1
|
Mourot B, Mazan V, Elhabiri M, Sarkar R, Jacquemin D, Siri O, Pascal S. Insights into extended coupled polymethines through the investigation of dual UV-to-NIR acidochromic switches based on heptamethine-oxonol dyes. Chem Sci 2024; 15:1248-1259. [PMID: 38274067 PMCID: PMC10806682 DOI: 10.1039/d3sc06126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
A series of heptamethine-oxonol dyes featuring different heterocyclic end groups were designed with the aim to explore structure-property relationships in π-extended coupled polymethines. These dyes can be stabilised under three different protonation states, affording dicationic derivatives with an aromatic core, cationic heptamethines, and zwitterionic bis-cyanine forms. The variation of the end groups directly impacts the absorption and emission properties and mostly controls reaching either a colourless neutral dispirocyclic species or near-infrared zwitterions. The acidochromic switching between the three states involves profound electronic rearrangements leading to notable shifts of their optical properties that were investigated using a parallel experiment-theory approach, providing a comprehensive description of these unique systems.
Collapse
Affiliation(s)
- Benjamin Mourot
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Case 913 Marseille Cedex 09 13288 France
| | - Valérie Mazan
- CNRS - Université de Strasbourg - Université de Haute-Alsace, LIMA, CNRS UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM 25 Rue Becquerel 67200 Strasbourg France
| | - Mourad Elhabiri
- CNRS - Université de Strasbourg - Université de Haute-Alsace, LIMA, CNRS UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM 25 Rue Becquerel 67200 Strasbourg France
| | - Rudraditya Sarkar
- Université de Nantes, CEISAM UMR 6230, CNRS Nantes F-44000 France
- Present Address: Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona 17003 Girona Catalonia Spain
| | - Denis Jacquemin
- Université de Nantes, CEISAM UMR 6230, CNRS Nantes F-44000 France
- Institut Universitaire de France (IUF) Paris F-75005 France
| | - Olivier Siri
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Case 913 Marseille Cedex 09 13288 France
| | - Simon Pascal
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Case 913 Marseille Cedex 09 13288 France
- Université de Nantes, CEISAM UMR 6230, CNRS Nantes F-44000 France
| |
Collapse
|
2
|
Jing S, Wu X, Niu D, Wang J, Leung CH, Wang W. Recent Advances in Organometallic NIR Iridium(III) Complexes for Detection and Therapy. Molecules 2024; 29:256. [PMID: 38202839 PMCID: PMC10780525 DOI: 10.3390/molecules29010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Iridium(III) complexes are emerging as a promising tool in the area of detection and therapy due to their prominent photophysical properties, including higher photostability, tunable phosphorescence emission, long-lasting phosphorescence, and high quantum yields. In recent years, much effort has been devoted to develop novel near-infrared (NIR) iridium(III) complexes to improve signal-to-noise ratio and enhance tissue penetration. In this review, we summarize different classes of organometallic NIR iridium(III) complexes for detection and therapy, including cyclometalated ligand-enabled NIR iridium(III) complexes and NIR-dye-conjugated iridium(III) complexes. Moreover, the prospects and challenges for organometallic NIR iridium(III) complexes for targeted detection and therapy are discussed.
Collapse
Affiliation(s)
- Shaozhen Jing
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Xiaolei Wu
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Jing Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Wanhe Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| |
Collapse
|
3
|
Frisch S, Neiß C, Lindenthal S, Zorn NF, Rominger F, Görling A, Zaumseil J, Kivala M. Tetra(peri-naphthylene)anthracene: A Near-IR Fluorophore with Four-Stage Amphoteric Redox Properties. Chemistry 2023; 29:e202203101. [PMID: 36287191 PMCID: PMC10107686 DOI: 10.1002/chem.202203101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 11/06/2022]
Abstract
A novel, benign synthetic strategy towards soluble tetra(peri-naphthylene)anthracene (TPNA) decorated with triisopropylsilylethynyl substituents has been established. The compound is perfectly stable under ambient conditions in air and features intense and strongly bathochromically shifted UV/vis absorption and emission bands reaching to near-IR region beyond 900 nm. Cyclic voltammetry measurements revealed four facilitated reversible redox events comprising two oxidations and two reductions. These remarkable experimental findings were corroborated by theoretical studies to identify the TPNA platform a particularly useful candidate for the development of functional near-IR fluorophores upon appropriate functionalization.
Collapse
Affiliation(s)
- Sabine Frisch
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christian Neiß
- Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Sebastian Lindenthal
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Nicolas F Zorn
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Jana Zaumseil
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Liu S, Wang M, Wang Y, Hou T, Shen X. Novel deep red to near-infrared phosphorescent iridium(III) complexes bearing pyrenyl: syntheses, structures and modulation of the photophysical properties. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Wallwork NR, Mamada M, Keto AB, McGregor SKM, Shukla A, Adachi C, Krenske EH, Namdas EB, Lo SC. Cibalackrot Dendrimers for Hyperfluorescent Organic Light-Emitting Diodes. Macromol Rapid Commun 2022; 43:e2200118. [PMID: 35355352 DOI: 10.1002/marc.202200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Hyperfluorescent organic light-emitting diodes (HF-OLEDs) enable a cascading Förster resonance energy transfer (FRET) from a suitable thermally activated delayed fluorescent (TADF) assistant host to a fluorescent end-emitter to give efficient OLEDs with relatively narrowed electroluminescence compared to TADF-OLEDs. Efficient HF-OLEDs require optimal FRET with minimum triplet diffusion via Dexter-type energy transfer (DET) from the TADF assistant host to the fluorescent end-emitter. To hinder DET, steric protection of the end-emitters has been proposed to disrupt triplet energy transfer. In this work, the first HF-OLEDs based on structurally well-defined macromolecules, dendrimers is reported. The dendrimers contain new highly twisted dendrons attached to a Cibalackrot core, resulting in high solubility in organic solvents. HF-OLEDs based on dendrimer blend films are fabricated to show external quantum efficiencies of >10% at 100 cd m-2 . Importantly, dendronization with the bulky dendrons is found to have no negative impact to the FRET efficiency, indicating the excellent potential of the dendritic macromolecular motifs for HF-OLEDs. To fully prevent the undesired triplet diffusion, Cibalackrot dendrimers HF-OLEDs are expected to be further improved by adding additional dendrons to the Cibalackrot core and/or increasing dendrimer generations.
Collapse
Affiliation(s)
- Nicholle R Wallwork
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Masashi Mamada
- Centre for Organic Photonics and Electronics Research (OPERA), International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Angus B Keto
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sarah K M McGregor
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Atul Shukla
- Centre for Organic Photonics & Electronics (COPE), School of Mathematics and Physics, The University of Queensland, Queensland, Brisbane, Queensland, 4072, Australia
| | - Chihaya Adachi
- Centre for Organic Photonics and Electronics Research (OPERA), International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ebinazar B Namdas
- Centre for Organic Photonics & Electronics (COPE), School of Mathematics and Physics, The University of Queensland, Queensland, Brisbane, Queensland, 4072, Australia
| | - Shih-Chun Lo
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
6
|
Hassanein K, Cappuccino C, Marchini M, Bandini E, Christian M, Morandi V, Monti F, Maini L, Ventura B. Novel Cu(I)-5-nitropyridine-2-thiol Cluster with NIR Emission: Structural and Photophysical Characterization. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:10190-10198. [PMID: 35774291 PMCID: PMC9234981 DOI: 10.1021/acs.jpcc.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Indexed: 05/13/2023]
Abstract
A novel Cu(I) cluster compound has been synthesized by reacting CuI with the 2,2'-dithiobis(5-nitropyridine) ligand under solvothermal conditions. During the reaction, the original ligand breaks into the 5-nitropyridine-2-thiolate moiety, which acts as the coordinating ligand with both N- and S-sites, leading to a distorted octahedral Cu6S6 cluster. The structure has been determined by single-crystal X-ray diffraction and FT-IR analysis, and the photophysical properties have been determined in the solid state by means of steady-state and time-resolved optical techniques. The cluster presents a near-infrared emission showing an unusual temperature dependence: when passing from 77 to 298 K, a blue-shift of the emission band is observed, associated with a decrease in its intensity. Time-dependent-density functional theory calculations suggest that the observed behavior can be ascribed to a complex interplay of excited states, basically in the triplet manifold.
Collapse
Affiliation(s)
- Khaled Hassanein
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Chiara Cappuccino
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, Bologna 40126, Italy
| | - Marianna Marchini
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, Bologna 40126, Italy
| | - Elisa Bandini
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Meganne Christian
- Istituto
per la Microelettronica e Microsistemi (IMM) Sede di Bologna, Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Vittorio Morandi
- Istituto
per la Microelettronica e Microsistemi (IMM) Sede di Bologna, Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Filippo Monti
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Lucia Maini
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, Bologna 40126, Italy
| | - Barbara Ventura
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| |
Collapse
|
7
|
Veselska O, Guillou N, Diaz-Lopez M, Bordet P, Ledoux G, Lebègue S, Mesbah A, Fateeva A, Demessence A. Sustainable and efficient low‐energy light emitters: a series of one‐dimensional d10 coinage Metal Organic Chalcogenolates, [M(o‐SPhCO2H)]n. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Pierre Bordet
- CNRS: Centre National de la Recherche Scientifique Néel Institute FRANCE
| | - Gilles Ledoux
- CNRS: Centre National de la Recherche Scientifique ILM FRANCE
| | | | - Adel Mesbah
- CNRS: Centre National de la Recherche Scientifique IRCELYON FRANCE
| | | | - Aude Demessence
- CNRS - Lyon University IRCELYON UMR 5256 2 Av Albert EinsteinBat Prettre69626France 69626 VILLEURBANNE FRANCE
| |
Collapse
|
8
|
Cao L, Yang X, Li M, Liu L, Yu J, Tan H. Synthesis and Electroluminescence Properties of Donor-Acceptor (D-A) Type Near-Infrared Iridium(III) Complex Luminescent Materials with Bipolar Transmission Features. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
10
|
Benzo[1,2,3]dithiazole Compounds: A History of Synthesis and Their Renewed Applicability in Materials and Synthetic Chemistry, Originating from the Herz Reaction. REACTIONS 2021. [DOI: 10.3390/reactions2030013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The benzo[1,2,3]dithiazole is a unique heteroaromatic functionality whose conjugated profile instils some fascinating electronic properties. This has been historically recognized in the design and manufacture of organic dyes early last century. Although, with the benefit of increased diagnostic techniques and improved understanding, these structures are attracting greater attention in additional research settings, including applications as organic radicals and semiconductors. In addition, the benzodithiazole functionality has been shown to be a valuable synthetic intermediate in the preparation of a variety of other privileged aromatic and heteroaromatic targets, many of which are important APIs. In this review, the authors aim to critically analyse the potential applicability of these compounds to the fields of not only small-scale laboratory synthetic and medicinal chemistry but also commercial-scale processes and increasingly materials chemistry.
Collapse
|
11
|
Neo-Porphyrinoids: New Members of the Porphyrinoid Family. Top Curr Chem (Cham) 2021; 379:26. [PMID: 34009495 DOI: 10.1007/s41061-021-00338-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The four pyrrole rings and four meso carbons of tetrapyrrolic porphyrins can be arranged in different ways and the resulting porphyrin isomers exhibit very distinct electronic properties. The extensive research carried out on the porphyrins over the years has revealed that porphyrin can have several possible isomers and some of these have been identified and synthesized. Among the porphyrin isomers synthesized so far, porphycene and N-confused porphyrins have been investigated extensively whereas the other porphyrin isomers such as hemiporphycene, corrphycene and isoporphycene remain underdeveloped because of synthetic difficulties and their inherently unstable nature. Neoporphyrinoids are new members of the porphyrinoid family that were discovered serendipitously in 2011. Neoporphyrinoids are structural analogues of porphyrinoids with a confused pyrrole nitrogen linked to a meso carbon or the adjacent pyrrole carbon. Thus, neoporphyrinoids have an unusual structure in which pyrrole N is a part of a porphyrinoid framework and the lone pair of electrons on nitrogen participate in macrocyclic conjugation. It's been a decade since the discovery and different types of neoporphyrinoids, including regular, contracted and expanded neoporphyrinoids, have been synthesized by rational synthetic methodologies and their spectral, structural, aromatic and coordination properties have been studied. There is huge scope to develop different synthetic routes to produce new types of stable neoporphyrinoids to study their properties and potential applications. This article presents a brief overview of the synthesis, structure and properties of the neoporphyrinoids reported in this decade.
Collapse
|
12
|
Goti G, Calamante M, Coppola C, Dessì A, Franchi D, Mordini A, Sinicropi A, Zani L, Reginato G. Donor‐Acceptor‐Donor Thienopyrazine‐Based Dyes as NIR‐Emitting AIEgens. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Giulio Goti
- Institute of Chemistry of Organometallic Compounds (ICCOM) National Research Council (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino Italy
| | - Massimo Calamante
- Institute of Chemistry of Organometallic Compounds (ICCOM) National Research Council (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino Italy
| | - Carmen Coppola
- Department of Biotechnology, Chemistry and Pharmacy University of Siena Via A. Moro 2 53100 Siena Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI) Via della Lastruccia 3 Sesto Fiorentino 50019 Italy
| | - Alessio Dessì
- Institute of Chemistry of Organometallic Compounds (ICCOM) National Research Council (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Daniele Franchi
- Institute of Chemistry of Organometallic Compounds (ICCOM) National Research Council (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Alessandro Mordini
- Institute of Chemistry of Organometallic Compounds (ICCOM) National Research Council (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino Italy
| | - Adalgisa Sinicropi
- Institute of Chemistry of Organometallic Compounds (ICCOM) National Research Council (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
- Department of Biotechnology, Chemistry and Pharmacy University of Siena Via A. Moro 2 53100 Siena Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI) Via della Lastruccia 3 Sesto Fiorentino 50019 Italy
| | - Lorenzo Zani
- Institute of Chemistry of Organometallic Compounds (ICCOM) National Research Council (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Gianna Reginato
- Institute of Chemistry of Organometallic Compounds (ICCOM) National Research Council (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| |
Collapse
|
13
|
Nematiaram T, Padula D, Troisi A. Bright Frenkel Excitons in Molecular Crystals: A Survey. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3368-3378. [PMID: 34526736 PMCID: PMC8432684 DOI: 10.1021/acs.chemmater.1c00645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Indexed: 05/12/2023]
Abstract
We computed the optical properties of a large set of molecular crystals (∼2200 structures) composed of molecules whose lowest excited states are strongly coupled and generate wide excitonic bands. Such bands are classified in terms of their dimensionality (1-, 2-, and 3-dimensional), the position of the optically allowed state in relation with the excitonic density of states, and the presence of Davydov splitting. The survey confirms that one-dimensional aggregates are rare in molecular crystals highlighting the need to go beyond the simple low-dimensional models. Furthermore, this large set of data is used to search for technologically interesting and less common properties. For instance, we considered the largest excitonic bandwidth that is achievable within known molecular crystals and identified materials with strong super-radiant states. Finally, we explored the possibility that strong excitonic coupling can be used to generate emissive states in the near-infrared region in materials formed by molecules with bright visible absorption and we could identify the maximum allowable red shift in this material class. These insights with the associated searchable database provide practical guidelines for designing materials with interesting optical properties.
Collapse
Affiliation(s)
- Tahereh Nematiaram
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, via A. Moro 2, Siena 53100, Italy
| | - Alessandro Troisi
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
14
|
Babu Kajjam A, Vaidyanathan S. Acenaphthene-imidazole based red-to-NIR Emissive Homoleptic and Heteroleptic Ir(III) complexes for OLEDs: Combined experimental and theoretical approach. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Su MM, Kang JJ, Liu SQ, Meng CG, Li YQ, Zhang JJ, Ni J. Strategy for Achieving Long-Wavelength Near-Infrared Luminescence of Diimineplatinum(II) Complexes. Inorg Chem 2021; 60:3773-3780. [PMID: 33615779 DOI: 10.1021/acs.inorgchem.0c03529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although many strategies have been used to help design effective near-infrared (NIR) luminescent materials, it is still a huge challenge to realize long-wavelength NIR luminescence of diimineplatinum(II) complexes in the solid state. Herein, we have successfully achieved long-wavelength NIR luminescence of a family of diimineplatinum(II) complexes based on a new strategy that combines a one-dimensional (1D) "Pt wire" structure with the electronic effect of the substituent. The structures of six solvated diimineplatinum(II) complexes based on 4,4-dichloro-2,2'-bipyridine or 4,4-dibromo-2,2'-bipyridine and 4-substituted phenylacetylene ligands have been determined, namely, 1·1/2toluene, 2·1/2THF, 3·1/8toluene, 4·1/2THF, 5·1/8CH2Cl2, and 6·1/4toluene. All of them crystallize in the monoclinic space group C2/c or C2/m and stack in the 1D "Pt wire" structure. In the solid state, six complexes exhibited unusual long-wavelength metal-metal-to-ligand charge-transfer luminescence that peaked at 984, 1044, 972, 990, 1022, and 935 nm, respectively. Interestingly, 2·1/2THF has the shortest Pt···Pt distance and the longest emission wavelength among the six complexes. As far as we know, the luminescence of 2·1/2THF at 1044 nm is the longest emission wavelength among known diimineplatinum(II) complexes. Systematic studies revealed that good molecular planarity, suitable substituent position, weak hydrogen-bond-forming ability of the substituents, appropriate molecular bending, and weakening of the interaction between solvated molecules and platinum molecules are conducive to the construction of a 1D "Pt wire" structure of the diimineplatinum(II) complex. Furthermore, the emission energy of the complex is mainly determined by the strength of the Pt-Pt interaction and electronic effect of the substituent.
Collapse
Affiliation(s)
- Meng-Meng Su
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Jia-Jia Kang
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Shu-Qin Liu
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Chang-Gong Meng
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Yan-Qin Li
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Jian-Jun Zhang
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Jun Ni
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| |
Collapse
|
16
|
Punzi A, Blasi D, Operamolla A, Comparelli R, Palazzo G, Farinola GM. Peripherical thioester functionalization induces J-aggregation in bithiophene-DPP films and nanoparticles. RSC Adv 2021; 11:11536-11540. [PMID: 35423602 PMCID: PMC8695947 DOI: 10.1039/d1ra01253c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 12/28/2022] Open
Abstract
In this work we demonstrated that the peripherical thioacetylation of a bithiophene–DPP molecule can greatly influence the solid-state properties triggering the formation of NIR emitting J-aggregates in both bithiophene–DPP films and nanoparticles. The morphology and the kinetic and thermal stability of the organic nanoparticles were also investigated. The peripherical thioacetylation of a bithiophene-DPP molecule can greatly influence the supramolecular aggregation triggering the formation of NIR emitting J-aggregates both in films and nanoparticles with high colloidal stability.![]()
Collapse
Affiliation(s)
- Angela Punzi
- Department of Chemistry
- Università degli Studi di Bari “Aldo Moro”
- 70125 Bari
- Italy
| | - Davide Blasi
- Department of Chemistry
- Università degli Studi di Bari “Aldo Moro”
- 70125 Bari
- Italy
| | | | | | - Gerardo Palazzo
- Department of Chemistry
- Università degli Studi di Bari “Aldo Moro”
- 70125 Bari
- Italy
- CSGI (Center for Colloid and Surface Science)
| | - Gianluca M. Farinola
- Department of Chemistry
- Università degli Studi di Bari “Aldo Moro”
- 70125 Bari
- Italy
| |
Collapse
|
17
|
Iridium Complexes Embedding Rigid D-A-Type Coordinated Cores: Facile Synthesis and High-Efficiency Near-Infrared Emission in Solution-Processed Polymer Light-Emitting Diodes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Su MM, Ni J, Guo ZC, Liu SQ, Zhang JJ, Meng CG. Long-wavelength NIR luminescence of 2,2′-bipyridyl-Pt( ii) dimers achieved by enhanced Pt–Pt interaction. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00546d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benefiting from the very strong intermolecular Pt–Pt interaction, 2,2′-bipyridyl-Pt(ii) dimers have achieved long-wavelength near-infrared luminescence exceeding 1000 nm for the first time.
Collapse
Affiliation(s)
- Meng-Meng Su
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Jun Ni
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Zhong-Cui Guo
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Shu-Qin Liu
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Jian-Jun Zhang
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Chang-Gong Meng
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| |
Collapse
|
19
|
Zhou J, Stojanović L, Berezin AA, Battisti T, Gill A, Kariuki BM, Bonifazi D, Crespo-Otero R, Wasielewski MR, Wu YL. Organic room-temperature phosphorescence from halogen-bonded organic frameworks: hidden electronic effects in rigidified chromophores. Chem Sci 2020; 12:767-773. [PMID: 34163810 PMCID: PMC8178982 DOI: 10.1039/d0sc04646a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023] Open
Abstract
Development of purely organic materials displaying room-temperature phosphorescence (RTP) will expand the toolbox of inorganic phosphors for imaging, sensing or display applications. While molecular solids were found to suppress non-radiative energy dissipation and make the RTP process kinetically favourable, such an effect should be enhanced by the presence of multivalent directional non-covalent interactions. Here we report phosphorescence of a series of fast triplet-forming tetraethyl naphthalene-1,4,5,8-tetracarboxylates. Various numbers of bromo substituents were introduced to modulate intermolecular halogen-bonding interactions. Bright RTP with quantum yields up to 20% was observed when the molecule is surrounded by a Br⋯O halogen-bonded network. Spectroscopic and computational analyses revealed that judicious heavy-atom positioning suppresses non-radiative relaxation and enhances intersystem crossing at the same time. The latter effect was found to be facilitated by the orbital angular momentum change, in addition to the conventional heavy-atom effect. Our results suggest the potential of multivalent non-covalent interactions for excited-state conformation and electronic control.
Collapse
Affiliation(s)
- Jiawang Zhou
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University Evanston Illinois 60208-3113 USA
| | - Ljiljana Stojanović
- School of Biological and Chemical Sciences, Queen Mary University of London London E1 4NS UK
| | | | | | - Abigail Gill
- School of Chemistry, Cardiff University Cardiff CF10 3AT UK
| | | | - Davide Bonifazi
- School of Chemistry, Cardiff University Cardiff CF10 3AT UK
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Str. 38 Vienna 1090 Austria
| | - Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London London E1 4NS UK
| | - Michael R Wasielewski
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University Evanston Illinois 60208-3113 USA
| | - Yi-Lin Wu
- School of Chemistry, Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
20
|
Volkova YM, Makarov AY, Pritchina EA, Gritsan NP, Zibarev AV. Herz radicals: chemistry and materials science. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Sylvetsky N, Banerjee A, Alonso M, Martin JML. Performance of Localized Coupled Cluster Methods in a Moderately Strong Correlation Regime: Hückel-Möbius Interconversions in Expanded Porphyrins. J Chem Theory Comput 2020; 16:3641-3653. [PMID: 32338891 PMCID: PMC7304861 DOI: 10.1021/acs.jctc.0c00297] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Localized
orbital coupled cluster theory has recently emerged as
a nonempirical alternative to DFT for large systems. Intuitively,
one might expect such methods to perform less well for highly delocalized
systems. In the present work, we apply both canonical CCSD(T) approximations
and a variety of localized approximations to a set of flexible expanded
porphyrins—macrocycles that can switch between Hückel,
figure-eight, and Möbius topologies under external stimuli.
Both minima and isomerization transition states are considered. We
find that Möbius(-like) structures have much stronger static
correlation character than the remaining structures, and that this
causes significant errors in DLPNO-CCSD(T) and even DLPNO-CCSD(T1) approaches, unless TightPNO cutoffs are employed. If sub-kcal
mol–1 accuracy with respect to canonical relative
energies is required even for Möbius-type systems (or other
systems plagued by strong static correlation), then Nagy and Kallay’s
LNO-CCSD(T) method with “tight” settings is the suitable
localized approach. We propose the present POLYPYR21 data set as a
benchmark for localized orbital methods or, more broadly, for the
ability of lower-level methods to handle energetics with strongly
varying degrees of static correlation.
Collapse
Affiliation(s)
- Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Ambar Banerjee
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Mercedes Alonso
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan M L Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|
22
|
Woller T, Banerjee A, Sylvetsky N, Santra G, Deraet X, De Proft F, Martin JML, Alonso M. Performance of Electronic Structure Methods for the Description of Hückel-Möbius Interconversions in Extended π-Systems. J Phys Chem A 2020; 124:2380-2397. [PMID: 32093467 PMCID: PMC7307915 DOI: 10.1021/acs.jpca.9b10880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/21/2020] [Indexed: 12/25/2022]
Abstract
Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. DFT remains the workhorse for modeling such extended macrocycles, when taking into account their size and huge conformational flexibility. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, π···π stacking, steric effects, ring strain, and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wave function methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a stronger degree of static correlation than the Hückel and twisted-Hückel structures, and as a result the relative energies of singly twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between the extrapolated MP2/CBS energies estimated from cc-pV{T,Q}Z, diffuse-augmented heavy-aug-cc-pV{T,Q}Z and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol-1 with the CCSD(T) relative energies. Regarding DFT methods, the range-separated double hybrids, such as ωB97M(2) and B2GP-PLYP, outperform other functionals with RMSDs of 0.6 and 0.8 kcal mol-1, respectively. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended π-systems, the errors drop down to 1.9 kcal mol-1 for the revised revDOD-PBEP86-NL, which eliminates the same-spin correlation energy. Minnesota meta-GGA functionals with high fractions of exact exchange (M06-2X and M08-HX) also perform reasonably well, outperforming more robust and significantly less empirically parametrized functionals like SCAN0-D3.
Collapse
Affiliation(s)
- Tatiana Woller
- Department
of General Chemistry (ALGC), Faculty of Science and Bio-engineering
Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- Laboratoire
de Chimie Théorique (LCT), Sorbonne
Université, CNRS, F-75005 Paris, France
| | - Ambar Banerjee
- Department
of Organic Chemistry, Weizmann Institute
of Science, 76100 Reḥovot, Israel
| | - Nitai Sylvetsky
- Department
of Organic Chemistry, Weizmann Institute
of Science, 76100 Reḥovot, Israel
| | - Golokesh Santra
- Department
of Organic Chemistry, Weizmann Institute
of Science, 76100 Reḥovot, Israel
| | - Xavier Deraet
- Department
of General Chemistry (ALGC), Faculty of Science and Bio-engineering
Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank De Proft
- Department
of General Chemistry (ALGC), Faculty of Science and Bio-engineering
Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan M. L. Martin
- Department
of Organic Chemistry, Weizmann Institute
of Science, 76100 Reḥovot, Israel
| | - Mercedes Alonso
- Department
of General Chemistry (ALGC), Faculty of Science and Bio-engineering
Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
23
|
Makarov AY, Volkova YM, Shundrin LA, Dmitriev AA, Irtegova IG, Bagryanskaya IY, Shundrina IK, Gritsan NP, Beckmann J, Zibarev AV. Chemistry of Herz radicals: a new way to near-IR dyes with multiple long-lived and differently-coloured redox states. Chem Commun (Camb) 2020; 56:727-730. [PMID: 31840697 DOI: 10.1039/c9cc08557b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic methodology based on the self-condensation of 1,2,3-benzodithiazolyl diradicals (Herz radicals) produces unprecedented 5-6-6-6-5 and 5-6-7-6-5 pentacyclic sulfur-nitrogen near-IR dyes featuring up to five multiple long-lived and differently coloured redox-states.
Collapse
Affiliation(s)
- Alexander Yu Makarov
- Institute of Organic Chemistry, Russian Academy of sciences, 630090 Novosibirsk, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Richards GJ, Cador A, Yamada S, Middleton A, Webre WA, Labuta J, Karr PA, Ariga K, D’Souza F, Kahlal S, Halet JF, Hill JP. Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units. J Am Chem Soc 2019; 141:19570-19574. [DOI: 10.1021/jacs.9b10952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gary J. Richards
- Department of Chemistry, Ochanomizu University, Otsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Aël Cador
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, 35000 Rennes, France
| | - Shinji Yamada
- Department of Chemistry, Ochanomizu University, Otsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Anna Middleton
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070, Denton, Texas 76203, United States
| | - Whitney A. Webre
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070, Denton, Texas 76203, United States
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Paul A. Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0827, Japan
| | - Francis D’Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070, Denton, Texas 76203, United States
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, 35000 Rennes, France
| | - Jean-François Halet
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, 35000 Rennes, France
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
25
|
Wang SF, Fu LW, Wei YC, Liu SH, Lin JA, Lee GH, Chou PT, Huang JZ, Wu CI, Yuan Y, Lee CS, Chi Y. Near-Infrared Emission Induced by Shortened Pt–Pt Contact: Diplatinum(II) Complexes with Pyridyl Pyrimidinato Cyclometalates. Inorg Chem 2019; 58:13892-13901. [DOI: 10.1021/acs.inorgchem.9b01754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sheng Fu Wang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li-Wen Fu
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chen Wei
- Department of Chemistry and Instrumentational Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Hung Liu
- Department of Chemistry and Instrumentational Center, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-An Lin
- Department of Chemistry and Instrumentational Center, National Taiwan University, Taipei 10617, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry and Instrumentational Center, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry and Instrumentational Center, National Taiwan University, Taipei 10617, Taiwan
| | - Jian-Zhi Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan
| | - Chih-I Wu
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan
| | - Yi Yuan
- Department of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Sing Lee
- Department of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Yun Chi
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
26
|
Awada A, Moreno-Betancourt A, Philouze C, Moreau Y, Jouvenot D, Loiseau F. New Acridine-Based Tridentate Ligand for Ruthenium(II): Coordination with a Twist. Inorg Chem 2018; 57:15430-15437. [PMID: 30475599 DOI: 10.1021/acs.inorgchem.8b02735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new tridentate ligand based on acridine has been synthetized. The central acridine heterocycle bears two pyridine coordinating units at positions 4 and 5. The terdentate 2,7-di- tert-butyl-4,5-di(pyridin-2-yl)acridine (dtdpa) was then coordinated to a ruthenium(II) cation. The corresponding homoleptic complex could only be obtained where both ligands coordinate to the ruthenium in a fac fashion. Thus, a heteroleptic compound (2) was constructed in combination with a terpyridine ligand in order to constrain the ligand to adopt a mer geometry. Such a coordination imposes a dramatic twist on the acridine heterocycle, resulting in an unexpected photophysical behavior. The electrochemical and photophysical properties of both complexes were studied, and the molecular structure of 2 was determined by X-ray diffraction. The two compounds absorb at low energy wavelengths, and a very weak luminescence is detected only for complex 2 in the near-infrared region.
Collapse
Affiliation(s)
- Ali Awada
- Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France
| | | | | | - Yohann Moreau
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, UMR 5249 , F-38000 Grenoble , France
| | | | | |
Collapse
|
27
|
Qin L, Guan X, Yang C, Huang JS, Che CM. Near-Infrared Phosphorescent Supramolecular Alkyl/Aryl-Iridium Porphyrin Assemblies by Axial Coordination. Chemistry 2018; 24:14400-14408. [DOI: 10.1002/chem.201803238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Lin Qin
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Xiangguo Guan
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen 518053 P. R. China
| |
Collapse
|
28
|
Janardhanan JC, Mishra RK, Das G, Sini S, Jayamurthy P, Suresh CH, Praveen VK, Manoj N, Babu BP. Functionalizable 1H
-Indazoles by Palladium Catalyzed Aza-Nenitzescu Reaction: Pharmacophores to Donor-Acceptor Type Multi-Luminescent Fluorophores. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jith C. Janardhanan
- Department of Applied Chemistry; Cochin University of Science and Technology (CUSAT); Cochin 682022 India
| | - Rakesh K. Mishra
- Chemical Science and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvanathapuram 695019 India
- Department of Sciences and Humanities; National Institute of Technology, Uttarakhand (NITUK); Srinagar (Garhwal) 246174 India
| | - Gourab Das
- Chemical Science and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvanathapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvanathapuram 695019 India
| | - Suresh Sini
- Agroprocessing and Technology Division; CSIR-NIIST; Thiruvanathapuram 695019 India
| | - Purushothaman Jayamurthy
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvanathapuram 695019 India
- Agroprocessing and Technology Division; CSIR-NIIST; Thiruvanathapuram 695019 India
| | - Cherumuttathu H. Suresh
- Chemical Science and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvanathapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvanathapuram 695019 India
| | - Vakayil K. Praveen
- Chemical Science and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvanathapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvanathapuram 695019 India
| | - Narayanapillai Manoj
- Department of Applied Chemistry; Cochin University of Science and Technology (CUSAT); Cochin 682022 India
| | - Beneesh P. Babu
- Department of Chemistry; National Institute of Technology, Karnataka (NITK); Surathkal 575025 India
| |
Collapse
|
29
|
Swasey SM, Nicholson HC, Copp SM, Bogdanov P, Gorovits A, Gwinn EG. Adaptation of a visible wavelength fluorescence microplate reader for discovery of near-infrared fluorescent probes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:095111. [PMID: 30278750 DOI: 10.1063/1.5023258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present an inexpensive, generalizable approach for modifying visible wavelength fluorescence microplate readers to detect emission in the near-infrared (NIR) I (650-950 nm) and NIR II (1000-1350 nm) tissue imaging windows. These wavelength ranges are promising for high sensitivity fluorescence-based cell assays and biological imaging, but the inaccessibility of NIR microplate readers is limiting development of the requisite, biocompatible fluorescent probes. Our modifications enable rapid screening of NIR candidate probes, using short pulses of UV light to provide excitation of diverse systems including dye molecules, semiconductor quantum dots, and metal clusters. To confirm the utility of our approach for rapid discovery of new NIR probes, we examine the silver cluster synthesis products formed on 375 candidate DNA strands that were originally designed to produce green-emitting, DNA-stabilized silver clusters. The fast, sensitive system developed here discovered DNA strands that unexpectedly stabilize NIR-emitting silver clusters.
Collapse
Affiliation(s)
- Steven M Swasey
- Department of Chemistry and Biochemistry, UCSB, Santa Barbara, California 93106, USA
| | | | - Stacy M Copp
- Center for Integrated Nanotechnologies, Los Alamos National Laboratories, Los Alamos, New Mexico 87545, USA
| | - Petko Bogdanov
- Department of Computer Science, University at Albany, SUNY, Albany, New York 12222, USA
| | - Alexander Gorovits
- Department of Computer Science, University at Albany, SUNY, Albany, New York 12222, USA
| | | |
Collapse
|
30
|
Yi XG, Chen WT, Huang JG, Zhang DW, Wang YF. Electrochemistry, photoluminescence and theoretical study of the first 5,10,15,20-tetra-(4-(triazol-1-yl)phenyl) porphyridine complex. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424617500894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The first 5,10,15,20-tetra-(4-(triazol-1-yl)phenyl) porphyridine complex, [Zn[Formula: see text]Cl[Formula: see text](5,10,15,20-tetra-(4-(triazol-1-yl)phenyl)porphyridine)][Formula: see text]Cl•[Formula: see text]H[Formula: see text]O•7[Formula: see text]H[Formula: see text]O (1) has been synthesized via solvothermal reactions and characterized by single-crystal X-ray diffraction. Complex 1 is characteristic of a one-dimensional (1-D) structure, consisting of neutral [Zn[Formula: see text]Cl[Formula: see text](5,10,15,20-tetra-(4-(triazol-1-yl)phenyl) porphyridine)][Formula: see text] chains, isolated chloride ions and lattice water molecules. The zinc ion is in a four-coordinated tetrahedral geometry, and the porphyrin macrocycle is saddle-distorted. Photoluminescence measurement with solid-state samples discovers that it exhibits an emission in the green region of the light spectrum. Time-dependent density functional theory (TDDFT) calculation discovers that this emission can be attributed to the [Formula: see text]–[Formula: see text]* charge transfer. The cyclic voltammetry (CV) measurement reveals that it possesses an oxidation peak at 0.37 V.
Collapse
Affiliation(s)
- Xiu-Guang Yi
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji’an, Jiangxi 343009, China
- Research Center for Rare Earths & Nano/micro Functional Materials, Nanchang University Nanchang, Jiangxi 330031, China
| | - Wen-Tong Chen
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji’an, Jiangxi 343009, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, (Nanchang Hangkong University) Nanchang Jiangxi 330000, China
| | - Jian-Gen Huang
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Ding-Wa Zhang
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Yin-Feng Wang
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Coordination Chemistry, Jinggangshan University, Ji’an, Jiangxi 343009, China
| |
Collapse
|
31
|
Lanoë PH, Chan J, Groué A, Gontard G, Jutand A, Rager MN, Armaroli N, Monti F, Barbieri A, Amouri H. Cyclometalated N-heterocyclic carbene iridium(iii) complexes with naphthalimide chromophores: a novel class of phosphorescent heteroleptic compounds. Dalton Trans 2018; 47:3440-3451. [PMID: 29431779 DOI: 10.1039/c7dt04369d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of cyclometalated N-heterocyclic carbene complexes of the general formula [Ir(C^N)2(C^C:)] has been prepared. Two sets of compounds were designed, those where (C^C:) represents a bidentate naphthalimide-substituted imidazolylidene ligand and (C^N) = ppy (3a), F2ppy (4a), bzq (5a) and those where (C^C:) represents a naphthalimide-substituted benzimidazolylidene ligand and (C^N) = ppy (3b), F2ppy (4b), bzq (5b). The naphthalimide-imidazole and naphthalimide-benzimidazole ligands 1a,b and the related imidazolium and benzimidazolium salts 2a,b were also prepared and fully characterized. The N-heterocyclic carbene Ir(iii) complexes have been characterized by NMR spectroscopy, cyclic voltammetry and elemental analysis. Moreover, the molecular structures of one imidazolium salt and four Ir(iii) complexes were determined by single-crystal X-ray diffraction. The structures provide us with valuable information, most notably the orientation of the naphthalimide chromophore with respect to the N-heterocyclic carbene moiety. All compounds are luminescent at room temperature and in a frozen solvent at 77 K, exhibiting a broad emission band that extends beyond 700 nm. The presence of the naphthalimide moiety changes the character of the lowest excited state from 3MLCT to 3LC, as corroborated by DFT and TD-DFT calculations. Remarkably, replacing imidazole with a benzimidazole unit improves the quantum yields of these compounds by decreasing the knr values which is an important feature for optimized emission performance. These studies provide valuable insights about a novel class of N-heterocyclic carbene-based luminescent complexes containing organic chromophores and affording metal complexes emitting across the red-NIR range.
Collapse
Affiliation(s)
- Pierre-Henri Lanoë
- Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232, 4 place Jussieu, 75252 Paris cedex 05, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. Hexa-peri-hexabenzo[7]helicene: Homogeneously π-Extended Helicene as a Primary Substructure of Helically Twisted Chiral Graphenes. J Am Chem Soc 2018; 140:4317-4326. [DOI: 10.1021/jacs.7b13412] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yusuke Nakakuki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
33
|
D'Aléo A, Sazzad MH, Kim DH, Choi EY, Wu JW, Canard G, Fages F, Ribierre JC, Adachi C. Boron difluoride hemicurcuminoid as an efficient far red to near-infrared emitter: toward OLEDs and laser dyes. Chem Commun (Camb) 2018; 53:7003-7006. [PMID: 28513655 DOI: 10.1039/c7cc01786c] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hemicurcuminoid boron difluoride complex is used as an emitter in organic light-emitting diodes, showing far red/near-infrared electroluminescence with an external quantum efficiency as high as 2.1%. This dye blended in CBP thin films shows amplified spontaneous emission with a threshold of 22 μJ cm-2 at 750 nm, making this compound attractive for organic semiconductor lasers operating in the near-infrared region.
Collapse
Affiliation(s)
- A D'Aléo
- Aix Marseille Univ, CNRS, CINaM UMR 7325, Campus de Luminy, Case 913, 13288 Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cherumukkil S, Vedhanarayanan B, Das G, Praveen VK, Ajayaghosh A. Self-Assembly of Bodipy-Derived Extended π-Systems. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170334] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandeep Cherumukkil
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| | - Balaraman Vedhanarayanan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| | - Gourab Das
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| | - Vakayil K. Praveen
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695019, India
| |
Collapse
|
35
|
Yin JF, Hu Y, Wang H, Jin Z, Zhang Y, Kuang GC. Near-Infrared-Emissive Amphiphilic BODIPY Assemblies Manipulated by Charge-Transfer Interaction: From Nanofibers to Nanorods and Nanodisks. Chem Asian J 2017; 12:3088-3095. [DOI: 10.1002/asia.201701323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Jia-Fu Yin
- State Key Laboratory of Power Metallurgy; Department of Polymer Materials and Engineering; Central South University; Changsha Hunan 410083 (China
- College of Chemistry and Chemical Engineering Department; Central South University; Changsha Hunan 410083 (China
| | - Yi Hu
- Key Laboratory of Mesoscopic Chemistry of MOE; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing Jiangsu 210093 (China
| | - Huan Wang
- State Key Laboratory of Power Metallurgy; Department of Polymer Materials and Engineering; Central South University; Changsha Hunan 410083 (China
| | - Zhong Jin
- Key Laboratory of Mesoscopic Chemistry of MOE; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing Jiangsu 210093 (China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering Department; Central South University; Changsha Hunan 410083 (China
| | - Gui-Chao Kuang
- State Key Laboratory of Power Metallurgy; Department of Polymer Materials and Engineering; Central South University; Changsha Hunan 410083 (China
| |
Collapse
|
36
|
Miletić T, Fermi A, Papadakis I, Orfanos I, Karampitsos N, Avramopoulos A, Demitri N, De Leo F, Pope SJA, Papadopoulos MG, Couris S, Bonifazi D. A Twisted Bay-Substituted Quaterrylene Phosphorescing in the NIR Spectral Region. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tanja Miletić
- School of Chemistry; Cardiff University; Park Place CF10 3AT Cardiff UK
- Department of Chemical and Pharmaceutical Sciences; INSTM UdR Trieste; University of Trieste; Piazzale Europa 1 34127 Trieste Italy
| | - Andrea Fermi
- School of Chemistry; Cardiff University; Park Place CF10 3AT Cardiff UK
| | - Ioannis Papadakis
- Department of Physics; University of Patras; 26504 Patras Greece
- Institute of Chemical Engineering Sciences (ICE-HT); Foundation for Research and Technology-Hellas (FORTH); P.O. Box 1414 Patras 26504 Greece
| | - Ioannis Orfanos
- Department of Physics; University of Patras; 26504 Patras Greece
- Institute of Chemical Engineering Sciences (ICE-HT); Foundation for Research and Technology-Hellas (FORTH); P.O. Box 1414 Patras 26504 Greece
| | - Nikolaos Karampitsos
- Department of Physics; University of Patras; 26504 Patras Greece
- Institute of Chemical Engineering Sciences (ICE-HT); Foundation for Research and Technology-Hellas (FORTH); P.O. Box 1414 Patras 26504 Greece
| | - Aggelos Avramopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; 48 Vas. Constantinou Avenue Athens 11635 Greece
- Department of Computer Engineering; Technological Education Institute (TEI) of Sterea Ellada; Lamia 35100 Greece
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste; S.S. 14 Km 163.5 in Area Science Park 34149 Basovizza - Trieste Italy
| | - Federica De Leo
- San Raffaele Hospital; Scientific Institute-IRCCS; Via Olgettina 60 20132 Milan Italy
| | - Simon J. A. Pope
- School of Chemistry; Cardiff University; Park Place CF10 3AT Cardiff UK
| | - Manthos G. Papadopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; 48 Vas. Constantinou Avenue Athens 11635 Greece
| | - Stelios Couris
- Department of Physics; University of Patras; 26504 Patras Greece
- Institute of Chemical Engineering Sciences (ICE-HT); Foundation for Research and Technology-Hellas (FORTH); P.O. Box 1414 Patras 26504 Greece
| | - Davide Bonifazi
- School of Chemistry; Cardiff University; Park Place CF10 3AT Cardiff UK
| |
Collapse
|
37
|
Schmitt J, Heitz V, Jenni S, Sour A, Bolze F, Ventura B. π-extended porphyrin dimers as efficient near-infrared emitters and two-photon absorbers. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1377837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Julie Schmitt
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg CNRS/UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg CNRS/UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Sébastien Jenni
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg CNRS/UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Angélique Sour
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg CNRS/UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Frédéric Bolze
- CAMB, UMR 7199, UdS/CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
38
|
Cherumukkil S, Ghosh S, Praveen VK, Ajayaghosh A. An unprecedented amplification of near-infrared emission in a Bodipy derived π-system by stress or gelation. Chem Sci 2017; 8:5644-5649. [PMID: 28989602 PMCID: PMC5621002 DOI: 10.1039/c7sc01696d] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
A meso-substituted Bodipy derived π-gelator exhibits amplified near-infrared (NIR) emission upon shearing of its film from n-decane or drying of its gel from DMSO.
We report an unprecedented strategy to generate and amplify near-infrared (NIR) emission in an organic chromophore by mechanical stress or gelation pathways. A greenish-yellow emitting film of π-extended Bodipy-1, obtained from n-decane, became orange-red upon mechanical shearing, with a 15-fold enhancement in NIR emission at 738 nm. Alternatively, a DMSO gel of Bodipy-1 exhibited a 7-fold enhancement in NIR emission at 748 nm with a change in emission color from yellow to orange-red upon drying. The reason for the amplified NIR emission in both cases is established from the difference in chromophore packing, by single crystal analysis of a model compound (Bodipy-2), which also exhibited a near identical emission spectrum with red to NIR emission (742 nm). Comparison of the emission features and WAXS and FT-IR data of the sheared n-decane film and the DMSO xerogel with the single crystal data supports a head-to-tail slipped arrangement driven by the N–H···F–B bonding in the sheared or xerogel states, which facilitates strong exciton coupling and the resultant NIR emission.
Collapse
Affiliation(s)
- Sandeep Cherumukkil
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram-695019 , India . .,Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram-695019 , India
| | - Samrat Ghosh
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram-695019 , India . .,Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram-695019 , India
| | - Vakayil K Praveen
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram-695019 , India . .,Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram-695019 , India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram-695019 , India . .,Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram-695019 , India
| |
Collapse
|
39
|
Cortizo-Lacalle D, Pertegás A, Melle-Franco M, Bolink HJ, Mateo-Alonso A. Pyrene-fused bisphenazinothiadiazoles with red to NIR electroluminescence. Org Chem Front 2017. [DOI: 10.1039/c7qo00227k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Deep red and NIR electroluminescence from pyrene-fused bisphenazinothiadiazoles.
Collapse
Affiliation(s)
| | - Antonio Pertegás
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Manuel Melle-Franco
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Henk J. Bolink
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Aurelio Mateo-Alonso
- POLYMAT
- University of the Basque Country UPV/EHU
- E-20018 Donostia-San Sebastian
- Spain
- Ikerbasque
| |
Collapse
|
40
|
Pal AK, Cordes DB, Slawin AMZ, Momblona C, Pertegás A, Ortí E, Bolink HJ, Zysman-Colman E. Simple design to achieve red-to-near-infrared emissive cationic Ir(iii) emitters and their use in light emitting electrochemical cells. RSC Adv 2017. [DOI: 10.1039/c7ra06347d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two cationic Ir(iii) complexes bearing bithiazole-type ancillary ligands have been synthesised and tested as deep red-to-near-infrared emitters in solution-processed electroluminescent devices.
Collapse
Affiliation(s)
- Amlan K. Pal
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife KY16 9ST
- UK
| | - David B. Cordes
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife KY16 9ST
- UK
| | | | - Cristina Momblona
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Antonio Pertegás
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Henk J. Bolink
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Eli Zysman-Colman
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife KY16 9ST
- UK
| |
Collapse
|