1
|
Wang X, Wei L, Wu J, Zhu A, Zhang Q, Liu Q. Supported core-shell catalysts for enhancing ethanol electrooxidation by C1 pathway. J Colloid Interface Sci 2025; 694:137719. [PMID: 40319719 DOI: 10.1016/j.jcis.2025.137719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
The direct ethanol fuel cell (DEFC) are considered a promising clean energy conversion technology due to their high energy density and low emissions. However, the anodic ethanol oxidation reaction (EOR) follows a dual-pathway mechanism (C1 pathway and C2 pathway) with low efficiency, which limits the performance and industrial application of DEFC. A multi-strategy approach to balance activity, stability, and C1 pathway selectivity in this work was adopted in order to design high-performance core-shell supported palladium (Pd) based catalysts. Au1@Pdx/TiO2-GO and Au1@Pd1.5Sn0.05/TiO2-NGO of core-shell supported catalyst were successfully prepared using the sol-gel method, which show high performance in the EOR. The peak mass current density of the Au1@Pd1.5/TiO2-GO and Au1@Pd1.5Sn0.05/TiO2-NGO catalyst is 4914.8 mA mgPd-1 and 5038.1 mA mgPd-1, which was 6.0 and 6.2 times of the Pd/C(JM) catalyst (816.4 mA mgPd-1), respectively. At the same time, their residual current density after 5000 s of stability testing is 1757.9 mA mgPd-1 and 2160.5 mA mgPd-1, which was 27.3 and 33.5 times of the Pd/C(JM) catalyst (64.5 mA mgPd-1), respectively. The synergistic effect between the core-shell structure and the composite support effectively enhanced the C1 pathway selectivity, regenerative ability, and resistance to CO poisoning of the catalyst in the EOR.
Collapse
Affiliation(s)
- Xiaosen Wang
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Longbo Wei
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Jianyang Wu
- Department of Physics, Jiujiang Research Institute, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Aimei Zhu
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qiugen Zhang
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qinglin Liu
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
2
|
Baek S, Gutierrez-Portocarrero S, Gerulskis R, Minteer SD, German SR, White HS. Detection of CO 2 Locally Generated by Formate Dehydrogenase Using Carbonate Ion-Selective Micropipette Electrodes. ACS NANO 2025; 19:13240-13249. [PMID: 40130603 DOI: 10.1021/acsnano.5c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Many technologies involve immobilizing catalysts such as enzymes on surfaces, and the catalytic activities or functional efficiencies of these surface-bound catalysts can vary depending on orientations, localized binding sites, active sites, and intrinsic molecular nature. Accurate and rapid quantification of reaction products from surface-immobilized catalysts is crucial for understanding the selectivity, mechanisms, and reaction dynamics of catalytic systems and for revealing heterogeneous catalytic activities and reaction sites for applications such as biosensors and energy conversion/generation systems. Here, we demonstrate the feasibility of localized enzymatic activity measurements using microscale carbon dioxide (CO2)-sensitive ion-selective electrode (ISE) pipettes (0.5-2.5 μm tip radius) as a probe, with in situ potentiometric scanning electrochemical microscopy (SECM). We develop carbonate (CO32-) ionophore-incorporated ISEs exhibiting a Nernstian response (26.7 mV/decade) with a detection limit of 1.72 μM and explore surface-immobilized formate dehydrogenase (FDH) activity by detecting CO2 generated by the enzymatic reaction via potentiometric measurements. SECM is used for real-time spatial/temporal investigation of FDH immobilized onto the surface at a micrometer-scale resolution. Moreover, unlike voltammetric techniques based on faradaic reactions, the potentiometric measurements using ISEs allow highly sensitive and selective detection of CO32-, rendering efficient quantification of CO2 without interference from solution composition changes arising from faradaic processes. The total amount of CO2 generated at an FDH-immobilized Au ultramicroelectrode is quantified as a function of coenzyme, i.e., NAD+, and substrate, i.e., formate, concentrations both in constant tip-sample distance mode and variable depth mode. Finally, we demonstrate the use of the ISE to quantify CO2 levels in blood serum.
Collapse
Affiliation(s)
- Seol Baek
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | | | - Rokas Gerulskis
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sean R German
- Electronic BioSciences, 421 Wakara Way, Suite 328, Salt Lake City, Utah 84108, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Martínez-Orozco E, Nápoles-Armenta J, Gortáres-Moroyoqui P, Santiago-Olivares N, Ulloa-Mercado RG, De la Mora-Orozco C, Leyva-Soto LA, Alvarez-Valencia LH, Meza-Escalante ER, Rentería-Mexia AM. Treatment of tequila distillation volatile residues by electrochemical oxidation using titanium electrodes. ENVIRONMENTAL TECHNOLOGY 2024; 45:3048-3061. [PMID: 37102406 DOI: 10.1080/09593330.2023.2206527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
ABSTRACTTequila production occurs in Mexico's designated area of origin, principally in the Jalisco State. Its residues are a challenge in treatment and tracking due to a lack of technology, non-economic treatments available, low environmental consciousness and incipient control from authorities. In 2021, average production was close to 1.5 million tequila litres per day with an estimated residue yield of 10-12 litres of stillage (tequila vinasses) per tequila litre produced, including volatile fractions. This research aims to reduce organic matter by electrooxidation (EO) from 5 distillation volatile residual effluents (two-stage still distillation) from three tequila distilleries, first and second-stage heads and heads and tails and second-stage non-evaporated fraction. Round 3 mm titanium (grade-1) electrodes (one anode and one cathode) were used, with fixed voltage to a value of 30 VDC at 0, 3, 6, 9 and 12 h with 75 experiments. Gas chromatography was used to analyse methanol, ethanol, acetaldehyde, ethyl acetate, n-propanol, sec-butanol, iso-butanol, n-butanol, iso-amyl, n-amyl, and ethyl lactate content. Treatment shows positive results, reducing organic matter content in all effluents in a Chemical Oxygen Demand COD range of 580-1880 mg/L.h, particularly useful in the second-stage non-evaporated fraction for water recovery.HIGHLIGHTSResidual effluent treatment is beneficial to environmental and resource sustainability.Process without adding materials achieving cleaner treated effluents.Process aimed as the final step to recover water.This process could help the Tequila industry to reach a higher sustainability level by reducing water usage and untreated residues.
Collapse
Affiliation(s)
- Edgardo Martínez-Orozco
- Dirección de Recursos Naturales, Instituto Tecnológico de Sonora, Ciudad Obregón, México
- Departamento de Ingeniería Ambiental, Tecnológico Nacional de México, Instituto Tecnológico José Mario Molina Pasquel y Henríquez Unidad Académica Arandas, Arandas, México
| | - Juan Nápoles-Armenta
- Cátedras CONACYT - Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo, México
| | | | - Norberto Santiago-Olivares
- Departamento de Ingeniería Ambiental, Tecnológico Nacional de México, Instituto Tecnológico José Mario Molina Pasquel y Henríquez Unidad Académica Arandas, Arandas, México
| | | | - Celia De la Mora-Orozco
- Departamento de Ingeniería Ambiental, Tecnológico Nacional de México, Instituto Tecnológico José Mario Molina Pasquel y Henríquez Unidad Académica Arandas, Arandas, México
- Centro Experimental Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán, México
| | - Luis Alonso Leyva-Soto
- Cátedras CONACYT - Dirección de Recursos Naturales, Instituto Tecnológico de Sonora, Ciudad Obregón, México
| | | | | | | |
Collapse
|
4
|
Yu R, Shao R, Ning F, Yu Y, Zhang J, Ma XY, Zhu R, Li M, Lai J, Zhao Y, Zeng L, Zhang J, Xia Z. Electronic and Geometric Effects Endow PtRh Jagged Nanowires with Superior Ethanol Oxidation Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305817. [PMID: 37814379 DOI: 10.1002/smll.202305817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Complete ethanol oxidation reaction (EOR) in C1 pathway with 12 transferred electrons is highly desirable yet challenging in direct ethanol fuel cells. Herein, PtRh jagged nanowires synthesized via a simple wet-chemical approach exhibit exceptional EOR mass activity of 1.63 A mgPt-1 and specific activity of 4.07 mA cm-2 , 3.62-fold and 4.28-folds increments relative to Pt/C, respectively. High proportions of 69.33% and 73.42% of initial activity are also retained after chronoamperometric test (80 000 s) and 1500 consecutive potential cycles, respectively. More importantly, it is found that PtRh jagged nanowires possess superb anti-CO poisoning capability. Combining X-ray absorption spectroscopy, X-ray photoelectron spectroscopy as well as density functional theory calculations unveil that the remarkable catalytic activity and CO tolerance stem from both the Rh-induced electronic effect and geometric effect (manifested by shortened Pt─Pt bond length and shrinkage of lattice constants), which facilitates EOR catalysis in C1 pathway and improves reaction kinetics by reducing energy barriers of rate-determining steps (such as *CO → *COOH). The C1 pathway efficiency of PtRh jagged nanowires is further verified by the high intensity of CO2 relative to CH3 COOH/CH3 CHO in infrared reflection absorption spectroscopy.
Collapse
Affiliation(s)
- Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Fanghua Ning
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yaodong Yu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Jing Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xian-Yin Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Rongying Zhu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jianping Lai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Yufeng Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Minamihara H, Kusada K, Yamamoto T, Toriyama T, Murakami Y, Matsumura S, Kumara LSR, Sakata O, Kawaguchi S, Kubota Y, Seo O, Yasuno S, Kitagawa H. Continuous-Flow Chemical Synthesis for Sub-2 nm Ultra-Multielement Alloy Nanoparticles Consisting of Group IV to XV Elements. J Am Chem Soc 2023; 145:17136-17142. [PMID: 37471524 DOI: 10.1021/jacs.3c03713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction.
Collapse
Affiliation(s)
- Hiroki Minamihara
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yasukazu Murakami
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Syo Matsumura
- National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume-shi, Fukuoka 830-8555, Japan
| | - Loku Singgappulige Rosantha Kumara
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198, Hyogo, Japan
| | - Osami Sakata
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198, Hyogo, Japan
| | - Shogo Kawaguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198, Hyogo, Japan
| | - Yoshiki Kubota
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Okkyun Seo
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198, Hyogo, Japan
| | - Satoshi Yasuno
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198, Hyogo, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Wei Y, Mao Z, Ma XY, Zhan C, Cai WB. Plasmon-Enhanced C-C Bond Cleavage toward Efficient Ethanol Electrooxidation. J Phys Chem Lett 2022; 13:11288-11294. [PMID: 36449387 DOI: 10.1021/acs.jpclett.2c03292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ethanol, as a sustainable biomass fuel, is endowed with the merits of theoretically high energy density and environmental friendliness yet suffers from sluggish kinetics and low selectivity toward the desired complete electrooxidation (C1 pathway). Here, the localized surface plasmon resonance (LSPR) effect is explored as a manipulating knob to boost electrocatalytic ethanol oxidation reaction in alkaline media under ambient conditions by appropriate visible light. Under illumination, Au@Pt nanoparticles with plasmonic core and active shell exhibit concurrently higher activity (from 2.30 to 4.05 A mgPt-1 at 0.8 V vs RHE) and C1 selectivity (from 9 to 38% at 0.8 V). In situ attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) provides a molecular level insight into the LSPR promoted C-C bond cleavage and the subsequent CO oxidation. This work not only extends the methodology hyphenating plasmonic electrocatalysis and in situ surface IR spectroscopy but also presents a promising approach for tuning complex reaction pathways.
Collapse
Affiliation(s)
- Yan Wei
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zijie Mao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
High-selective and effective carbon nanotubes supported ultrasmall PtPdRh electrocatalysts for ethanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Yun Q, Xu J, Wei T, Ruan Q, Zhu X, Kan C. Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation. NANOSCALE 2022; 14:736-743. [PMID: 34939638 DOI: 10.1039/d1nr05987d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Au-Pd hollow nanostructures have attracted a lot of attention because of their excellent ethanol electrooxidation performance. Herein, we report a facile preparation of Au nanoframe@Pd array electrocatalysts in the presence of cetylpyridinium chloride. The reduced Pd atoms were directed to mainly deposit on the surface of the Au nanoframes in the form of rods, leading to the formation of Au nanoframe@Pd arrays with a super-large specific surface area. The red shift and damping of the plasmon peak were ascribed to the deposition of the Pd arrays on the surface of the Au nanoframes and nanobipyramids, which was verified by electrodynamic simulations. Surfactants, temperature and reaction time determine the growth process and thereby the architecture of the obtained Au-Pd hollow nanostructures. Compared with the Au nanoframe@Pd nanostructures and Au nanobipyramid@Pd arrays, the Au nanoframe@Pd arrays exhibit an enhanced electrocatalytic performance towards ethanol electrooxidation due to an abundance of catalytic active sites. The Au NF@Pd arrays display 4.1 times higher specific activity and 13.7 times higher mass activity than the commercial Pd/C electrocatalyst. Moreover, the nanostructure shows improved stability towards the ethanol oxidation reaction. This study enriches the manufacturing technology to increase the active sites of noble metal nanocatalysts and promotes the development of direct ethanol fuel cells.
Collapse
Affiliation(s)
- Qinru Yun
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Tingcha Wei
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| |
Collapse
|
9
|
Sheng T, Wu HY, Lin X, Lin WF. Insights into reaction mechanisms of ethanol electrooxidation at the Pt/Au(111) interfaces using density functional theory. Phys Chem Chem Phys 2022; 24:27277-27288. [DOI: 10.1039/d2cp03186h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding ethanol electrooxidation reaction kinetics is fundamental to the development of direct ethanol fuel cells.
Collapse
Affiliation(s)
- Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Han-Yue Wu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Xiao Lin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Wen-Feng Lin
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
10
|
High-index faceted Pt-Ru alloy concave nanocubes with enhancing ethanol and CO electro-oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ryu J, Bregante DT, Howland WC, Bisbey RP, Kaminsky CJ, Surendranath Y. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat Catal 2021. [DOI: 10.1038/s41929-021-00666-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Chen Z, Yu B, Cao J, Wen X, Luo M, Xing S, Chen D, Feng C, Huang G, Jin Y. High-performance Pd nanocatalysts based on the novel N-doped Ti3C2 support for ethanol electrooxidation in alkaline media. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Yuan Y, Yang Z, Lai W, Gao L, Li M, Zhang J, Huang H. Intermetallic Compounds: Liquid-Phase Synthesis and Electrocatalytic Applications. Chemistry 2021; 27:16564-16580. [PMID: 34428332 DOI: 10.1002/chem.202102500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Characterized by long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure, intermetallics have attracted increasing attention in the area of chemical synthesis and catalytic applications. Liquid-phase synthesis of intermetallics has arisen as the promising methodology due to its precise control over size, shape, and resistance toward sintering compared with the traditional metallurgy. This short review tends to provide perspectives on the liquid-phase synthesis of intermetallics in terms of both thermodynamics and methodology, as well as its applications in various catalytic reactions. Specifically, basic thermodynamics and kinetics in the synthesis of intermetallics will be first discussed, followed by discussing the main factors that will affect the formation of intermetallics during synthesis. The application of intermetallics in electrocatalysis will be demonstrated case by case at last. We conclude the review with perspectives on the future developments with respect to both synthesis and catalytic applications.
Collapse
Affiliation(s)
- Yuliang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhilong Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiawei Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
14
|
Fang Y, Cao D, Shi Y, Guo S, Wang Q, Zhang G, Cui P, Cheng S. Highly Porous Pt 2Ir Alloy Nanocrystals as a Superior Catalyst with High-Efficiency C-C Bond Cleavage for Ethanol Electrooxidation. J Phys Chem Lett 2021; 12:6773-6780. [PMID: 34269586 DOI: 10.1021/acs.jpclett.1c01796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving high catalytic performance with high CO2 selectivity is critical for commercialization of direct ethanol fuel cells. Here, we report carbon-supported highly porous Pt2Ir alloy nanocrystals (p-Pt2Ir/C) for an ethanol oxidation reaction (EOR) that displays nearly 7.2-fold enhancement in mass activity and promotes antipoisoning ability and durability for the EOR as compared with the commercial Pt/C-JM. Moreover, the catalyst exhibits high CO2 selectivity, 3.4-fold at 0.65 V (vs. SCE) and 4.1-fold at 0.75 V (vs. SCE) higher as compared with the carbon-supported porous Pt nanocrystals (p-Pt/C). The highly porous structure is composed of interconnected one-dimensional (1D) rough branches with an average diameter of only 1.9 nm, largely promoting Pt utilization efficiency and accelerating mass transfer. The 1D rough branch surface exposed many atomic steps/corners endowed with abundant high activity sites. Alloying with Ir can significantly improve the antipoisoning ability, durability, and C-C bond cleavage ability, thereby evidently enhancing its EOR performance.
Collapse
Affiliation(s)
- Yan Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Dongjie Cao
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Yan Shi
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Shiyu Guo
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Sheng Cheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| |
Collapse
|
15
|
Shi Y, Liao F, Zhu W, Shi H, Yin K, Shao M. Carbon Dots Promote the Performance of Anodized Nickel Passivation Film on Ethanol Oxidation by Enhancing Oxidation of the Intermediate
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yandi Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Huixian Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Kui Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
16
|
El Attar A, Oularbi L, Chemchoub S, El Rhazi M. Effect of electrochemical activation on the performance and stability of hybrid (PPy/Cu2O nanodendrites) for efficient ethanol oxidation in alkaline medium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Timoshenko J, Roldan Cuenya B. In Situ/ Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chem Rev 2021; 121:882-961. [PMID: 32986414 PMCID: PMC7844833 DOI: 10.1021/acs.chemrev.0c00396] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/18/2022]
Abstract
During the last decades, X-ray absorption spectroscopy (XAS) has become an indispensable method for probing the structure and composition of heterogeneous catalysts, revealing the nature of the active sites and establishing links between structural motifs in a catalyst, local electronic structure, and catalytic properties. Here we discuss the fundamental principles of the XAS method and describe the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Recent usages of XAS in the field of heterogeneous catalysis, with emphasis on examples concerning electrocatalysis, will be presented. The latter is a rapidly developing field with immense industrial applications but also unique challenges in terms of the experimental characterization restrictions and advanced modeling approaches required. This review will highlight the new insight that can be gained with XAS on complex real-world electrocatalysts including their working mechanisms and the dynamic processes taking place in the course of a chemical reaction. More specifically, we will discuss applications of in situ and operando XAS to probe the catalyst's interactions with the environment (support, electrolyte, ligands, adsorbates, reaction products, and intermediates) and its structural, chemical, and electronic transformations as it adapts to the reaction conditions.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
18
|
Abu Sayeed M, Woods C, Love J, O'Mullane AP. Electrochemical Synthesis of a Multipurpose Pt−Ni Catalyst for Renewable Energy‐Related Electrocatalytic Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202001278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Md Abu Sayeed
- School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
- Centre for Clean Energy Technologies and Practices Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
| | - Charlotte Woods
- School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
| | - Jonathan Love
- School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
- Centre for Clean Energy Technologies and Practices Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
| | - Anthony P. O'Mullane
- School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
- Centre for Clean Energy Technologies and Practices Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
| |
Collapse
|
19
|
Ethanol Electrooxidation at Platinum-Rare Earth (RE = Ce, Sm, Ho, Dy) Binary Alloys. ENERGIES 2020. [DOI: 10.3390/en13071658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proton exchange membrane fuel cells and direct alcohol fuel cells have been extensively studied over the last three decades or so. They have emerged as potential systems to power portable applications, providing clean energy, and offering good commercial viability. Ethanol is considered one of the most interesting fuels in this field. Herein, platinum-rare earth (Pt-RE) binary alloys (RE = Ce, Sm, Ho, Dy, nominal composition 50 at.% Pt) were produced and studied as anodes for ethanol oxidation reaction (EOR) in alkaline medium. A Pt-Dy alloy with nominal composition 40 at.% Pt was also tested. Their electrocatalytic performance was evaluated by voltammetric and chronoamperometric measurements in 2 M NaOH solution with different ethanol concentrations (0.2–0.8 M) in the 25–45 °C temperature range. Several EOR kinetic parameters were determined for the Pt-RE alloys, namely the charge transfer and diffusion coefficients, and the number of exchanged electrons. Charge transfer coefficients ranging from 0.60 to 0.69 and n values as high as 0.7 were obtained for the Pt0.5Sm0.5 electrode. The EOR reaction order at the Pt-RE alloys was found to vary between 0.4 and 0.9. The Pt-RE electrodes displayed superior performance for EOR than bare Pt, with Pt0.5Sm0.5 exhibiting the highest electrocatalytic activity. The improved electrocatalytic activity in all of the evaluated Pt-RE binary alloys suggests a strategy for the solution of the existing anode issues due to the structure-sensitive EOR.
Collapse
|
20
|
Dagle RA, Winkelman AD, Ramasamy KK, Lebarbier Dagle V, Weber RS. Ethanol as a Renewable Building Block for Fuels and Chemicals. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05729] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Robert A. Dagle
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Austin D. Winkelman
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Karthikeyan K. Ramasamy
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vanessa Lebarbier Dagle
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Robert S. Weber
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
21
|
Abstract
Direct ethanol fuel cells (DEFCs) have emerged as promising and advanced power systems that can considerably reduce fossil fuel dependence, and thus have attracted worldwide attention. DEFCs have many apparent merits over the analogous devices fed with hydrogen or methanol. As the key constituents, the catalysts for both cathodes and anodes usually face some problems (such as high cost, low conversion efficiency, and inferior durability) that hinder the commercialization of DEFCs. This review mainly focuses on the most recent advances in nanostructured catalysts for anode materials in DEFCS. First, we summarize the effective strategies used to achieve highly active Pt- and Pd-based catalysts for ethanol electro-oxidation, including composition control, microstructure design, and the optimization of support materials. Second, a few non-precious catalysts based on transition metals (such as Fe, Co, and Ni) are introduced. Finally, we outline the concerns and future development of anode catalysts for DEFCs. This review provides a comprehensive understanding of anode catalysts for ethanol oxidation in DEFCs.
Collapse
|
22
|
Zhang G, Zhang Z. Ir3Pb alloy nanodendrites with high performance for ethanol electrooxidation and their enhanced durability by alloying trace Au. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00233j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous Ir3Pb nanodendrites exhibit excellent activity and superior CO2 selectivity for the EOR under acidic conditions, and their durability can be enhanced dramatically by alloying trace Au.
Collapse
Affiliation(s)
- Genlei Zhang
- School of Chemistry and Chemical Engineering
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering
- Hefei University of Technology
- Hefei
| | - Zhenxi Zhang
- School of Chemistry and Chemical Engineering
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering
- Hefei University of Technology
- Hefei
| |
Collapse
|