1
|
Asci F, Di Stefano G, Di Santo A, Bianchini E, Leone C, La Cesa S, Zampogna A, Cruccu G, Suppa A. Pain-motor integration in chronic pain: A neurophysiological study. Clin Neurophysiol 2023; 154:107-115. [PMID: 37595480 DOI: 10.1016/j.clinph.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Chronic pain may lead to functional changes in several brain regions, including the primary motor cortex (M1). Our neurophysiological study aimed to probe M1 plasticity, through a non-invasive transcranial magnetic stimulation protocol, in a cohort of patients with chronic pain. METHODS Twenty patients with chronic pain (age ± SD: 62.9 ± 9.9) and 20 age- and sex-matched healthy controls (age ± SD: 59.6 ± 15.8) were recruited. Standardized scales were used for the evaluation of pain severity. Neurophysiological measures included laser-evoked potentials (LEPs) and motor-evoked potentials (MEPs) collected at baseline and over 60 minutes following a standardized Laser-paired associative stimulation (Laser-PAS) protocol. RESULTS LEPs and MEPs were comparable in patients with chronic pain and controls. The pain threshold was lower in patients than in controls. Laser-PAS elicited decreased responses in patients with chronic pain. The response to Laser-PAS was similar in subgroups of patients with different chronic pain phenotypes. CONCLUSIONS M1 plasticity, as tested by Laser-PAS, is altered in patients with chronic pain, possibly reflecting abnormal pain-motor integration processes. SIGNIFICANCE Chronic pain is associated with a disorder of M1 plasticity raising from abnormal pain-motor integration.
Collapse
Affiliation(s)
- Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| | - Giulia Di Stefano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Alessandro Di Santo
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Edoardo Bianchini
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Caterina Leone
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Silvia La Cesa
- Unit of Neurology, S. Camillo-Forlanini Hospital, Rome, Italy.
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Giorgio Cruccu
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
2
|
Low Back Pain Assessment Based on Alpha Oscillation Changes in Spontaneous Electroencephalogram (EEG). Neural Plast 2021; 2021:8537437. [PMID: 34306064 PMCID: PMC8266462 DOI: 10.1155/2021/8537437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Objectively and accurately assessing pain in clinical settings is challenging. Previous studies showed that alpha oscillations of electroencephalogram data are correlated with subjective perceived pain. Based on this finding, this study is aimed at assessing chronic low back pain based on alpha oscillations. Multichannel electroencephalogram data were recorded from 27 subjects with chronic low back pain under the simple conditions of closing eyes or opening eyes. Spectral analyses were conducted to extract the alpha band responses, and the alpha powers were calculated for the two conditions, respectively. Normalized alpha power was calculated by subtracting the alpha power in the eyes-open condition from that in the eyes-closed condition. The correlation between the alpha power and the subjective pain intensity was evaluated in frontal, central, and posterior regions. The normalized alpha power in the central region was negatively correlated with the subjective pain intensity (R = -0.50, P = 0.01), with the strongest correlation occurring at the Cz electrode (R = -0.59, P = 0.04). The correlation analysis results demonstrated the possibility of using the differences of alpha spectral power between eyes-closed and eyes-open conditions as a measure for assessing chronic low back pain. The findings suggest that the normalized alpha power in the central region may be used as a measurable and quantitative indicator of chronic pain for clinical applications.
Collapse
|
4
|
Wei TY, Chang DW, Liu YD, Liu CW, Young CP, Liang SF, Shaw FZ. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory. Biomed Eng Online 2017; 16:128. [PMID: 29132359 PMCID: PMC5684759 DOI: 10.1186/s12938-017-0418-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/02/2017] [Indexed: 11/26/2022] Open
Abstract
Background Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. Methods The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8–12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. Results The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8–12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Conclusions Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.
Collapse
Affiliation(s)
- Ting-Ying Wei
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Da-Wei Chang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - You-De Liu
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Wei Liu
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ping Young
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Fu Liang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan.,Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan. .,Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|