1
|
Zhao L, An Y, Zhao N, Gao H, Zhang W, Gong Z, Liu X, Zhao B, Liang Z, Tang C, Zhang L, Zhang Y, Zhao Q. Spatially resolved profiling of protein conformation and interactions by biocompatible chemical cross-linking in living cells. Nat Commun 2024; 15:8331. [PMID: 39333085 PMCID: PMC11436894 DOI: 10.1038/s41467-024-52558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Unlocking the intricacies of protein structures and interactions within the dynamic landscape of subcellular organelles presents a significant challenge. To address this, we introduce SPACX, a method for spatially resolved protein complex profiling via biocompatible chemical cross(x)-linking with subcellular isolation, designed to monitor protein conformation, interactions, and translocation in living cells. By rapidly capturing protein complexes in their native physiological state and efficiently enriching cross-linked peptides, SPACX allows comprehensive analysis of the protein interactome within living cells. Leveraging structure refinement with cross-linking restraints, we identify subcellular-specific conformation heterogeneity of PTEN, revealing dynamic differences in its dual specificity domains between the nucleus and cytoplasm. Furthermore, by discerning conformational disparities, we identify 83 cytoplasm-exclusive and 109 nucleus-exclusive PTEN-interacting proteins, each associated with distinct biological functions. Upon induction of ubiquitin-proteasome system stress, we observe dynamic alterations in PTEN assembly and its interacting partners during translocation. These changes, including the identification of components and interaction sites, are characterized using the SPACX approach. Notably, SPACX enables identification of unique interacting proteins specific to PTEN isoforms, including PTEN and PTEN-Long, through the determination of sequence-specific cross-linking interfaces. These findings underscore the potential of SPACX to elucidate the functional diversity of proteins within distinct subcellular sociology.
Collapse
Affiliation(s)
- Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Beijing, China
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| |
Collapse
|
2
|
Jiang Y, Zhang X, Nie H, Fan J, Di S, Fu H, Zhang X, Wang L, Tang C. Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping. Nat Commun 2024; 15:6060. [PMID: 39025860 PMCID: PMC11258254 DOI: 10.1038/s41467-024-50315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors.
Collapse
Affiliation(s)
- Yida Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xinghe Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianxiong Fan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shuangshuang Di
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hui Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiu Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lijuan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
3
|
Cao Y, Liu XT, Mao PZ, Chen ZL, Tarn C, Dong MQ. Comparative Analysis of Chemical Cross-Linking Mass Spectrometry Data Indicates That Protein STY Residues Rarely React with N-Hydroxysuccinimide Ester Cross-Linkers. J Proteome Res 2023; 22:2593-2607. [PMID: 37494005 DOI: 10.1021/acs.jproteome.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
When it comes to mass spectrometry data analysis for identification of peptide pairs linked by N-hydroxysuccinimide (NHS) ester cross-linkers, search engines bifurcate in their setting of cross-linkable sites. Some restrict NHS ester cross-linkable sites to lysine (K) and protein N-terminus, referred to as K only for short, whereas others additionally include serine (S), threonine (T), and tyrosine (Y) by default. Here, by setting amino acids with chemically inert side chains such as glycine (G), valine (V), and leucine (L) as cross-linkable sites, which serves as a negative control, we show that software-identified STY-cross-links are only as reliable as GVL-cross-links. This is true across different NHS ester cross-linkers including DSS, DSSO, and DSBU, and across different search engines including MeroX, xiSearch, and pLink. Using a published data set originated from synthetic peptides, we demonstrate that STY-cross-links indeed have a high false discovery rate. Further analysis revealed that depending on the data and the search engine used to analyze the data, up to 65% of the STY-cross-links identified are actually K-K cross-links of the same peptide pairs, up to 61% are actually K-mono-links, and the rest tend to contain short peptides at high risk of false identification.
Collapse
Affiliation(s)
- Yong Cao
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Xin-Tong Liu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Peng-Zhi Mao
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching Tarn
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
4
|
Zhang S, Zhu Y, Lu J, Liu Z, Lobato AG, Zeng W, Liu J, Qiang J, Zeng S, Zhang Y, Liu C, Liu J, He Z, Zhai RG, Li D. Specific binding of Hsp27 and phosphorylated Tau mitigates abnormal Tau aggregation-induced pathology. eLife 2022; 11:79898. [PMID: 36048712 PMCID: PMC9436411 DOI: 10.7554/elife.79898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloid aggregation of phosphorylated Tau (pTau) into neurofibrillary tangles is closely associated with Alzheimer's disease (AD). Several molecular chaperones have been reported to bind Tau and impede its pathological aggregation. Recent findings of elevated levels of Hsp27 in the brains of patients with AD suggested its important role in pTau pathology. However, the molecular mechanism of Hsp27 in pTau aggregation remains poorly understood. Here, we show that Hsp27 partially co-localizes with pTau tangles in the brains of patients with AD. Notably, phosphorylation of Tau by microtubule affinity regulating kinase 2 (MARK2), dramatically enhances the binding affinity of Hsp27 to Tau. Moreover, Hsp27 efficiently prevents pTau fibrillation in vitro and mitigates neuropathology of pTau aggregation in a Drosophila tauopathy model. Further mechanistic study reveals that Hsp27 employs its N-terminal domain to directly interact with multiple phosphorylation sites of pTau for specific binding. Our work provides the structural basis for the specific recognition of Hsp27 to pathogenic pTau, and highlights the important role of Hsp27 in preventing abnormal aggregation and pathology of pTau in AD.
Collapse
Affiliation(s)
- Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Jinxia Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Amanda G Lobato
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States.,Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, United States
| | - Wen Zeng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States.,Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Gong Z, Yang J, Qin LY, Tang C, Jiang H, Ke Y, Dong X. Preferential Regulation of Transient Protein-Protein Interaction by the Macromolecular Crowders. J Phys Chem B 2022; 126:4840-4848. [PMID: 35731981 DOI: 10.1021/acs.jpcb.2c02713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The environmental condition is a critical regulation factor for protein behavior in solution. Several studies have shown that macromolecular crowders can modulate protein structures, interactions, and functions. Recent publications described the regulation of specific interaction by macromolecular crowders. However, the other category of protein-protein interaction, namely, the transient interaction, is rarely investigated, especially from the perspective of protein structure to study transient interactions between proteins. Here, we used nuclear magnetic resonance and small-angle X-ray/neutron scattering methods to structurally investigate the ensemble of the protein complex in dilute buffer and crowded environments. Histidine phosphocarrier protein (HPr) and the N-terminal domain of enzyme I (EIN) are the important components of the bacterial phosphotransfer system. Our results show that the addition of Ficoll-70 promotes HPr molecules to form the encounter complex with EIN maintained by long-range electrostatic interaction. However, when macromolecular crowder BSA is used, the soft interaction between BSA and HPr perturbs the active site of HPr, driving HPr to form an encounter complex with EIN at the weakly charged interface. Our results indicate that different macromolecular crowders could influence transient EIN-HPr interaction through different mechanisms and provide new insights into protein-protein interaction regulation in native environments.
Collapse
Affiliation(s)
- Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ju Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ling-Yun Qin
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hanqiu Jiang
- Spallation Neutron Source Science Center (SNSSC), Dalang, Dongguan 523803, China.,Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yubin Ke
- Spallation Neutron Source Science Center (SNSSC), Dalang, Dongguan 523803, China.,Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
6
|
Huang C, Lu J, Ma X, Qiang J, Wang C, Liu C, Fang Y, Zhang Y, Jiang L, Li D, Zhang S. The mouse nicotinamide mononucleotide adenylyltransferase (NMNAT) chaperones diverse pathological amyloid client proteins. J Biol Chem 2022; 298:101912. [PMID: 35398355 PMCID: PMC9108885 DOI: 10.1016/j.jbc.2022.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022] Open
Abstract
Molecular chaperones safeguard cellular protein homeostasis and obviate proteotoxicity. In the process of aging, as chaperone networks decline, aberrant protein amyloid aggregation accumulates in a mechanism that underpins neurodegeneration, leading to pathologies such as Alzheimer’s disease and Parkinson’s disease. Thus, it is important to identify and characterize chaperones for preventing such protein aggregation. In this work, we identified that the NAD+ synthase–nicotinamide mononucleotide adenylyltransferase (NMNAT) 3 from mouse (mN3) exhibits potent chaperone activity to antagonize aggregation of a wide spectrum of pathological amyloid client proteins including α-synuclein, Tau (K19), amyloid β, and islet amyloid polypeptide. By combining NMR spectroscopy, cross-linking mass spectrometry, and computational modeling, we further reveal that mN3 uses different region of its amphiphilic surface near the active site to directly bind different amyloid client proteins. Our work demonstrates a client recognition mechanism of NMNAT via which it chaperones different amyloid client proteins against pathological aggregation and implies a potential protective role for NMNAT in different amyloid-associated diseases.
Collapse
|
7
|
Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers. Nat Commun 2022; 13:1468. [PMID: 35304446 PMCID: PMC8933431 DOI: 10.1038/s41467-022-28879-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/10/2022] [Indexed: 01/16/2023] Open
Abstract
Chemical cross-linking of proteins coupled with mass spectrometry is widely used in protein structural analysis. In this study we develop a class of non-hydrolyzable amine-selective di-ortho-phthalaldehyde (DOPA) cross-linkers, one of which is called DOPA2. Cross-linking of proteins with DOPA2 is 60-120 times faster than that with the N-hydroxysuccinimide ester cross-linker DSS. Compared with DSS cross-links, DOPA2 cross-links show better agreement with the crystal structures of tested proteins. More importantly, DOPA2 has unique advantages when working at low pH, low temperature, or in the presence of denaturants. Using staphylococcal nuclease, bovine serum albumin, and bovine pancreatic ribonuclease A, we demonstrate that DOPA2 cross-linking provides abundant spatial information about the conformations of progressively denatured forms of these proteins. Furthermore, DOPA2 cross-linking allows time-course analysis of protein conformational changes during denaturant-induced unfolding.
Collapse
|
8
|
Czaplewski C, Gong Z, Lubecka EA, Xue K, Tang C, Liwo A. Recent Developments in Data-Assisted Modeling of Flexible Proteins. Front Mol Biosci 2022; 8:765562. [PMID: 35004845 PMCID: PMC8740120 DOI: 10.3389/fmolb.2021.765562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Many proteins can fold into well-defined conformations. However, intrinsically-disordered proteins (IDPs) do not possess a defined structure. Moreover, folded multi-domain proteins often digress into alternative conformations. Collectively, the conformational dynamics enables these proteins to fulfill specific functions. Thus, most experimental observables are averaged over the conformations that constitute an ensemble. In this article, we review the recent developments in the concept and methods for the determination of the dynamic structures of flexible peptides and proteins. In particular, we describe ways to extract information from nuclear magnetic resonance small-angle X-ray scattering (SAXS), and chemical cross-linking coupled with mass spectroscopy (XL-MS) measurements. All these techniques can be used to obtain ensemble-averaged restraints or to re-weight the simulated conformational ensembles.
Collapse
Affiliation(s)
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| | - Kai Xue
- PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chun Tang
- PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Gong Z, Ye SX, Tang C. Tightening the Crosslinking Distance Restraints for Better Resolution of Protein Structure and Dynamics. Structure 2020; 28:1160-1167.e3. [PMID: 32763142 DOI: 10.1016/j.str.2020.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Chemical crosslinking coupled with mass spectrometry (CXMS) has been increasingly used in structural biology. CXMS distance restraints are usually applied to Cα or Cβ atoms of the crosslinked residues, with upper bounds typically over 20 Å. The incorporation of loose CXMS restraints only marginally improves the resolution of the calculated structures. Here, we present a revised format of CXMS distance restraints, which works by first modifying the crosslinked residue with a rigid extension derived from the crosslinker. With the flexible side chain explicitly represented, the reformatted restraint can be applied to the modification group instead, with an upper bound of 6 Å or less. The short distance restraint can be represented and back-calculated simply with a straight line. The use of tighter restraints not only afford better-resolved structures but also uncover protein dynamics. Together, our approach enables more information extracted from the CXMS data.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Shang-Xiang Ye
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Gong Z, Ye SX, Nie ZF, Tang C. The Conformational Preference of Chemical Cross-linkers Determines the Cross-linking Probability of Reactive Protein Residues. J Phys Chem B 2020; 124:4446-4453. [PMID: 32369371 DOI: 10.1021/acs.jpcb.0c02522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical cross-linking mass spectrometry (XLMS) is an emerging technique in structural biology. Providing the cross-linked peptides are identified by mass spectrometry with high confidence, a distance restraint can be applied between the two reactive protein residues, with the upper bound corresponding to the maximal span of the cross-linker. However, as the upper bound is typically over 20 Å, cross-link distance restraints are unrestrictive and provide a marginal improvement in protein structural refinement. Here we analyze the experimental cross-links for lysine or acidic residues and show that the distribution of Cβ-Cβ' distances can be described with two overlapping Gaussian species. In addition to the pairwise occurrence probability of the reactive protein residues, we show that the distribution profile of the cross-link distances is determined by the intrinsic conformational propensity of the cross-linker. The cross-linker prefers either a compact or extended conformation and, once attached to a reactive protein residue, predominantly an extended conformation. Consequently, the long-distance Gaussian species occurs at a much higher probability than the short-distance species in the observed cross-links. Together, the probabilistic distribution of the cross-link distance allows the construction of a more restrictive restraint for structural modeling and better use of the XLMS data.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Shang-Xiang Ye
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Ze-Feng Nie
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| |
Collapse
|
11
|
Integrating Non-NMR Distance Restraints to Augment NMR Depiction of Protein Structure and Dynamics. J Mol Biol 2020; 432:2913-2929. [DOI: 10.1016/j.jmb.2020.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
|
12
|
Yang QF, Tang C. On the necessity of an integrative approach to understand protein structural dynamics. J Zhejiang Univ Sci B 2019; 20:496-502. [PMID: 31090275 DOI: 10.1631/jzus.b1900135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are dynamic, fluctuating between multiple conformational states. Protein dynamics, spanning orders of magnitude in time and space, allow proteins to perform specific functions. Moreover, under certain conditions, proteins can morph into a different set of conformations. Thus, a complete understanding of protein structural dynamics can provide mechanistic insights into protein function. Here, we review the latest developments in methods used to determine protein ensemble structures and to characterize protein dynamics. Techniques including X-ray crystallography, cryogenic electron microscopy, and small angle scattering can provide structural information on specific conformational states or on the averaged shape of the protein, whereas techniques including nuclear magnetic resonance, fluorescence resonance energy transfer (FRET), and chemical cross-linking coupled with mass spectrometry provide information on the fluctuation of the distances between protein domains, residues, and atoms for the multiple conformational states of the protein. In particular, FRET measurements at the single-molecule level allow rapid resolution of protein conformational states, where information is otherwise obscured in bulk measurements. Taken together, the different techniques complement each other and their integrated use can offer a clear picture of protein structure and dynamics.
Collapse
Affiliation(s)
- Qing-Fen Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
13
|
Jones AX, Cao Y, Tang YL, Wang JH, Ding YH, Tan H, Chen ZL, Fang RQ, Yin J, Chen RC, Zhu X, She Y, Huang N, Shao F, Ye K, Sun RX, He SM, Lei X, Dong MQ. Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nat Commun 2019; 10:3911. [PMID: 31477730 PMCID: PMC6718413 DOI: 10.1038/s41467-019-11917-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) is widely used to study protein-protein interactions (PPI), protein structures, and even protein dynamics. However, structural information provided by CXMS is still limited, partly because most CXMS experiments use lysine-lysine (K-K) cross-linkers. Although superb in selectivity and reactivity, they are ineffective for lysine deficient regions. Herein, we develop aromatic glyoxal cross-linkers (ArGOs) for arginine-arginine (R-R) cross-linking and the lysine-arginine (K-R) cross-linker KArGO. The R-R or K-R cross-links generated by ArGO or KArGO fit well with protein crystal structures and provide information not attainable by K-K cross-links. KArGO, in particular, is highly valuable for CXMS, with robust performance on a variety of samples including a kinase and two multi-protein complexes. In the case of the CNGP complex, KArGO cross-links covered as much of the PPI interface as R-R and K-K cross-links combined and improved the accuracy of Rosetta docking substantially. Cross-linking mass spectrometry can provide insights into protein structures and interactions but its scope depends on the reactivity of the cross-linker. Here, the authors develop Arg-Arg and Lys-Arg cross-linkers, which provide structural information elusive to the widely used Lys-Lys cross-linkers.
Collapse
Affiliation(s)
- Alexander X Jones
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yong Cao
- School of Life Sciences, Peking University, 100871, Beijing, China.,National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Yu-Liang Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Yue-He Ding
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Hui Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Zhen-Lin Chen
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Run-Qian Fang
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jili Yin
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rong-Chang Chen
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xing Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang She
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Keqiong Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
14
|
Zhang X, Wang JH, Tan D, Li Q, Li M, Gong Z, Tang C, Liu Z, Dong MQ, Lei X. Carboxylate-Selective Chemical Cross-Linkers for Mass Spectrometric Analysis of Protein Structures. Anal Chem 2018; 90:1195-1201. [DOI: 10.1021/acs.analchem.7b03789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyun Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Dan Tan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Qiang Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Maodong Li
- Center
for Quantitative Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- CAS
Key Laboratory of Magnetic Resonance in Biological Systems, State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- CAS
Key Laboratory of Magnetic Resonance in Biological Systems, State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Zhirong Liu
- Center
for Quantitative Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng-Qiu Dong
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Yu C, Huang L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 2018; 90:144-165. [PMID: 29160693 PMCID: PMC6022837 DOI: 10.1021/acs.analchem.7b04431] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
16
|
Gong Z, Liu Z, Dong X, Ding YH, Dong MQ, Tang C. Protocol for analyzing protein ensemble structures from chemical cross-links using DynaXL. BIOPHYSICS REPORTS 2017; 3:100-108. [PMID: 29238747 PMCID: PMC5719800 DOI: 10.1007/s41048-017-0044-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
Chemical cross-linking coupled with mass spectroscopy (CXMS) is a powerful technique for investigating protein structures. CXMS has been mostly used to characterize the predominant structure for a protein, whereas cross-links incompatible with a unique structure of a protein or a protein complex are often discarded. We have recently shown that the so-called over-length cross-links actually contain protein dynamics information. We have thus established a method called DynaXL, which allow us to extract the information from the over-length cross-links and to visualize protein ensemble structures. In this protocol, we present the detailed procedure for using DynaXL, which comprises five steps. They are identification of highly confident cross-links, delineation of protein domains/subunits, ensemble rigid-body refinement, and final validation/assessment. The DynaXL method is generally applicable for analyzing the ensemble structures of multi-domain proteins and protein–protein complexes, and is freely available at www.tanglab.org/resources.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071 China.,National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071 China
| | - Zhu Liu
- Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310057 China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071 China.,National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071 China
| | - Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605 USA
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206 China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071 China.,National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071 China
| |
Collapse
|
17
|
Liu Z, Gong Z, Cao Y, Ding YH, Dong MQ, Lu YB, Zhang WP, Tang C. Characterizing Protein Dynamics with Integrative Use of Bulk and Single-Molecule Techniques. Biochemistry 2017; 57:305-313. [PMID: 28945353 DOI: 10.1021/acs.biochem.7b00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A protein dynamically samples multiple conformations, and the conformational dynamics enables protein function. Most biophysical measurements are ensemble-based, with the observables averaged over all members of the ensemble. Though attainable, the decomposition of the observables to the constituent conformational states can be computationally expensive and ambiguous. Here we show that the incorporation of single-molecule fluorescence resonance energy transfer (smFRET) data resolves the ambiguity and affords protein ensemble structures that are more precise and accurate. Using K63-linked diubiquitin, we characterize the dynamic domain arrangements of the model system, with the use of chemical cross-linking coupled with mass spectrometry (CXMS), small-angle X-ray scattering (SAXS), and smFRET techniques. CXMS allows the modeling of protein conformational states that are alternatives to the crystal structure. SAXS provides ensemble-averaged low-resolution shape information. Importantly, smFRET affords state-specific populations, and the FRET distances validate the ensemble structures obtained by refining against CXMS and SAXS restraints. Together, the integrative use of bulk and single-molecule techniques affords better insight into protein dynamics and shall be widely implemented in structural biology.
Collapse
Affiliation(s)
- Zhu Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences , Wuhan, Hubei 430071, China.,Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, and Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine , Hangzhou, Zhejiang 310058, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences , Wuhan, Hubei 430071, China
| | - Yong Cao
- National Institute of Biological Sciences , Beijing 102206, China
| | - Yue-He Ding
- National Institute of Biological Sciences , Beijing 102206, China.,RNA Therapeutics Institute, University of Massachusetts Medical School , 368 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Meng-Qiu Dong
- National Institute of Biological Sciences , Beijing 102206, China
| | - Yun-Bi Lu
- Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, and Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine , Hangzhou, Zhejiang 310058, China
| | - Wei-Ping Zhang
- Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, and Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine , Hangzhou, Zhejiang 310058, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences , Wuhan, Hubei 430071, China
| |
Collapse
|
18
|
Ding YH, Gong Z, Dong X, Liu K, Liu Z, Liu C, He SM, Dong MQ, Tang C. Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links. J Biol Chem 2017; 292:1187-1196. [PMID: 27994050 PMCID: PMC5270465 DOI: 10.1074/jbc.m116.761841] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Indexed: 11/06/2022] Open
Abstract
Chemical cross-linking coupled with mass spectroscopy (CXMS) provides proximity information for the cross-linked residues and is used increasingly for modeling protein structures. However, experimentally identified cross-links are sometimes incompatible with the known structure of a protein, as the distance calculated between the cross-linked residues far exceeds the maximum length of the cross-linker. The discrepancies may persist even after eliminating potentially false cross-links and excluding intermolecular ones. Thus the "over-length" cross-links may arise from alternative excited-state conformation of the protein. Here we present a method and associated software DynaXL for visualizing the ensemble structures of multidomain proteins based on intramolecular cross-links identified by mass spectrometry with high confidence. Representing the cross-linkers and cross-linking reactions explicitly, we show that the protein excited-state structure can be modeled with as few as two over-length cross-links. We demonstrate the generality of our method with three systems: calmodulin, enzyme I, and glutamine-binding protein, and we show that these proteins alternate between different conformations for interacting with other proteins and ligands. Taken together, the over-length chemical cross-links contain valuable information about protein dynamics, and our findings here illustrate the relationship between dynamic domain movement and protein function.
Collapse
Affiliation(s)
- Yue-He Ding
- the National Institute of Biological Sciences, Beijing 102206
| | - Zhou Gong
- From the CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071
| | - Xu Dong
- From the CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071
| | - Kan Liu
- From the CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071
| | - Zhu Liu
- the Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, and
| | - Chao Liu
- the Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, CAS, Beijing 100190, China
| | - Si-Min He
- the Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, CAS, Beijing 100190, China
| | - Meng-Qiu Dong
- the National Institute of Biological Sciences, Beijing 102206,
| | - Chun Tang
- From the CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071,
- the Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, and
| |
Collapse
|
19
|
Peng J, Zhang Z. Unraveling low-resolution structural data of large biomolecules by constructing atomic models with experiment-targeted parallel cascade selection simulations. Sci Rep 2016; 6:29360. [PMID: 27377017 PMCID: PMC4932515 DOI: 10.1038/srep29360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022] Open
Abstract
Various low-resolution experimental techniques have gained more and more popularity in obtaining structural information of large biomolecules. In order to interpret the low-resolution structural data properly, one may need to construct an atomic model of the biomolecule by fitting the data using computer simulations. Here we develop, to our knowledge, a new computational tool for such integrative modeling by taking the advantage of an efficient sampling technique called parallel cascade selection (PaCS) simulation. For given low-resolution structural data, this PaCS-Fit method converts it into a scoring function. After an initial simulation starting from a known structure of the biomolecule, the scoring function is used to pick conformations for next cycle of multiple independent simulations. By this iterative screening-after-sampling strategy, the biomolecule may be driven towards a conformation that fits well with the low-resolution data. Our method has been validated using three proteins with small-angle X-ray scattering data and two proteins with electron microscopy data. In all benchmark tests, high-quality atomic models, with generally 1-3 Å from the target structures, are obtained. Since our tool does not need to add any biasing potential in the simulations to deform the structure, any type of low-resolution data can be implemented conveniently.
Collapse
Affiliation(s)
- Junhui Peng
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
20
|
Ding YH, Fan SB, Li S, Feng BY, Gao N, Ye K, He SM, Dong MQ. Increasing the Depth of Mass-Spectrometry-Based Structural Analysis of Protein Complexes through the Use of Multiple Cross-Linkers. Anal Chem 2016; 88:4461-9. [DOI: 10.1021/acs.analchem.6b00281] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yue-He Ding
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate Program
in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng-Bo Fan
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology of CAS, University of CAS, Beijing 100049, China
| | - Shuang Li
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Bo-Ya Feng
- Ministry
of Education Protein Science Laboratory, Center for Structural Biology,
School of Life Sciences, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- Ministry
of Education Protein Science Laboratory, Center for Structural Biology,
School of Life Sciences, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Si-Min He
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology of CAS, University of CAS, Beijing 100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate Program
in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|