, immunohistochemistry, autofluorescence, and histopathological diagnostic research. Studies include hematology, breast cancer, head and neck cancer, skin cancer, and diseases of central nervous, gastrointestinal, and genitourinary systems. The use of HSI/MSI suggest an improvement in the detection of diseases and clinical practice compared with traditional RGB analysis, and brings new opportunities in histological analysis of samples, such as digital staining or alleviating the inter-laboratory variability of digitized samples. Nevertheless, the number of studies in this field is currently limited, and more research is needed to confirm the advantages of this technology compared to conventional imagery.
Collapse
Affiliation(s)
- Samuel Ortega
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
- These authors contributed equally to this work
| | - Martin Halicek
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biomedical Engineering, Georgia Inst. of Tech. and Emory University, Atlanta, GA 30322, USA
- These authors contributed equally to this work
| | - Himar Fabelo
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Gustavo M Callico
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Baowei Fei
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- University of Texas Southwestern Medical Center, Advanced Imaging Research Center, Dallas, TX 75235, USA
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX 75235, USA
| |
Collapse
|
8
|
Zarella MD, Bowman; D, Aeffner F, Farahani N, Xthona; A, Absar SF, Parwani A, Bui M, Hartman DJ. A Practical Guide to Whole Slide Imaging: A White Paper From the Digital Pathology Association. Arch Pathol Lab Med 2018; 143:222-234. [DOI: 10.5858/arpa.2018-0343-ra] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—
Whole slide imaging (WSI) represents a paradigm shift in pathology, serving as a necessary first step for a wide array of digital tools to enter the field. Its basic function is to digitize glass slides, but its impact on pathology workflows, reproducibility, dissemination of educational material, expansion of service to underprivileged areas, and intrainstitutional and interinstitutional collaboration exemplifies a significant innovative movement with far-reaching effects. Although the benefits of WSI to pathology practices, academic centers, and research institutions are many, the complexities of implementation remain an obstacle to widespread adoption. In the wake of the first regulatory clearance of WSI for primary diagnosis in the United States, some barriers to adoption have fallen. Nevertheless, implementation of WSI remains a difficult prospect for many institutions, especially those with stakeholders unfamiliar with the technologies necessary to implement a system or who cannot effectively communicate to executive leadership and sponsors the benefits of a technology that may lack clear and immediate reimbursement opportunity.
Objectives.—
To present an overview of WSI technology—present and future—and to demonstrate several immediate applications of WSI that support pathology practice, medical education, research, and collaboration.
Data Sources.—
Peer-reviewed literature was reviewed by pathologists, scientists, and technologists who have practical knowledge of and experience with WSI.
Conclusions.—
Implementation of WSI is a multifaceted and inherently multidisciplinary endeavor requiring contributions from pathologists, technologists, and executive leadership. Improved understanding of the current challenges to implementation, as well as the benefits and successes of the technology, can help prospective users identify the best path for success.
Collapse
Affiliation(s)
- Mark D. Zarella
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| | - Douglas Bowman;
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| | - Famke Aeffner
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| | - Navid Farahani
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| | - Albert Xthona;
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| | - Syeda Fatima Absar
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| | - Anil Parwani
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| | - Marilyn Bui
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| | - Douglas J. Hartman
- From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
| |
Collapse
|