1
|
Devos C, Bampouli A, Brozzi E, Stefanidis GD, Dusselier M, Van Gerven T, Kuhn S. Ultrasound mechanisms and their effect on solid synthesis and processing: a review. Chem Soc Rev 2025; 54:85-115. [PMID: 39439231 PMCID: PMC11496938 DOI: 10.1039/d4cs00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Ultrasound proves to be an effective technique for intensifying a wide range of processes involving solids and, as such, is often used to improve control over both solids formation and post-treatment stages. The intensifying capabilities of ultrasonic processing are best interpreted in the context of the chemical, transport, and mechanical effects that occur during sonication. This review presents an overview of how ultrasound influences the processing and synthesis of solids across various material classes, contextualized within an ultrasound effect framework. By describing the mechanisms underlying the different effects of ultrasound on the solid synthesis and processing, this review aims to facilitate a deeper understanding of the current literature in the field and to promote more effective utilization of ultrasound technology in solid synthesis and processing.
Collapse
Affiliation(s)
- Cedric Devos
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ariana Bampouli
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Elena Brozzi
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Georgios D Stefanidis
- School of Chemical Engineering, Department of Process Analysis and Plant Design, National Technical University of Athens, Iroon Polytecneiou 9, Zografou 15780, Athens, Greece
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, 3001 Heverlee, Belgium
| | - Tom Van Gerven
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Vasquez-Muñoz D, Rohne F, Sharma A, Lomadze N, Santer S, Bekir M. Versatile and Remotely Controllable Light-Induced Coagulation of Particles Under Flow in a 2D Channel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401144. [PMID: 38552250 DOI: 10.1002/smll.202401144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Indexed: 08/17/2024]
Abstract
On-demand switch on/off blood clogging is of paramount importance for the survival of mammals, for example as a quick response to seal damage wounds to minimize their bleeding rate. This mechanism is a complex chain process from initiated red blood cell aggregation at the target location (open wound) that quickly seals on a macroscopic scale the damaged flash. Inspired by nature an on-demand switchable particle clogging mechanism is developed with high spatial resolution down to micrometer size using light as an external non-invasive stimulation. Particle clogging can be adjusted on demand strong enough to even withstand pressure-driven fluid flow, additionally building up walls of aggregated particles, which stop the momentum of big particles under shear. The principle relies on a photosensitive surfactant, which induces under light illumination a long-ranged lateral attractive phoretic-osmotic activity of silica microparticles forcing them to aggregate. The strength of aggregation and therefore motion reduction or even stop of the particles against the fluid flow depends on the ratio between the aggregation strength and the velocity of the particles. The aggregation strength can be precisely controlled by the applied light intensity and adjusted particle concentration. Increasing both parameters results in a stronger aggregation tendency.
Collapse
Affiliation(s)
| | - Fabian Rohne
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Anjali Sharma
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| |
Collapse
|
3
|
Wang K, Song Y, Kang Y, Guo Y, Ma H, Wu S, Yang J. Ultrasonic detection method based on flexible capillary water column arrays coupling. ULTRASONICS 2024; 139:107276. [PMID: 38461795 DOI: 10.1016/j.ultras.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Conventional water immersion ultrasonic testing faces limitations due to factors such as environmental conditions, workpiece dimensions, corrosion, and resource wastage. Contact-based coupling methods, which employ coupling media or specific coupling structures, offer a convenient approach to coupling acoustic waves and reduce signal attenuation. However, these methods are time-sensitive and lack adaptability to uneven surfaces, particularly when dealing with workpieces featuring subtle undulations, resulting in significant signal decay. This paper presents an ultrasonic coupling method based on a flexible capillary water column array. By employing a stable and flexible water column array within the micro-channels as the coupling medium, stable contact-based transmission of ultrasonic signals is achieved. The influence of water column array unit dimensions and array structures is explored through theoretical analysis and experimentation, demonstrating lower energy attenuation compared to reductions in water column area. Notably, the tests revealed the method's adaptability at oblique angles below 20°, which surpasses the performance of submerged detection at similar angles. This research presents an innovative and stable approach for contact-based ultrasonic coupling testing, particularly in scenarios involving dynamic contact scanning between ultrasonic waves and workpieces.
Collapse
Affiliation(s)
- Kai Wang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
| | - Yini Song
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
| | - Yihua Kang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China.
| | - Yizhou Guo
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
| | - Hongbao Ma
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
| | - Shengping Wu
- Wuhan Huayu Electromagnetic Testing Equipment Co, China
| | - Jin Yang
- Wuhan College of Arts & Sciences, China
| |
Collapse
|
4
|
Fernandez Rivas D, Cintas P, Glassey J, Boffito DC. Ultrasound and sonochemistry enhance education outcomes: From fundamentals and applied research to entrepreneurial potential. ULTRASONICS SONOCHEMISTRY 2024; 103:106795. [PMID: 38359576 PMCID: PMC10879001 DOI: 10.1016/j.ultsonch.2024.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
With this manuscript we aim to initiate a discussion specific to educational actions around ultrasonics sonochemistry. The importance of these actions does not just derive from a mere pedagogical significance, but they can be an exceptional tool for illustrating various concepts in other disciplines, such as process intensification and microfluidics. Sonochemistry is currently a far-reaching discipline extending across different scales of applicability, from the fundamental physics of tiny bubbles and molecules, up to process plants. This review is part of a special issue in Ultrasonics Sonochemistry, where several scholars have shared their experiences and highlighted opportunities regarding ultrasound as an education tool. The main outcome of our work is that teaching and mentorship in sonochemistry are highly needed, with a balanced technical and scientific knowledge to foster skills and implement safe protocols. Applied research typically features the use of ultrasound as ancillary, to merely enhance a given process and often leading to poorly conceived experiments and misunderstanding of the actual effects. Thus, our scientific community must build a consistent culture and monitor reproducible practices to rigorously generate new knowledge on sonochemistry. These practices can be implemented in teaching sonochemistry in classrooms and research laboratories. We highlight ways to collectively provide a potentially better training for scientists, invigorating academic and industry-oriented careers. A salient benefit for education efforts is that sonochemistry-based projects can serve multidisciplinary training, potentially gathering students from different disciplines, such as physics, chemistry and bioengineering. Herein, we discuss challenges, opportunities, and future avenues to assist in designing courses and research programs based on sonochemistry. Additionally, we suggest simple experiments suitable for teaching basic physicochemical principles at the undergraduatelevel. We also provide arguments and recommendations oriented towards graduate and postdoctoral students, in academia or industry to be more entrepreneurial. We have identified that sonochemistry is consistently seen as a 'green' or sustainable tool, which particular appeal to process intensification approaches, including microfluidics and materials science. We conclude that a globally aligned pedagogical initiative and constantly updated educational tools will help to sustain a virtuous cycle in STEM and industrial applications of sonochemistry.
Collapse
Affiliation(s)
- David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, and IACYS-Green Chemistry & Sustainable Development Unit, Facultad de Ciencias-UEx, 06006 Badajoz, Spain
| | - Jarka Glassey
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daria C Boffito
- Department of Chemical Engineering, Engineering Process Intensification and Catalysis (EPIC), Polytechnique Montréal, C.P. 6079, Succ. "CV", Montréal H3C 3A7, Québec, Canada; Canada Research Chair in Engineering Process Intensification and Catalysis (EPIC), Polytechnique Montréal, C.P. 6079, Succ. "CV", Montréal H3C 3A7, Québec, Canada
| |
Collapse
|
5
|
Bazyar H, Kandemir MH, Peper J, Andrade MAB, Bernassau AL, Schroën K, Lammertink RGH. Acoustophoresis of monodisperse oil droplets in water: Effect of symmetry breaking and non-resonance operation on oil trapping behavior. BIOMICROFLUIDICS 2023; 17:064107. [PMID: 38162227 PMCID: PMC10757468 DOI: 10.1063/5.0175400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Acoustic manipulation of particles in microchannels has recently gained much attention. Ultrasonic standing wave (USW) separation of oil droplets or particles is an established technology for microscale applications. Acoustofluidic devices are normally operated at optimized conditions, namely, resonant frequency, to minimize power consumption. It has been recently shown that symmetry breaking is needed to obtain efficient conditions for acoustic particle trapping. In this work, we study the acoustophoretic behavior of monodisperse oil droplets (silicone oil and hexadecane) in water in the microfluidic chip operating at a non-resonant frequency and an off-center placement of the transducer. Finite element-based computer simulations are further performed to investigate the influence of these conditions on the acoustic pressure distribution and oil trapping behavior. Via investigating the Gor'kov potential, we obtained an overlap between the trapping patterns obtained in experiments and simulations. We demonstrate that an off-center placement of the transducer and driving the transducer at a non-resonant frequency can still lead to predictable behavior of particles in acoustofluidics. This is relevant to applications in which the theoretical resonant frequency cannot be achieved, e.g., manipulation of biological matter within living tissues.
Collapse
Affiliation(s)
- H. Bazyar
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - M. H. Kandemir
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - J. Peper
- Soft Matter Fluidics and Interfaces, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - M. A. B. Andrade
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - A. L. Bernassau
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - K. Schroën
- Membrane Processes for Food, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - R. G. H. Lammertink
- Soft Matter Fluidics and Interfaces, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
Udepurkar AP, Nandiwale KY, Jensen KF, Kuhn S. Heterogeneous photochemical reaction enabled by an ultrasonic microreactor. REACT CHEM ENG 2023; 8:1930-1936. [PMID: 38013744 PMCID: PMC10388398 DOI: 10.1039/d3re00154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/22/2023] [Indexed: 11/29/2023]
Abstract
The presence of solids as starting reagents/reactants or products in flow photochemical reactions can lead to reactor clogging and yield reduction from side reactions. We address this limitation with a new ultrasonic microreactor for continuous solid-laden photochemical reactions. The ultrasonic photochemical microreactor is characterized by the liquid and solid residence time distribution (RTD) and the absorbed photon flux in the reactor via chemical actinometry. The solid-handling capability of the ultrasonic photochemical microreactor is demonstrated with a silyl radical-mediated metallaphotoredox cross-electrophile coupling with a solid base as a reagent.
Collapse
Affiliation(s)
- Aniket P Udepurkar
- KU Leuven, Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| | - Kakasaheb Y Nandiwale
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
7
|
Cooley MB, Wulftange WJ, Wegierak D, Goreke U, Abenojar EC, Gurkan UA, Exner AA. Real-time imaging of nanobubble ultrasound contrast agent flow, extravasation, and diffusion through an extracellular matrix using a microfluidic model. LAB ON A CHIP 2023; 23:3453-3466. [PMID: 37424286 PMCID: PMC11684791 DOI: 10.1039/d3lc00514c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Lipid shell-stabilized nanoparticles with a perfluorocarbon gas-core, or nanobubbles, have recently attracted attention as a new contrast agent for molecular ultrasound imaging and image-guided therapy. Due to their small size (∼275 nm diameter) and flexible shell, nanobubbles have been shown to extravasate through hyperpermeable vasculature (e.g., in tumors). However, little is known about the dynamics and depth of extravasation of intact, acoustically active nanobubbles. Accordingly, in this work, we developed a microfluidic chip with a lumen and extracellular matrix (ECM) and imaging method that allows real-time imaging and characterization of the extravasation process with high-frequency ultrasound. The microfluidic device has a lumen and is surrounded by an extracellular matrix with tunable porosity. The combination of ultrasound imaging and the microfluidic chip advantageously produces real-time images of the entire length and depth of the matrix. This captures the matrix heterogeneity, offering advantages over other imaging techniques with smaller fields of view. Results from this study show that nanobubbles diffuse through a 1.3 μm pore size (2 mg mL-1) collagen I matrix 25× faster with a penetration depth that was 0.19 mm deeper than a 3.7 μm (4 mg mL-1) matrix. In the 3.7 μm pore size matrix, nanobubbles diffused 92× faster than large nanobubbles (∼875 nm diameter). Decorrelation time analysis was successfully used to differentiate flowing and extra-luminally diffusing nanobubbles. In this work, we show for the first time that combination of an ultrasound-capable microfluidic chip and real-time imaging provided valuable insight into spatiotemporal nanoparticle movement through a heterogeneous extracellular matrix. This work could help accurately predict parameters (e.g., injection dosage) that improve translation of nanoparticles from in vitro to in vivo environments.
Collapse
Affiliation(s)
- Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - William J Wulftange
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Dana Wegierak
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Eric C Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Umut A Gurkan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
8
|
Capaldo L, Wen Z, Noël T. A field guide to flow chemistry for synthetic organic chemists. Chem Sci 2023; 14:4230-4247. [PMID: 37123197 PMCID: PMC10132167 DOI: 10.1039/d3sc00992k] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Flow chemistry has unlocked a world of possibilities for the synthetic community, but the idea that it is a mysterious "black box" needs to go. In this review, we show that several of the benefits of microreactor technology can be exploited to push the boundaries in organic synthesis and to unleash unique reactivity and selectivity. By "lifting the veil" on some of the governing principles behind the observed trends, we hope that this review will serve as a useful field guide for those interested in diving into flow chemistry.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Zhenghui Wen
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| |
Collapse
|
9
|
Udepurkar AP, Clasen C, Kuhn S. Emulsification mechanism in an ultrasonic microreactor: Influence of surface roughness and ultrasound frequency. ULTRASONICS SONOCHEMISTRY 2023; 94:106323. [PMID: 36774674 PMCID: PMC9945801 DOI: 10.1016/j.ultsonch.2023.106323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
An ultrasonic microreactor with rough microchannels is presented in this study for oil-in-water (O/W) emulsion generation. Previous accounts have shown that surface pits or imperfections localize and enhance cavitation activity. In this study cavitation bubbles are localized on the rough microchannels of a borosilicate glass microreactor. The cavitation bubbles in the microchannel are primarily responsible for emulsification in the ultrasonic microreactor. We investigate the emulsification mechanism in the rough microchannels employing high-speed imaging to reveal the different emulsification modes influenced by the size and oscillation intensity of the cavitation bubbles. The effect of emulsification modes on the O/W emulsion droplet size distribution for different surface roughness and frequency is demonstrated. The positive effect of the frequency on minimizing the droplet size utilizing a reactor with large pits is presented. We also demonstrate microreactor systems for a successful generation of miniemulsions with high dispersed phase volume fractions up to 20%. The observed emulsification mechanism in the rough microchannel offers new insights into the utility and scale-up of ultrasonic microreactors for emulsification.
Collapse
Affiliation(s)
- Aniket Pradip Udepurkar
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
10
|
Wittig and Wittig-Horner Reactions under Sonication Conditions. Molecules 2023; 28:molecules28041958. [PMID: 36838946 PMCID: PMC9964018 DOI: 10.3390/molecules28041958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Carbonyl olefinations are among the most important organic syntheses that form C=C bonds, as they usually have high yields and in addition offer excellent stereoselectivity. Due to these advantages, carbonyl olefinations have important pharmaceutical and industrial applications. These reactions contain an additional step of an α-functionalized carbanion to an aldehyde or ketone to produce alkenes, but syntheses performed using metal carbene complexes are also known. The Wittig reaction is an example of carbonyl olefination, one of the best ways to synthesize alkenes. This involves the chemical reaction between an aldehyde or ketone with a so-called Wittig reagent, for instance phosphonium ylide. Triphenylphosphine-derived ylides and trialkylphosphine-derived ylides are the most common phosphorous compounds used as Wittig reagents. The Wittig reaction is commonly involved in the synthesis of novel anti-cancer and anti-viral compounds. In recent decades, the use of ultrasound on the Wittig reaction (and on different modified Wittig syntheses, such as the Wittig-Horner reaction or the aza-Wittig method) has been studied as a green synthesis. In addition to the advantage of green synthesis, the use of ultrasounds in general also improved the yield and reduced the reaction time. All of these chemical syntheses conducted under ultrasound will be described further in the present review.
Collapse
|
11
|
Cailly W, Mc Carogher K, Bolze H, Yin J, Kuhn S. Analysis of dynamic acoustic resonance effects in a sonicated gas-liquid flow microreactor. ULTRASONICS SONOCHEMISTRY 2023; 93:106300. [PMID: 36696780 PMCID: PMC9879968 DOI: 10.1016/j.ultsonch.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this work, we characterize acoustic resonance phenomena occurring between gas bubbles in a segmented gas-liquid flow in a microchannel irradiated with a frequency around 500 kHz. A large acoustic amplitude can be reached, leading to gas-liquid interface deformation, atomization of micrometer sized droplets, and cavitation. A numerical approach combining an acoustic frequency-domain solver and a Lagrangian Surface-Evolver solver is introduced to predict the acoustic deformation of gas-liquid interfaces and the dynamic acoustic magnitude. The numerical approach and its assumptions were validated with experiments, for which a good agreement was observed. Therefore, this numerical approach allows to provide a description and an understanding of the acoustic nature of these phenomena. The acoustic pressure magnitude can reach hundreds of kPa to tens of MPa, and these values are consistent with the observation of atomization and cavitation in the experiments. Furthermore, volume of fluid simulations were performed to predict the atomization threshold, which was then related to acoustic resonance. It is found that dynamic acoustic resonance gives rise to atomization bursts at the gas bubble surface. The presented approach can be applied to more complex acoustic fields involving more complex channel geometries, vibration patterns, or two-phase flow patterns.
Collapse
Affiliation(s)
- William Cailly
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Keiran Mc Carogher
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Holger Bolze
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jun Yin
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Ultrasound assisted continuous processing in microreactors with focus on crystallization and chemical synthesis: A critical review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Volk AA, Campbell ZS, Ibrahim MYS, Bennett JA, Abolhasani M. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Annu Rev Chem Biomol Eng 2022; 13:45-72. [PMID: 35259931 DOI: 10.1146/annurev-chembioeng-092120-024449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Zachary S Campbell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Malek Y S Ibrahim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Jeffrey A Bennett
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| |
Collapse
|
14
|
Abstract
In the present review article, the definitions and the most advanced findings within Process Intensification are collected and discussed. The intention is to give the readers the basic concepts, fixing the syllabus, as well as some relevant application examples of a discipline that is well-established and considered a hot topic in the chemical reaction engineering field at present.
Collapse
|
15
|
Meroni D, Djellabi R, Ashokkumar M, Bianchi CL, Boffito DC. Sonoprocessing: From Concepts to Large-Scale Reactors. Chem Rev 2021; 122:3219-3258. [PMID: 34818504 DOI: 10.1021/acs.chemrev.1c00438] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge. In this context, this review provides a complete overview of the current understanding of the role of operating parameters and reactor configuration on the sonochemical processes. Experimental and theoretical techniques to characterize the intensity and distribution of cavitation activity within sonoreactors are compared. Classes of laboratory and large-scale sonoreactors are reviewed, highlighting recent advances in batch and flow-through reactors. Finally, examples of large-scale sonoprocessing applications have been reviewed, discussing the major scale-up and sustainability challenges.
Collapse
Affiliation(s)
- Daniela Meroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Ridha Djellabi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | | | - Claudia L Bianchi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daria C Boffito
- Département de Génie Chimique, C.P. 6079, Polytechnique Montréal, Montréal H3C 3A7, Canada.,Canada Research Chair in Intensified Mechanochemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec Canada
| |
Collapse
|
16
|
Martínez RF, Cravotto G, Cintas P. Organic Sonochemistry: A Chemist's Timely Perspective on Mechanisms and Reactivity. J Org Chem 2021; 86:13833-13856. [PMID: 34156841 PMCID: PMC8562878 DOI: 10.1021/acs.joc.1c00805] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 01/17/2023]
Abstract
Sonochemistry, the use of sound waves, usually within the ultrasonic range (>20 kHz), to boost or alter chemical properties and reactivity constitutes a long-standing and sustainable technique that has, however, received less attention than other activation protocols despite affordable setups. Even if unnecessary to underline the impact of ultrasound-based strategies in a broad range of chemical and biological applications, there is considerable misunderstanding and pitfalls regarding the interpretation of cavitational effects and the actual role played by the acoustic field. In this Perspective, with an eye on mechanisms in particular, we discuss the potentiality of sonochemistry in synthetic organic chemistry through selected examples of past and recent developments. Such examples illustrate specific controlling effects and working rules. Looking back at the past while looking forward to advancing the field, some essentials of sonochemical activation will be distilled.
Collapse
Affiliation(s)
- R. Fernando Martínez
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| | - Giancarlo Cravotto
- Dipartimento
di Scienza e Tecnologia del Farmaco, Universita
degli Studi di Torino, via P. Giuria 9, Torino 10125, Italy
| | - Pedro Cintas
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
17
|
Continuous Cooling Crystallization in a Coiled Flow Inverter Crystallizer Technology—Design, Characterization, and Hurdles. Processes (Basel) 2021. [DOI: 10.3390/pr9091537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Continuous small-scale production is currently of utmost interest for fine chemicals and pharmaceuticals. For this purpose, equipment and process concepts in consideration of the hurdles for solids handling are required to transfer conventional batch processing to continuous operation. Based on empirical equations, pressure loss constraints, and an expandable modular system, a coiled flow inverter (CFI) crystallizer with an inner diameter of 1.6 mm was designed. It was characterized concerning its residence time behavior, tested for operation with seed crystals or an ultrasonic seed crystal unit, and evaluated for different purging mechanisms for stable operation. The residence time behavior in the CFI corresponds to ideal plug flow behavior. Crystal growth using seed crystals was demonstrated in the CFI for two amino acids. For fewer seed crystals, higher crystal growth rates were determined, while at the same time, secondary nucleation was observed. Feasibility for the interconnection of a sonicated seeding crystal unit could be shown. However, the hurdles are also identified and discussed. Prophylactic flushing combined with a photosensor for distinguishing between solvent and suspension phase can lead to stable and resource-efficient operation. The small-scale CFI technology was investigated in detail, and the limits and opportunities of the technology are presented here.
Collapse
|
18
|
Yasui K. Multibubble Sonoluminescence from a Theoretical Perspective. Molecules 2021; 26:4624. [PMID: 34361777 PMCID: PMC8347802 DOI: 10.3390/molecules26154624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
In the present review, complexity in multibubble sonoluminescence (MBSL) is discussed. At relatively low ultrasonic frequency, a cavitation bubble is filled mostly with water vapor at relatively high acoustic amplitude which results in OH-line emission by chemiluminescence as well as emissions from weakly ionized plasma formed inside a bubble at the end of the violent bubble collapse. At relatively high ultrasonic frequency or at relatively low acoustic amplitude at relatively low ultrasonic frequency, a cavitation bubble is mostly filled with noncondensable gases such as air or argon at the end of the bubble collapse, which results in relatively high bubble temperature and light emissions from plasma formed inside a bubble. Ionization potential lowering for atoms and molecules occurs due to the extremely high density inside a bubble at the end of the violent bubble collapse, which is one of the main reasons for the plasma formation inside a bubble in addition to the high bubble temperature due to quasi-adiabatic compression of a bubble, where "quasi" means that appreciable thermal conduction takes place between the heated interior of a bubble and the surrounding liquid. Due to bubble-bubble interaction, liquid droplets enter bubbles at the bubble collapse, which results in sodium-line emission.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|
19
|
Mc Carogher K, Dong Z, Stephens DS, Leblebici ME, Mettin R, Kuhn S. Acoustic resonance and atomization for gas-liquid systems in microreactors. ULTRASONICS SONOCHEMISTRY 2021; 75:105611. [PMID: 34119738 PMCID: PMC8207318 DOI: 10.1016/j.ultsonch.2021.105611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
It is shown that a liquid slug in gas-liquid segmented flow in microchannels can act as an acoustic resonator to disperse large amounts of small liquid droplets, commonly referred to as atomization, into the gas phase. We investigate the principles of acoustic resonance within a liquid slug through experimental analysis and numerical simulation. A mechanism of atomization in the confined channels and a hypothesis based on high-speed image analysis that links acoustic resonance within a liquid slug with the observed atomization is proposed. The observed phenomenon provides a novel source of confined micro sprays and could be an avenue, amongst others, to overcome mass transfer limitations for gas-liquid processes in flow.
Collapse
Affiliation(s)
- Keiran Mc Carogher
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Zhengya Dong
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Dwayne S Stephens
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - M Enis Leblebici
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Agoralaan Building B, 3590 Diepenbeek, Belgium
| | - Robert Mettin
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
20
|
Nieves E, Vite G, Kozina A, Olguin LF. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow. ULTRASONICS SONOCHEMISTRY 2021; 74:105556. [PMID: 33915482 PMCID: PMC8093933 DOI: 10.1016/j.ultsonch.2021.105556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 05/10/2023]
Abstract
The use of ultrasound to generate mini-emulsions (50 nm to 1 μm in diameter) and nanoemulsions (mean droplet diameter < 200 nm) is of great relevance in drug delivery, particle synthesis and cosmetic and food industries. Therefore, it is desirable to develop new strategies to obtain new formulations faster and with less reagent consumption. Here, we present a polydimethylsiloxane (PDMS)-based microfluidic device that generates oil-in-water or water-in-oil mini-emulsions in continuous flow employing ultrasound as the driving force. A Langevin piezoelectric attached to the same glass slide as the microdevice provides enough power to create mini-emulsions in a single cycle and without reagents pre-homogenization. By introducing independently four different fluids into the microfluidic platform, it is possible to gradually modify the composition of oil, water and two different surfactants, to determine the most favorable formulation for minimizing droplet diameter and polydispersity, employing less than 500 µL of reagents. It was found that cavitation bubbles are the most important mechanism underlying emulsions formation in the microchannels and that degassing of the aqueous phase before its introduction to the device can be an important factor for reduction of droplet polydispersity. This idea is demonstrated by synthetizing solid polymeric particles with a narrow size distribution starting from a mini-emulsion produced by the device.
Collapse
Affiliation(s)
- Erick Nieves
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Giselle Vite
- Instituto de Química, Universidad Nacional Autónoma de México, P. O. Box 70-213, Mexico City, Mexico
| | - Anna Kozina
- Instituto de Química, Universidad Nacional Autónoma de México, P. O. Box 70-213, Mexico City, Mexico
| | - Luis F Olguin
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
21
|
Savvopoulos SV, Voutetakis SS, Kuhn S, Ipsakis D. Theoretical Feedback Control Scheme for the Ultrasound-Assisted Continuous Antisolvent Crystallization of Aspirin in a Tubular Crystallizer. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Symeon V. Savvopoulos
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Spyros S. Voutetakis
- Chemical Process and Energy Resources Institute, Centre for Research and Technology, Hellas, 57001 Thermi, Thessaloniki, Greece
| | - Simon Kuhn
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Dimitris Ipsakis
- Industrial, Energy and Environmental Systems Laboratory, School of Production Engineering and Management, Technical University of Crete, 73100 Chania, Greece
| |
Collapse
|
22
|
Xu F, Yang L, Liu Z, Chen G. Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Pappaterra M, Xu P, van der Meer W, Faria JA, Fernandez Rivas D. Cavitation intensifying bags improve ultrasonic advanced oxidation with Pd/Al 2O 3 catalyst. ULTRASONICS SONOCHEMISTRY 2021; 70:105324. [PMID: 32947211 PMCID: PMC7786540 DOI: 10.1016/j.ultsonch.2020.105324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Advanced oxidation processes can potentially eliminate organic contaminants from industrial waste streams as well as persistent pharmaceutical components in drinking water. We explore for the first time the utilization of Cavitation Intensifying Bags (CIB) in combination with Pd/Al2O3 catalyst as possible advanced oxidation technology for wastewater streams, oxidizing terephthalic acid (TA) to 2-hydroxyterephthalic acid (HTA). The detailed characterization of this novel reaction system reveals that, during sonication, the presence of surface pits of the CIB improves the reproducibility and thus the control of the sonication process, when compared to oxidation in non-pitted bags. Detailed reaction kinetics shows that in the CIB reactor the reaction order to TA is zero, which is attributed to the large excess of TA in the system. The rate of HTA formation increased ten-fold from ~0.01 μM*min-1 during sonication in the CIB, to ~0.10 μM*min-1 for CIB in the presence of the Pd/Al2O3 catalyst. This enhancement was ascribed to a combination of improved mass transport, the creation of thermal gradients, and Pd/Al2O3 catalyst near the cavitating bubbles. Further analysis of the kinetics of HTA formation on Pd/Al2O3 indicated that initially the reaction underwent through an induction period of 20 min, where the HTA concentration was ~0.3 μM. After this, the reaction rate increased reaching HTA concentrations ~6 μM after 40 min. This behavior resembled that observed during oxidation of hydrocarbons on metal catalysts, where the slow rate formation of hydroperoxides on the metal surface is followed by rapid product formation upon reaching a critical concentration. Finally, a global analysis using the Intensification Factor (IF) reveals that CIB in combination with the Pd/Al2O3 catalyst is a desirable option for the oxidation of TA when considering increased oxidation rates and costs.
Collapse
Affiliation(s)
- Maria Pappaterra
- Mesoscale Chemical Systems Group, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, and University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands; Delft University of Technology, Delft, The Netherlands
| | - Pengyu Xu
- Catalytic Processes and Materials Group, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Walter van der Meer
- Oasen Water Company, PO BOX 122, 2800 AC Gouda, The Netherlands; Membranes Science and Technology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jimmy A Faria
- Catalytic Processes and Materials Group, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, and University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
24
|
Savvopoulos SV, Hussain MN, Van Gerven T, Kuhn S. Theoretical Study of the Scalability of a Sonicated Continuous Crystallizer for the Production of Aspirin. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Symeon V. Savvopoulos
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mohammed N. Hussain
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Gerven
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
25
|
Boffito DC, Fernandez Rivas D. Process intensification connects scales and disciplines towards sustainability. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daria C. Boffito
- Chemical Engineering Department Canada Research Chair in Intensified Mechano‐Chemical Processes for Sustainable Biomass Conversion, Polytechnique Montréal Montréal Québec Canada
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and Technology University of Twente Enschede The Netherlands
| |
Collapse
|
26
|
Dong B, Qian H, Xue C, Yang X, Li G, Chen GZ. Controllable synthesis of hierarchical micro/nano structured FePO4 particles under synergistic effects of ultrasound irradiation and impinging stream. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Seaberg J, Kaabipour S, Hemmati S, Ramsey JD. A rapid millifluidic synthesis of tunable polymer-protein nanoparticles. Eur J Pharm Biopharm 2020; 154:127-135. [DOI: 10.1016/j.ejpb.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
|
28
|
Delacour C, Stephens DS, Lutz C, Mettin R, Kuhn S. Design and Characterization of a Scaled-up Ultrasonic Flow Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Claire Delacour
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Dwayne Savio Stephens
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Cécile Lutz
- Service Adsorption, ARKEMA, Groupement de Recherche de Lacq, 64170 Lacq, France
| | - Robert Mettin
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
29
|
Affiliation(s)
- Romain Morodo
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Jean‐Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| |
Collapse
|
30
|
|
31
|
Dong Z, Delacour C, Mc Carogher K, Udepurkar AP, Kuhn S. Continuous Ultrasonic Reactors: Design, Mechanism and Application. MATERIALS 2020; 13:ma13020344. [PMID: 31940863 PMCID: PMC7014228 DOI: 10.3390/ma13020344] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Ultrasonic small scale flow reactors have found increasing popularity among researchers as they serve as a very useful platform for studying and controlling ultrasound mechanisms and effects. This has led to the use of these reactors for not only research purposes, but also various applications in biological, pharmaceutical and chemical processes mostly on laboratory and, in some cases, pilot scale. This review summarizes the state of the art of ultrasonic flow reactors and provides a guideline towards their design, characterization and application. Particular examples for ultrasound enhanced multiphase processes, spanning from immiscible fluid-fluid to fluid-solid systems, are provided. To conclude, challenges such as reactor efficiency and scalability are addressed.
Collapse
|
32
|
Dong Z, Udepurkar AP, Kuhn S. Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. ULTRASONICS SONOCHEMISTRY 2020; 60:104800. [PMID: 31563796 DOI: 10.1016/j.ultsonch.2019.104800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound (US) is a promising method to address clogging and mixing issues in microreactors (MR). So far, low frequency US (LFUS), pulsed LFUS and high frequency US (HFUS) have been used independently in MR for particle synthesis to achieve narrow particle size distributions (PSD). In this work, we critically assess the advantages and disadvantages of each US application method for the case study of calcium carbonate synthesis in an ultrasonic microreactor (USMR) setup operating at both LFUS (61.7 kHz, 8 W) and HFUS (1.24 MHz, 1.6 W). Furthermore, we have developed a novel approach to switch between LFUS and HFUS in an alternating manner, allowing us to quantify the synergistic effect of performing particle synthesis under two different US conditions. The reactor was fabricated by gluing a piezoelectric plate transducer to a silicon microfluidic chip. The results show that independently applying HFUS and LFUS produces a narrower PSD compared to silent conditions. However, at lower flow rates HFUS leads to agglomerate formation, while the reaction conversion is not enhanced due to weak mixing effects. LFUS on the other hand eliminates particle agglomerates and increases the conversion due to the strong cavitation effect. However, the required larger power input leads to a steep temperature rise in the reactor and the risk of reactor damage for long-term operation. While pulsed LFUS reduces the temperature rise, this application mode leads again to the formation of particle agglomerates, especially at low LFUS percentage. The proposed application mode of switching between LFUS and HFUS is proven to combine the advantages of both LFUS and HFUS, and results in particles with a unimodal narrow PSD (one order of magnitude reduction in the average size and span compared to silent conditions) and negligible rise of the reactor temperature.
Collapse
Affiliation(s)
- Zhengya Dong
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
33
|
Rashmi Pradhan S, Colmenares-Quintero RF, Colmenares Quintero JC. Designing Microflowreactors for Photocatalysis Using Sonochemistry: A Systematic Review Article. Molecules 2019; 24:E3315. [PMID: 31547232 PMCID: PMC6767219 DOI: 10.3390/molecules24183315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 11/25/2022] Open
Abstract
Use of sonication for designing and fabricating reactors, especially the deposition of catalysts inside a microreactor, is a modern approach. There are many reports that prove that a microreactor is a better setup compared with batch reactors for carrying out catalytic reactions. Microreactors have better energy efficiency, reaction rate, safety, a much finer degree of process control, better molecular diffusion, and heat-transfer properties compared with the conventional batch reactor. The use of microreactors for photocatalytic reactions is also being considered to be the appropriate reactor configuration because of its improved irradiation profile, better light penetration through the entire reactor depth, and higher spatial illumination homogeneity. Ultrasound has been used efficiently for the synthesis of materials, degradation of organic compounds, and fuel production, among other applications. The recent increase in energy demands, as well as the stringent environmental stress due to pollution, have resulted in the need to develop green chemistry-based processes to generate and remove contaminants in a more environmentally friendly and cost-effective manner. It is possible to carry out the synthesis and deposition of catalysts inside the reactor using the ultrasound-promoted method in the microfluidic system. In addition, the synergistic effect generated by photocatalysis and sonochemistry in a microreactor can be used for the production of different chemicals, which have high value in the pharmaceutical and chemical industries. The current review highlights the use of both photocatalysis and sonochemistry for developing microreactors and their applications.
Collapse
Affiliation(s)
- Swaraj Rashmi Pradhan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
34
|
Navarro-Brull FJ, Teixeira AR, Giri G, Gómez R. Enabling low power acoustics for capillary sonoreactors. ULTRASONICS SONOCHEMISTRY 2019; 56:105-113. [PMID: 31101244 DOI: 10.1016/j.ultsonch.2019.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Capillary reactors demonstrate outstanding potential for on-demand flow chemistry applications. However, non-uniform distribution of multiphase flows, poor solid handling, and the risk of clogging limit their usability for continuous manufacturing. While ultrasonic irradiation has been traditionally applied to address some of these limitations, their acoustic efficiency, uniformity and scalability to larger reactor systems are often disregarded. In this work, high-speed microscopic imaging reveals how cavitation-free ultrasound can unclog and prevent the blockage of capillary reactors. Modeling techniques are then adapted from traditional acoustic designs and applied to simulate and prototype sonoreactors with wider and more uniform sonication areas. Blade-, block- and cylindrical shape sonotrodes are optimized to accommodate longer capillary lengths in sonoreactors resonating at 28 kHz. Finally, a novel helicoidal capillary sonoreactor is proposed to potentially deal with a high concentration of solid particles in miniaturized flow chemistry. The acoustic designs and first principle rationalization presented here offer a transformative step forward in the scale-up of efficient capillary sonoreactors.
Collapse
Affiliation(s)
- Francisco J Navarro-Brull
- Institut Universitari d'Electroquímica i Departament de Química Física, Universitat d'Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Andrew R Teixeira
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, United States
| | - Roberto Gómez
- Institut Universitari d'Electroquímica i Departament de Química Física, Universitat d'Alacant, Apartat 99, E-03080 Alicante, Spain.
| |
Collapse
|
35
|
Borsato VM, Jorge LMM, Mathias AL, Jorge RMM. Ultrasound assisted hydration improves the quality of the malt barley. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Viviani M. Borsato
- Chemical Engineering Department, Graduate Program in Food EngineeringFederal University of Paraná, Laboratory of Process Engineering in Particulate Systems Curitiba Paraná Brazil
| | - Luiz M. M. Jorge
- Chemical Engineering Department, Graduate Program in Chemical EngineeringState University of Maringá Maringá Paraná Brazil
| | - Alvaro L. Mathias
- Chemical Engineering Department, Graduate Program in Food EngineeringFederal University of Paraná, Laboratory of Process Engineering in Particulate Systems Curitiba Paraná Brazil
| | - Regina M. M. Jorge
- Chemical Engineering Department, Graduate Program in Food EngineeringFederal University of Paraná, Laboratory of Process Engineering in Particulate Systems Curitiba Paraná Brazil
| |
Collapse
|
36
|
Hain N, Handschuh-Wang S, Wesner D, Druzhinin SI, Schönherr H. Multimodal microscopy-based identification of surface nanobubbles. J Colloid Interface Sci 2019; 547:162-170. [PMID: 30952078 DOI: 10.1016/j.jcis.2019.03.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
HYPOTHESIS Surface nanobubbles, which were controversially discussed in the literature, promise a number of outstanding applications, and their presence may hamper nanoscale processes at solid-aqueous interfaces. A most crucial and yet unsolved question is the rapid and conclusive identification of gas-filled (surface) nanobubbles. We hypothesize that surface nanobubbles and oil nanodroplets can be conclusively differentiated in co-localization experiments with atomic force microscopy (AFM) and time-resolved fluorescence microscopy by localizing tracer fluorophores and analyzing their fluorescence lifetimes. EXPERIMENTS Combined AFM and fluorescence lifetime imaging microscopy (FLIM) were conducted to localize the various interfaces labelled by the reporter dye rhodamine 6G (Rh6G). The dependence of the fluorescence lifetime of Rh6G on its local environment was determined for air/water, water/glass and polysiloxane/water interfaces under different conditions. FINDINGS In in situ co-localization experiments, surface nanobubbles labeled with Rh6G were probed by AFM with high spatial resolution and were differentiated from polysiloxane droplets as well as contamination originating from lubricant-coated syringe needles owing to the characteristic short fluorescence lifetime of Rh6G at the gas/water interface observed in FLIM. In particular, this approach lends itself to conclusively identify and rapidly differentiate these gas-filled entities from adsorbed contamination, such as siloxane-based oil nanodroplets.
Collapse
Affiliation(s)
- Nicole Hain
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Stephan Handschuh-Wang
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Daniel Wesner
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Sergey I Druzhinin
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| |
Collapse
|
37
|
Jiang M, Braatz RD. Designs of continuous-flow pharmaceutical crystallizers: developments and practice. CrystEngComm 2019. [DOI: 10.1039/c8ce00042e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review of recent research advances in continuous-flow crystallization includes a five-step general design procedure, generally applicable process intensification strategies, and practical insights.
Collapse
Affiliation(s)
- Mo Jiang
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemical and Life Science Engineering
| | - Richard D. Braatz
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
38
|
Shahzad K, Aeken WV, Mottaghi M, Kamyab VK, Kuhn S. Aggregation and clogging phenomena of rigid microparticles in microfluidics: Comparison of a discrete element method (DEM) and CFD-DEM coupling method. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:104. [PMID: 30393471 PMCID: PMC6190999 DOI: 10.1007/s10404-018-2124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 06/01/2023]
Abstract
We developed a numerical tool to investigate the phenomena of aggregation and clogging of rigid microparticles suspended in a Newtonian fluid transported through a straight microchannel. In a first step, we implement a time-dependent one-way coupling Discrete Element Method (DEM) technique to simulate the movement and effect of adhesion on rigid microparticles in two- and three-dimensional computational domains. The Johnson-Kendall-Roberts (JKR) theory of adhesion is applied to investigate the contact mechanics of particle-particle and particle-wall interactions. Using the one-way coupled solver, the agglomeration, aggregation and deposition behavior of the microparticles is studied by varying the Reynolds number and the particle adhesion. In a second step, we apply a two-way coupling CFD-DEM approach, which solves the equation of motion for each particle, and transfers the force field corresponding to particle-fluid interactions to the CFD toolbox OpenFOAM. Results for the one-way (DEM) and two-way (CFD-DEM) coupling techniques are compared in terms of aggregate size, aggregate percentages, spatial and temporal evaluation of aggregates in 2D and 3D. We conclude that two-way coupling is the more realistic approach, which can accurately capture the particle-fluid dynamics in microfluidic applications.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wouter Van Aeken
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Milad Mottaghi
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Vahid Kazemi Kamyab
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
39
|
Grützner T, Ziegenbalg D, Güttel R. Process Intensification - An Unbroken Trend in Chemical Engineering. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thomas Grützner
- Universität Ulm; Institut für Chemieingenieurwesen; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Dirk Ziegenbalg
- Universität Ulm; Institut für Chemieingenieurwesen; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Robert Güttel
- Universität Ulm; Institut für Chemieingenieurwesen; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
40
|
Zhao S, Yao C, Dong Z, Liu Y, Chen G, Yuan Q. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.04.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Hardwick T, Ahmed N. Advances in electro- and sono-microreactors for chemical synthesis. RSC Adv 2018; 8:22233-22249. [PMID: 35541743 PMCID: PMC9081238 DOI: 10.1039/c8ra03406k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
The anatomy of electrochemical flow microreactors is important to safely perform chemical reactions in order to obtain pure and high yielding substances in a controlled and precise way that excludes the use of supporting electrolytes. Flow microreactors are advantageous in handling unstable intermediates compared to batch techniques and have efficient heat/mass transfer. Electrode nature (cathode and anode) and their available exposed surface area to the reaction mixture, parameters of the spacer, flow rate and direction greatly affects the efficiency of the electrochemical reactor. Solid formation during reactions may result in a blockage and consequently decrease the overall yield, thus limiting the use of microreactors in the field of electrosynthesis. This problem could certainly be overcome by application of ultrasound to break the solids for consistent flow. In this review, we discuss in detail the aforementioned issues, the advances in microreactor technology for chemical synthesis, with possible application of sonochemistry to deal with solid formations. Various examples of flow methods for electrosynthesis through microreactors have been explained in this review, which would definitely help to meet future demands for efficient synthesis and production of various pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Tomas Hardwick
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Nisar Ahmed
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
42
|
Continuous flow multistep synthesis of α-functionalized esters via lithium enolate intermediates. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Gomes F, Thakkar H, Lähde A, Verhaagen B, Pandit AB, Fernández Rivas D. Is reproducibility inside the bag? Special issue fundamentals and applications of sonochemistry ESS-15. ULTRASONICS SONOCHEMISTRY 2018; 40:163-174. [PMID: 28377103 DOI: 10.1016/j.ultsonch.2017.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
In this paper we report our most recent attempts to tackle a notorious problem across several scientific activities from the ultrasonics sonochemical perspective: reproducibility of results. We provide experimental results carried out in three different laboratories, using the same ingredients: ultrasound and a novel cavitation reactor bag. The main difference between the experiments is that they are aimed at different applications, KI liberation and MB degradation; and exfoliation of two nanomaterials: graphene and molybdenum disulfide. Iodine liberation rates and methylene blue degradation were higher for the cases where a cavitation intensification bag was used. Similarly, improved dispersion and more polydisperse exfoliated layers of nanomaterials were observed in the intensified bags compared to plain ones. The reproducibility of these new experiments is compared to previous experimental results under similar conditions. Our main conclusion is that despite knowing and understanding most physicochemical phenomena related to the origins and effects of cavitation, there is still a long path towards reproducibility, both in one laboratory, and compared across different laboratories. As emphasized in the sonochemical literature, the latter clearly illustrates the complexity of cavitation as nonlinear phenomenon, whose quantitative estimation represents a challenging aspect. We also provide a list of procedural steps that can help improving reproducibility and scale-up efforts.
Collapse
Affiliation(s)
- Filipe Gomes
- University Nova of Lisbon, Caparica 2829-516, Portugal
| | - Harsh Thakkar
- Institute of Chemical Technology Matunga, Mumbai 400019, India
| | - Anna Lähde
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | - David Fernández Rivas
- Mesoscale Chemical Systems Group, University of Twente, 7500AE Enschede, The Netherlands; BuBclean, 7621VK Borne, The Netherlands.
| |
Collapse
|
44
|
Navarro-Brull FJ, Teixeira AR, Zhang J, Gómez R, Jensen KF. Reduction of Dispersion in Ultrasonically-Enhanced Micropacked Beds. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francisco J. Navarro-Brull
- Institut
Universitari d’Electroquímica i Departament de Química
Física, Universitat d’Alacant, Apartat 99 E-03080, Alicante, Spain
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew R. Teixeira
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Jisong Zhang
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Roberto Gómez
- Institut
Universitari d’Electroquímica i Departament de Química
Física, Universitat d’Alacant, Apartat 99 E-03080, Alicante, Spain
| | - Klavs F. Jensen
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Zhao S, Dong Z, Yao C, Wen Z, Chen G, Yuan Q. Liquid-liquid two-phase flow in ultrasonic microreactors: Cavitation, emulsification, and mass transfer enhancement. AIChE J 2017. [DOI: 10.1002/aic.16010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shuainan Zhao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhengya Dong
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Chaoqun Yao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Zhenghui Wen
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Guangwen Chen
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Quan Yuan
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
46
|
Temperature controlled interval contact design for ultrasound assisted liquid–liquid extraction. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
van Zwieten R, Verhaagen B, Schroën K, Fernández Rivas D. Emulsification in novel ultrasonic cavitation intensifying bag reactors. ULTRASONICS SONOCHEMISTRY 2017; 36:446-453. [PMID: 28069232 DOI: 10.1016/j.ultsonch.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 05/25/2023]
Abstract
Cavitation Intensifying Bags (CIBs), a novel reactor type for use with ultrasound, have been recently proposed as a scaled-up microreactor with increased energy efficiencies. We now report on the use of the CIBs for the preparation of emulsions out of hexadecane and an SDS aqueous solution. The CIBs have been designed in such a way that cavitation effects created by the ultrasound are increased. It was found that the CIBs were 60 times more effective in breaking up droplets than conventional bags, therewith showing a proof of principle for the CIBs for the preparation of emulsions. Droplets of 0.2μm could easily be obtained. To our knowledge, no other technology results in the same droplet size more easily in terms of energy usage. Without depending on the wettability changes of the membrane, the CIBs score similarly as membrane emulsification, which is the most energy friendly emulsification method known in literature. Out of the frequencies used, 37kHz was found to require the lowest treatment time. The treatment time decreased at higher temperatures. While the energy usage in the current non-optimised experiments was on the order of 107-109J/m3, which is comparable to that of a high-pressure homogenizer, we expect that the use of CIBs for the preparation of fine emulsions can still be improved considerably. The process presented can be applied for other uses such as water treatment, synthesis of nanomaterials and food processing.
Collapse
Affiliation(s)
- Ralph van Zwieten
- Food Process Engineering Group, Wageningen University, 6700AA Wageningen, The Netherlands
| | | | - Karin Schroën
- Food Process Engineering Group, Wageningen University, 6700AA Wageningen, The Netherlands.
| | - David Fernández Rivas
- BuBclean, 7622PH Borne, The Netherlands; Mesoscale Chemical Systems Group, University of Twente, 7500AE Enschede, The Netherlands.
| |
Collapse
|
48
|
Zeibi Shirejini S, Mohammadi A. Halogen–Lithium Exchange Reaction Using an Integrated Glass Microfluidic Device: An Optimized Synthetic Approach. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.6b00307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Aliasghar Mohammadi
- Department of Chemical and
Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|