1
|
Fortes WMPA, Souza IDC, Azevedo VC, Griboff J, Monferrán MV, Wunderlin DA, Matsumoto ST, Fernandes MN. Metal/metalloid bioconcentration dynamics in fish and the risk to human health due to water contamination with atmospheric particulate matter from a metallurgical industrial area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166119. [PMID: 37567312 DOI: 10.1016/j.scitotenv.2023.166119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Settleable atmospheric particulate matter (SeAPM) containing a mixture of metals, including metallic nanoparticles, has increased throughout the world, and caused environmental and biota contamination. The metal bioconcentration pattern in Nile tilapia (Oreochromis niloticus) was evaluated during a 30-day exposure to 1 g L-1 SeAPM and assessed the human health risk from consuming fish fillets (muscle) based on the estimated daily intake (EDI). SeAPM was collected surrounding an iron ore processing and steel industrial complex in Vitória city (Espírito Santo, Brazil) area. Water samples were collected daily for physicochemical analyses, and every 3 days for multi-elemental analyses. Metal bioconcentrations were determined in the viscera and fillet of fish every 3 days. The elements B, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Pb, Hg, Ba, Bi, W, Ti, Zr, Y, La, Nb, and Ce were analyzed in SeAPM, water, and fish using inductively coupled plasma mass spectrometry. The metal concentration in SeAPM-contaminated water was higher than in control water. Most metals bioconcentrated preferentially in the fish viscera, except for the Hg and Rb, which bioconcentrated mostly in the fillet. The bioconcentration pattern was Fe > Al > Mn > Pb > V > La > Ce > Y > Ni > Se > As > W > Bi in the viscera; it was higher than the controls throughout the 30-day exposure. Ti, Zr, Nb, Rb, Cd, Hg, B, and Cr showed different bioconcentration patterns. The Zn, Cu, Sr, Sn, Ag, and Ta did not differ from controls. The differences in metal bioconcentration were attributed to diverse metal bioavailability in water and the dissimilar ways fish can cope with each metal, including inefficient excretion mechanisms. The EDI calculation indicated that the consumption of the studied fish is not safe for children, because the concentrations of As, La, Zr, and Hg exceed the World Health Organization's acceptable daily intake for these elements.
Collapse
Affiliation(s)
- William Manuel Pereira Antunes Fortes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | | | - Julieta Griboff
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Magdalena Victoria Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvia Tamie Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DCB/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
2
|
Khan K, Zeb M, Younas M, Sharif HMA, Yaseen M, Al-Sehemi AG, Kavil YN, Shah NS, Cao X, Maryam A, Qasim M. Heavy metals in five commonly consumed fish species from River Swat, Pakistan, and their implications for human health using multiple risk assessment approaches. MARINE POLLUTION BULLETIN 2023; 195:115460. [PMID: 37660661 DOI: 10.1016/j.marpolbul.2023.115460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
This study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G. gotyla, S. plagiostomus, and M. armatus from River Swat in Pakistan, and quantify their potential risk to children and adults in general and fisherfolk communities using multiple pollution and risk assessment approaches. The highest metal detected by inductive coupled plasma mass spectrometry (ICP-MS) was Zn, which ranged from 49.61 to 116.83 mg/kg, followed by Fe (19.25-101.33 mg/kg) > Mn (5.25-40.35 mg/kg) > Cr (3.05-14.59 mg/kg) > Ni (4.26-11.80 mg/kg) > Al (1.59-12.25 mg/kg) > Cu (1.24-8.59 mg/kg) > Pb (0.29-1.95 mg/kg) > Co (0.08-0.46 mg/kg) > Cd (0.01-0.29 mg/kg), demonstrating consistent fluctuation with the safe recommendations of global regulatory bodies. The average bioaccumulation factor (BAF) values in the examined fish species were high (BAF > 5000) for Pb, Zn, Mn, Cu, Cr, Ni, and Cd, bioaccumulate (1000 > BAF < 5000) for Co, and probable accumulative (BAF <1000) for Fe, and Al, while the overall ∑heavy metals pollution index (MPI) values were greater than one (MPI > 1) indicating sever heavy metals toxicity in G. cavia, followed by S. plagiostomus, M. armatus, G. gotyla, and T. macrolepis. The multivariate Pearson's correlation analysis identified the correlation coefficients between heavy metal pairs (NiCr, CuCr, PbCr, AlCo, CuNi, and PbNi), the hierarchical cluster analysis (CA) determined the origin by categorizing heavy metal accumulation into Cluster-A, Cluster-B, and Cluster-C, and the principal component analysis (PCA) discerned nearby weathering, mining, industrial, municipal, and agricultural activities as the potential sources of heavy metals bioaccumulation in riverine fish. As per human risk perspective, S.plagiostomus contributed significantly to the estimated daily intake (EDI) of heavy metals, followed by G.cavia > M.armatus > G.gotyla > T.macrolepis in dependent children and adults of the fisherfolk followed by the general population. The non-carcinogenic target hazard quotient (THQ) and hazard index (HI) values for heavy metal intake through fish exposure were < 1, while the carcinogenic risk (CR) for individual metal intake and the total carcinogenic risk (TCR) for cumulative Cr, Cd, and Pb intake were within the risk threshold of 10-6-10-4, suggesting an acceptable to high non-carcinogenic and carcinogenic risk for both children and adults in the fisherfolk, followed by the general population.
Collapse
Affiliation(s)
- Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan.
| | - Maria Zeb
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Afsheen Maryam
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; Department of Environmental Science-ACES-b (Institutionen för miljövetenskap), Stockholm University, Stockholm 106 91, Sweden
| | - Muhammad Qasim
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| |
Collapse
|
3
|
He B, Liu X, Huan Y, Che X, Yan T, Yan J, Long Z, Li B, Wen ZY. Complete mitochondrial genome of the snakehead ( Channa gachua) and its phylogeny. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:4174-4175. [PMID: 33366369 PMCID: PMC7707787 DOI: 10.1080/23802359.2019.1693930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In present study, the mitochondrial genome (mitogenome) of Channa gachua was determined and the phylogenetic relationship of Channidae fish was reconsidered. The mitogenome of the C. gachua is 16547 bp in length, containing 13 protein coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosome RNA genes (rRNAs), a control region (D-loop) and an origin region of replication on the light-strand (OL). The overall nucleotide composition is 28.32% A, 26.58% T, 29.41% C, 15.69% G, with 54.90% AT, respectively. Phylogenetic analyses revealed that C. gachua belongs to the genus Channa and shares a close relationship with C. marulius and C. striata.
Collapse
Affiliation(s)
- Bin He
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Yibin, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yingying Huan
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Yibin, China
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Tao Yan
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Yibin, China
| | - Jungang Yan
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Yibin, China
| | - Zhihai Long
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Yibin, China
| | - Bin Li
- College of Life sciences, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, China
| | - Zheng-Yong Wen
- College of Life sciences, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, China
| |
Collapse
|
4
|
Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J CHEM-NY 2019. [DOI: 10.1155/2019/6730305] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heavy metals are well-known environmental pollutants due to their toxicity, persistence in the environment, and bioaccumulative nature. Their natural sources include weathering of metal-bearing rocks and volcanic eruptions, while anthropogenic sources include mining and various industrial and agricultural activities. Mining and industrial processing for extraction of mineral resources and their subsequent applications for industrial, agricultural, and economic development has led to an increase in the mobilization of these elements in the environment and disturbance of their biogeochemical cycles. Contamination of aquatic and terrestrial ecosystems with toxic heavy metals is an environmental problem of public health concern. Being persistent pollutants, heavy metals accumulate in the environment and consequently contaminate the food chains. Accumulation of potentially toxic heavy metals in biota causes a potential health threat to their consumers including humans. This article comprehensively reviews the different aspects of heavy metals as hazardous materials with special focus on their environmental persistence, toxicity for living organisms, and bioaccumulative potential. The bioaccumulation of these elements and its implications for human health are discussed with a special coverage on fish, rice, and tobacco. The article will serve as a valuable educational resource for both undergraduate and graduate students and for researchers in environmental sciences. Environmentally relevant most hazardous heavy metals and metalloids include Cr, Ni, Cu, Zn, Cd, Pb, Hg, and As. The trophic transfer of these elements in aquatic and terrestrial food chains/webs has important implications for wildlife and human health. It is very important to assess and monitor the concentrations of potentially toxic heavy metals and metalloids in different environmental segments and in the resident biota. A comprehensive study of the environmental chemistry and ecotoxicology of hazardous heavy metals and metalloids shows that steps should be taken to minimize the impact of these elements on human health and the environment.
Collapse
|
5
|
Ali H, Khan E. Bioaccumulation of Cr, Ni, Cd and Pb in the Economically Important Freshwater Fish Schizothorax plagiostomus from Three Rivers of Malakand Division, Pakistan: Risk Assessment for Human Health. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:77-83. [PMID: 30456654 DOI: 10.1007/s00128-018-2500-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 11/14/2018] [Indexed: 05/26/2023]
Abstract
Contamination of freshwater ecosystems such as rivers with hazardous heavy metals is an environmental problem of public health concern. Accumulation of potentially toxic heavy metals in freshwater fish causes a potential health threat to their consumers including humans. The present research aimed to (1) investigate the accumulation of four potentially toxic heavy metals viz. Cr, Ni, Cd and Pb in muscle tissue of the commercially important freshwater fish Schizothorax plagiostomus at different sites of River Swat, River Panjkora and River Barandu in northern Pakistan (2) to compare gross metal accumulation in the fish samples by calculating metal pollution index (MPI) and (3) to assess potential risk to the health of the fish consumers. Samples were analyzed for the heavy metals by flame atomic absorption spectrophotometry (FAAS). Risk analysis showed that Ni risk was higher at River Panjkora and River Barandu, Pb risk was higher at River Swat and River Panjkora while Cd risk was quite low at all the three rivers.
Collapse
Affiliation(s)
- Hazrat Ali
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan.
- Environmental Chemistry, Ecotoxicology and Ecology Laboratory, Department of Zoology, University of Malakand, Chakdara, Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan.
| | - Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|