1
|
Ganesh S B, Sabu A, Kaarthikeyan G, Eswaramoorthy R, P T P. Development of a Cissus quadrangularis-Doped Extracellular Matrix and a Hyaluronic Acid-Incorporated Scaffold for Periodontal Regeneration: An In Vitro Study. Cureus 2024; 16:e56507. [PMID: 38646344 PMCID: PMC11026305 DOI: 10.7759/cureus.56507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
PURPOSE The study aimed to analyze whether adding Cissus quadrangularis (CQ) extract and the extracellular matrix of ovine tendon (TENDON) increases the regenerative potential of mesenchymal stem cells produced in hyaluronic acid (HA) scaffolds for tenogenesis. MATERIALS AND METHODS Fifty grams of powdered CQ was mixed with 250 mL of ethanol to prepare the extract. Two grams of hyaluronic acid powder was added to 100 mL of distilled water to make the HA solution. The ovine tendon was decellularized using a mixture of 10% phosphate-buffered saline (PBS), sodium dodecyl sulfate (SDS), and Triton-X. The hydrogel samples were prepared by mixing the extracellular matrix of tendon, HA, and CQ, after which they were divided into study groups such as HA, HA + CQ, HA + TENDON, and HA + CQ + TENDON. Scanning electron microscopy (SEM) analysis, swelling analysis, differentiation analysis, compression test, compatibility assay, and tenogenesis assay were later conducted. RESULTS The morphology of the samples was analyzed using SEM. Low levels of swelling of the hydrogels were observed. Cells were found to be viable and showed good differentiation and tenogenesis. Optimal compression levels were observed, and the properties of the prepared hydrogels were satisfactory. CONCLUSION The results suggest that the addition of CQ considerably increases the tenogenic potential of the extracellular matrix/HA scaffold. Hence, it can be used as a regenerative material for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Balaji Ganesh S
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Abraham Sabu
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - G Kaarthikeyan
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajalakshmanan Eswaramoorthy
- Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Priyangha P T
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37146213 DOI: 10.1021/acsbiomaterials.3c00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today, a wide variety of bio- and nanomaterials have been deployed for cardiovascular tissue engineering (TE), including polymers, metal oxides, graphene/its derivatives, organometallic complexes/composites based on inorganic-organic components, among others. Despite several advantages of these materials with unique mechanical, biological, and electrical properties, some challenges still remain pertaining to their biocompatibility, cytocompatibility, and possible risk factors (e.g., teratogenicity or carcinogenicity), restricting their future clinical applications. Natural polysaccharide- and protein-based (nano)structures with the benefits of biocompatibility, sustainability, biodegradability, and versatility have been exploited in the field of cardiovascular TE focusing on targeted drug delivery, vascular grafts, engineered cardiac muscle, etc. The usage of these natural biomaterials and their residues offers several advantages in terms of environmental aspects such as alleviating emission of greenhouse gases as well as the production of energy as a biomass consumption output. In TE, the development of biodegradable and biocompatible scaffolds with potentially three-dimensional structures, high porosity, and suitable cellular attachment/adhesion still needs to be comprehensively studied. In this context, bacterial cellulose (BC) with high purity, porosity, crystallinity, unique mechanical properties, biocompatibility, high water retention, and excellent elasticity can be considered as promising candidate for cardiovascular TE. However, several challenges/limitations regarding the absence of antimicrobial factors and degradability along with the low yield of production and extensive cultivation times (in large-scale production) still need to be resolved using suitable hybridization/modification strategies and optimization of conditions. The biocompatibility and bioactivity of BC-based materials along with their thermal, mechanical, and chemical stability are crucial aspects in designing TE scaffolds. Herein, cardiovascular TE applications of BC-based materials are deliberated, with a focus on the most recent advancements, important challenges, and future perspectives. Other biomaterials with cardiovascular TE applications and important roles of green nanotechnology in this field of science are covered to better compare and comprehensively review the subject. The application of BC-based materials and the collective roles of such biomaterials in the assembly of sustainable and natural-based scaffolds for cardiovascular TE are discussed.
Collapse
Affiliation(s)
- Saba Fooladi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| |
Collapse
|
3
|
Aswathy J, Resmi R, Joseph J, Joseph R, John A, Abraham A. Calotropis gigantea incorporated alginate dialdehyde-gelatin hydrogels for cartilage tissue regeneration in Osteoarthritis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Mai P, Hampl J, Baca M, Brauer D, Singh S, Weise F, Borowiec J, Schmidt A, Küstner JM, Klett M, Gebinoga M, Schroeder IS, Markert UR, Glahn F, Schumann B, Eckstein D, Schober A. MatriGrid® Based Biological Morphologies: Tools for 3D Cell Culturing. Bioengineering (Basel) 2022; 9:bioengineering9050220. [PMID: 35621498 PMCID: PMC9138054 DOI: 10.3390/bioengineering9050220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid®s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account.
Collapse
Affiliation(s)
- Patrick Mai
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Jörg Hampl
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
- Correspondence: (J.H.); (A.S.); Tel.: +49-3677-6933387 (A.S.)
| | - Martin Baca
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Dana Brauer
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Sukhdeep Singh
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Frank Weise
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Justyna Borowiec
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - André Schmidt
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (A.S.); (U.R.M.)
| | - Johanna Merle Küstner
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Maren Klett
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Michael Gebinoga
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Insa S. Schroeder
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany;
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (A.S.); (U.R.M.)
| | - Felix Glahn
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Berit Schumann
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Diana Eckstein
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Andreas Schober
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
- Correspondence: (J.H.); (A.S.); Tel.: +49-3677-6933387 (A.S.)
| |
Collapse
|
5
|
Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present.
Collapse
|
6
|
Bioactivity and Delivery Strategies of Phytochemical Compounds in Bone Tissue Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant-derived secondary metabolites represent a reservoir of phytochemicals for regenerative medicine application because of their varied assortment of biological properties including anti-oxidant, anti-inflammatory, antibacterial, and tissue remodeling properties. In addition, bioactive phytochemicals can be easily available, are often more cost-effective in large-scale industrialization, and can be better tolerated compared to conventional treatments mitigating the long-lasting side effects of synthetic compounds. Unfortunately, their poor bioavailability and lack of long-term stability limit their clinical impact. Nanotechnology-based delivery systems can overcome these limitations increasing bioactive molecules’ local effectiveness with reduction of the possible side effects on healthy bone. This review explores new and promising strategies in the area of delivery systems with particular emphasis on solutions that enhance bioavailability and/or health effects of plant-derived phytochemicals such as resveratrol, quercetin, epigallocatechin-3-gallate, and curcumin in bone tissue regeneration.
Collapse
|
7
|
Letha N, Joseph J, Sundar G, Pillai AU, John A, Abraham A. Incorporation of phytochemicals into electrospun scaffolds for wound-healing applications in vitro and in vivo. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520939989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite advances in wound treatment, wound-associated infections and delayed healing still remains an ‘unmet clinical need’. The present treatment modalities include topical application of ointments and perhaps it may better be substituted by phytochemical incorporated nanofibers which increases wound-healing efficiency and reduce risk of infections. Hence, the aim of this study was to synthesise Areca catechu–incorporated polycaprolactone scaffolds for wound-healing applications. In this study, the tender nut of Areca catechu plant was collected and extracted with ethanol using the maceration technique. The presence of various active phytochemical constituents of ethanolic fraction of Areca catechu like phenol, flavonoid, tannin and alkaloid were identified qualitatively and estimated quantitatively. Areca catechu incorporated 10%w/w polycaprolactone scaffolds were fabricated by electrospinning technique and characterised physico-chemically by Fourier-transform infrared spectroscopy and scanning electron microscope analysis. In vitro cytotoxicity analysis was evaluated with L929 fibroblasts and in vivo wound-healing studies using rat models for both polycaprolactone and Areca catechu–incorporated polycaprolactone scaffolds. Extract of Areca catechu exhibited antioxidant properties and antibacterial activity against Staphylococcus aureus and Psuedomonus aeru ginosa. Scanning electron microscope image revealed the nanofibrous structural morphology of Areca catechu–incorporated polycaprolactone and polycaprolactone with average diameter of 350 and 399 nm, respectively. The characteristic peak of Fourier-transform infrared spectroscopy depicted the presence of biomolecules and detection of functional groups confirming the incorporation of Areca catechu into the polycaprolactone scaffold. Furthermore, cells were cytocompatible with 85% viability over Areca catechu–incorporated polycaprolactone scaffolds, and wounds treated with Areca catechu–incorporated polycaprolactone healed faster with a significant difference in the wound area than polycaprolactone controls. The phytochemical-incorporated polycaprolactone scaffolds with antioxidant, antimicrobial, biocompatible and wound-healing properties is proposed to be an indigenous approach towards wound care management globally and seems to be better and cost-effective wound dressings.
Collapse
Affiliation(s)
- Neethu Letha
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - Josna Joseph
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - Gayathri Sundar
- Department of Biotechnology, CEPCI Laboratory & Research Institute, Kollam, India
| | | | - Annie John
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|