1
|
Hui LW, Phang YL, Ye CY, Lai JY, Zhang FL, Fu Y, Wang YF. Remote Spin-Center Shift Enables Activation of Distal Benzylic C─O and C─N Bonds. Angew Chem Int Ed Engl 2025:e202506771. [PMID: 40178309 DOI: 10.1002/anie.202506771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
A spin-center shift (SCS) is a radical process that commonly involves a 1,2-radical shift along with the elimination of an adjacent leaving group by a two-electron ionic movement. The conventional SCS process is largely limited to 1,2-radical translocation, while a remote SCS event involving 1,n-radical translocation over a greater distance to enable distal bond functionalization remains largely underexplored. Herein, we report the boryl radical-promoted distal deoxygenation and deamination of free benzylic alcohols and simple benzylic amines, respectively, through a remote SCS event. The reaction was initiated by the addition of a 4-dimethylaminopyridine (DMAP)-boryl radical to the carbonyl oxygen atom of a benzoate or benzamide. Then, radical translocation took place across the aromatic ring to promote benzylic C─O or C─N bond cleavage. The resulting radical intermediate subsequently coupled with various alkenes to afford a wide range of alkylated products. The proposed mechanistic pathway was supported by experimental investigations.
Collapse
Affiliation(s)
- Li-Wen Hui
- State Key Laboratory of Precision and Intelligent Chemistry, Anhui Provincial Key Laboratory of Biomass Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yee Lin Phang
- State Key Laboratory of Precision and Intelligent Chemistry, Anhui Provincial Key Laboratory of Biomass Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Chen-Yang Ye
- State Key Laboratory of Precision and Intelligent Chemistry, Anhui Provincial Key Laboratory of Biomass Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jin-Yu Lai
- Institute of Advanced Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Feng-Lian Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, Anhui Provincial Key Laboratory of Biomass Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yao Fu
- State Key Laboratory of Precision and Intelligent Chemistry, Anhui Provincial Key Laboratory of Biomass Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi-Feng Wang
- State Key Laboratory of Precision and Intelligent Chemistry, Anhui Provincial Key Laboratory of Biomass Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Salamone L, Vanderbiest X, Riant O. Nickel-Catalyzed Stereospecific Alkylation of Vinylsiloxanes Using Pyridinium Salts. Org Lett 2025; 27:2569-2575. [PMID: 40078123 DOI: 10.1021/acs.orglett.5c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A methodology for radical cross-coupling with vinylsiloxanes and pyridinium salts under nickel catalysis is described. Easily implemented from inexpensive and abundant primary amines and terminal alkynes, this Hiyama coupling provides efficient access to (E), (Z), and (1,1')-alkenes with selectivity control. Operating under mild conditions, this robust strategy applies to a broad range of functional groups with diverse double bond stereochemistries. This versatile reaction is scalable and straightforward, accommodating both secondary and primary alkyl groups.
Collapse
Affiliation(s)
- Logan Salamone
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Xavier Vanderbiest
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Singh S, Gambhir D, Singh RP. Photoinduced stereoselective reactions using pyridinium salts as radical precursors. Chem Commun (Camb) 2025; 61:3436-3446. [PMID: 39873307 DOI: 10.1039/d4cc06026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Pyridinium salts are amine surrogates that are abundant in nature and the redox active nature of the pyridinium salts allows them to serve as precursors for generating radical species under mild conditions that can be initiated by light, heat or metal catalysis. The stereoselective formation of products has always been a topic of interest for synthetic chemists worldwide. In this context, pyridinium salts can readily undergo single electron reduction to form a neutral radical, and the N-X bond's subsequent fragmentation furnishes the X radical without any harsh reaction conditions. As a consequence, the past decade has witnessed an increased effort in utilizing pyridinium salts to photocatalytically generate radicals for the regioselective, diastereoselective as well as enantioselective formation of products that have been summarised in this review.
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Diksha Gambhir
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Ravi P Singh
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| |
Collapse
|
4
|
Shu H, Tao X, Ni S, Liu J, Xu J, Pan Y, Wang Y. Alkyl bistriflimidate-mediated electrochemical deaminative functionalization. Chem Sci 2025; 16:2682-2689. [PMID: 39802693 PMCID: PMC11716712 DOI: 10.1039/d4sc06773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
An efficient electrochemical strategy for the deaminative functionalization of alkyl amines has been described. The alkyl bistriflimidates were readily accessed by the treatment of alkyl amines with trifluoromethanesulfonic anhydride and unprecedentedly employed for C-N bond activation. They can be applied to a range of transformations, including borylation, sulfuration, selenation, sulfonation, Additionally, deaminative esterification and amidation can be performed under catalytic base conditions. The protocol features an undivided cell without the use of transition metal- or photo-catalysts and exhibits high conversion and stability in flow reactors.
Collapse
Affiliation(s)
- Hui Shu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Xiangzhang Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jiyang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jia Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
5
|
Chakraborty S, Barik S, Biju AT. N-Heterocyclic carbene (NHC) organocatalysis: from fundamentals to frontiers. Chem Soc Rev 2025; 54:1102-1124. [PMID: 39690964 DOI: 10.1039/d4cs01179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility. Recent years have witnessed a surge of interest in various organocatalytic reactions of NHCs, leading to the forays of NHC catalysis into the relatively newer domains such as reactions involving radical intermediates, atroposelective synthesis, umpolung of electrophiles other than aldehydes, and the use of NHCs as non-covalent templates for enantioinduction. This tutorial review provides an overview of various important structural features and reactivity modes of NHCs and delves deep into some frontiers of NHC-organocatalysis.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
6
|
Ma YQ, Zhang M, Tian SK. Silyl Radical as an Isocyanide Transfer Agent for Giese-Type Reactions Involving Aliphatic Amines. Org Lett 2024; 26:5172-5176. [PMID: 38864545 DOI: 10.1021/acs.orglett.4c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Herein we report silyl radicals serve as isocyanide transfer agents for Giese-type reaction from aliphatic amines and electron-deficient olefins. α-Primary, α-secondary, and sterically encumbered α-tertiary primary amines could be easily converted into isocyanides for coupling with electron-deficient olefins by employing latent silyl radicals under visible light irradiation. Notably, the abstraction of silane-mediated isocyanide not only enables voltage-independent activation of strong C-N bonds but also represents a mechanistic alternative Giese-type reaction in which single electron reduction and protonation processes are replaced by direct hydrogen atom transfer. This transformation occurs under photoinduced catalyst-free conditions and exhibits excellent functional group compatibility and mild reaction conditions.
Collapse
Affiliation(s)
- Yu-Qing Ma
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Muliang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Kai Tian
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Templ J, Schnürch M. Strategies for Using Quaternary Ammonium Salts as Alternative Reagents in Alkylations. Chemistry 2024; 30:e202400675. [PMID: 38587031 DOI: 10.1002/chem.202400675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Alkylation reactions are pivotal in organic chemistry, with wide-ranging utilization across various fields of applied synthetic chemistry. However, conventional reagents employed in alkylations often pose substantial health and exposure risks. Quaternary ammonium salts (QAS) present a promising alternative for these transformations offering significantly reduced hazards as they are non-cancerogenic, non-mutagenic, non-flammable, and non-corrosive. Despite their potential, their use in direct organic transformations remains relatively unexplored. This review outlines strategies for utilizing QAS as alternative reagents in alkylation reactions, providing researchers with safer approaches to chemical synthesis.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| |
Collapse
|
8
|
Zhelavskyi O, Parikh S, Jhang YJ, Staples RJ, Zimmerman PM, Nagorny P. Green Light Promoted Iridium(III)/Copper(I)-Catalyzed Addition of Alkynes to Aziridinoquinoxalines Through the Intermediacy of Azomethine Ylides. Angew Chem Int Ed Engl 2024; 63:e202318876. [PMID: 38267370 PMCID: PMC10939844 DOI: 10.1002/anie.202318876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
This manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λmax =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.r. The experimental and quantum chemical explorations of this reaction suggest a mechanism that involves Ir(III)-catalyzed triplet energy transfer followed by a ring-opening reaction ultimately leading to the formation of azomethine ylide intermediates. These azomethine intermediates undergo sequential protonation/copper(I) acetylide addition to provide the products.
Collapse
Affiliation(s)
- Oleksii Zhelavskyi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seren Parikh
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yin-Jia Jhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Richard J. Staples
- Department of Chemistry and Chemical Biology, Michigan State University, East Lansing, MI 48824
| | - Paul M. Zimmerman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Zhang X, Cui S, Wei S, Zhao M, Liu X, Zhang G. Nickel-Catalyzed Deaminative Alkyl-Alkyl Cross-Coupling of Katritzky Salts with Cyclopropanols: Merging C-N and C-C Bond Activation. Org Lett 2024; 26:2114-2118. [PMID: 38437731 DOI: 10.1021/acs.orglett.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Herein, we report a general and practical nickel-catalyzed deaminative alkylation of Katritzky salts with cyclopropyl alcohols via merging C-N and C-C bond activation. This protocol enables the formation of an alkyl-alkyl bond along with the generation of a versatile ketone functional group in a single operation, thus providing a convenient approach for accessing β-alkyl ketones. This reaction is distinguished by its high functional group tolerance, broad substrate scope, and efficient late-stage derivatization of complex bioactive molecules.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Shilin Cui
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Shuxin Wei
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Mengge Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Lye K, Young RD. A review of frustrated Lewis pair enabled monoselective C-F bond activation. Chem Sci 2024; 15:2712-2724. [PMID: 38404400 PMCID: PMC10882520 DOI: 10.1039/d3sc06485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Frustrated Lewis pair (FLP) bond activation chemistry has greatly developed over the last two decades since the seminal report of metal-free reversible hydrogen activation. Recently, FLP systems have been utilized to allow monoselective C-F bond activation (at equivalent sites) in polyfluoroalkanes. The problem of 'over-defluorination' in the functionalization of polyfluoroalkanes (where multiple fluoro-positions are uncontrollably functionalized) has been a long-standing chemical problem in fluorocarbon chemistry for over 80 years. FLP mediated monoselective C-F bond activation is complementary to other solutions developed to address 'over-defluorination' and offers several advantages and unique opportunities. This perspective highlights some of these advantages and opportunities and places the development of FLP mediated C-F bond activation into the context of the wider effort to overcome 'over-defluorination'.
Collapse
Affiliation(s)
- Kenneth Lye
- Department of Chemistry, National University of Singapore 117543 Singapore
| | - Rowan D Young
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia 4072 Australia
| |
Collapse
|
11
|
Quirós I, Martín M, Gomez-Mendoza M, Cabrera-Afonso MJ, Liras M, Fernández I, Nóvoa L, Tortosa M. Isonitriles as Alkyl Radical Precursors in Visible Light Mediated Hydro- and Deuterodeamination Reactions. Angew Chem Int Ed Engl 2024; 63:e202317683. [PMID: 38150265 DOI: 10.1002/anie.202317683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
Herein, we report the use of isonitriles as alkyl radical precursors in light-mediated hydro- and deuterodeamination reactions. The reaction is scalable, shows broad functional group compatibility and potential to be used in late-stage functionalization. Importantly, the method is general for Cα -primary, Cα -secondary and Cα -tertiary alkyl isonitriles. For most examples, high yields were obtained through direct visible-light irradiation of the isonitrile in the presence of a silyl radical precursor. Interestingly, in the presence of an organic photocatalyst (4CzIPN) a dramatic acceleration was observed. In-depth mechanistic studies using UV/Vis absorption, steady-state and time-resolved photoluminescence, and transient absorption spectroscopy suggest that the excited state of 4CzIPN can engage in a single-electron transfer with the isonitrile.
Collapse
Affiliation(s)
- Irene Quirós
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - María Martín
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy, Av. Ramón de la Sagra 3, Móstoles, 28935, Madrid, Spain
| | - María Jesús Cabrera-Afonso
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy, Av. Ramón de la Sagra 3, Móstoles, 28935, Madrid, Spain
| | - Israel Fernández
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
- Center of Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Luis Nóvoa
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
- Center of Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| |
Collapse
|
12
|
Marchese AD, Dorsheimer JR, Rovis T. Photoredox-Catalyzed Generation of Tertiary Anions from Primary Amines via a Radical Polar Crossover. Angew Chem Int Ed Engl 2024; 63:e202317563. [PMID: 38189622 PMCID: PMC10873470 DOI: 10.1002/anie.202317563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 01/09/2024]
Abstract
A method for the generation of tertiary carbanions via a deaminative radical-polar crossover is reported using redox active imines from α-tertiary primary amines. A variety of benzylic amines and amino esters can be used in this approach, with the latter engaging in a novel "aza-Reformatsky" reaction. Electronic trends correlate the stability of the resulting carbanion with reaction efficiency. The anions can be trapped with different electrophiles including aldehydes, ketones, imines, Michael acceptors, and H2 O/D2 O. Selective anion formation can be achieved in the presence of another equivalent or more acidic C-H bond in both an inter- and intramolecular fashion. Mechanistic studies suggest the intermediacy of a discrete carbanion intermediate.
Collapse
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Julia R. Dorsheimer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Tan Y, Xiang H, Jin J, He X, Li S, Ye Y. Oxidation/Alkylation of Amino Acids with α-Bromo Carbonyls Catalyzed by Copper and Quick Access to HDAC Inhibitor. J Org Chem 2023; 88:17398-17408. [PMID: 38037667 DOI: 10.1021/acs.joc.3c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A facile and efficient method was reported for Cu-catalyzed selective α-alkylation processes of amino acids/peptides and α-bromo esters/ketones through a radical-radical coupling pathway. The reaction displays an excellent functional group tolerance and broad substrate scope, allowing access to desired products in moderate to excellent yields. Notably, this method is distinguished by site-specificity and exhibits total selectivity for aryl glycine motifs over other amino acid units. Furthermore, the practicality of this strategy is certified by the efficient synthesis of the novel SAHA phenylalanine-containing analogue (SPACA).
Collapse
Affiliation(s)
- Yuqiong Tan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Jiayan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Xingrui He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
14
|
Jia Y, Zhang Z, Yu GM, Jiang X, Lu LQ, Xiao WJ. Visible Light Induced Copper-Catalyzed Enantioselective Deaminative Arylation of Amino Acid Derivatives Assisted by Phenol. Angew Chem Int Ed Engl 2023:e202312102. [PMID: 37936319 DOI: 10.1002/anie.202312102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
The exploration of value-added conversions of naturally abundant amino acids has received considerable attention from the synthetic community. Compared with the well-established asymmetric decarboxylative transformation, the asymmetric deaminative transformation of amino acids still remains a formidable challenge, mainly due to the lack of effective strategies for the C-N bond activation and the potential incompatibility with chiral catalysts. Here, we disclose a photoinduced Cu-catalyzed asymmetric deaminative coupling reaction of amino acids with arylboronic acids. This new protocol provides a series of significant chiral phenylacetamides in generally good yields and excellent stereoselectivity under mild and green conditions (42-85 % yields, up to 97 % ee). Experimental investigations and theoretical calculations were performed to reveal the crucial role of additional phenols in improving catalytic efficiency and enantiocontrol.
Collapse
Affiliation(s)
- Yue Jia
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Guo-Ming Yu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xuan Jiang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Rd., Wuhan, Hubei, 430082, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Lee GS, Hong SH. Direct C(sp 3)-H Acylation by Mechanistically Controlled Ni/Ir Photoredox Catalysis. Acc Chem Res 2023; 56:2170-2184. [PMID: 37506313 DOI: 10.1021/acs.accounts.3c00252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
ConspectusSynthetic chemists have consistently aimed to develop efficient methods for synthesizing ketones, which are essential building blocks in organic chemistry and play significant roles in bioactive molecules. Recent efforts have focused on using photoredox catalysis, which enables previously inaccessible activation modes, to synthesize ketones through the cross-coupling of an acyl electrophile and simple C(sp3)-H bonds. Over the past few years, we have worked on developing effective and versatile approaches for directly acylating activated hydrocarbons to forge ketones.Initially, thioesters were explored as the acyl source to achieve the direct acylation of ethers, but an unexpected thioesterification reaction was observed instead. To gain insights into this reactivity, we conducted the optimization of reaction conditions, substrate scope evaluation, and mechanistic studies. Drawing from our understanding of Ni/Ir photocatalysis obtained in this study, we subsequently developed a method for the direct acylation of simple hydrocarbons. The use of less-reactive amides as the acyl electrophiles was found to be critical for suppressing undesired pathways. This seemingly counterintuitive reactivity was carefully studied, revealing a substrate-assisted reaction mechanism in which the suppressed oxidative addition leads to early-stage nickel oxidation and C-H activation.To address the drawbacks of this method, which primarily arose from decarbonylative and transmetallative side pathways, we employed N-acyllutidiniums as the acyl electrophile. This prevented undesired decomposition pathways, enabling the use of α-chiral acyl substrates with the retention of their stereochemistry, particularly those derived from α-amino acids. The developed versatile methodology allowed us to access a diverse range of α-amino ketones and their homologues.Despite the elegant utility of Ni/photoredox catalysis in developing new synthetic methodologies, the precise behavior of nickel catalysts under redox conditions is incompletely understood. To gain insight into this behavior and develop new chemical reactions, we used a combination of experimental and computational methods. Our investigations revealed that devised adjustments to the reaction conditions in nickel/photoredox catalysis can result in significant differences in the reaction outcomes, providing chemists with opportunities to tailor reactions through carefully designed mechanistic strategies. We believe that continued efforts to study and apply nickel redox modulation will lead to the discovery of additional organic transformations.
Collapse
Affiliation(s)
- Geun Seok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Upreti GC, Singh T, Khanna K, Singh A. Pd-Catalyzed Photochemical Alkylative Functionalization of C═C and C═N Bonds. J Org Chem 2023; 88:4422-4433. [PMID: 36930049 DOI: 10.1021/acs.joc.2c03028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The development of excited-state palladium-catalyzed alkylative cyclization of acrylamides and the alkylation of quinoxalinones is described. The application of a variety of primary, secondary, and tertiary unactivated alkyl halides as alkyl radical precursors and the use of a simple catalyst system are the highlights of this reactivity manifold. The reactions exhibit wide scope, occur under mild conditions, and furnish the products in excellent yields.
Collapse
Affiliation(s)
| | - Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kirti Khanna
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India.,Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
17
|
Ye Y, Lin Y, Mao ND, Yang H, Ye XY, Xie T. Recent progress in nickel-catalyzed carboboration of alkenes. Org Biomol Chem 2022; 20:9255-9271. [PMID: 36399007 DOI: 10.1039/d2ob01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alkenes represent one of the most useful building blocks for organic synthesis, owing to their abundance and versatile reactivity. Transition metal (Pd, Cu, Co, Ni, Fe, etc.) catalyzed difunctionalization of alkenes provides efficient access to substituted molecules from readily available alkenes by installing functional groups across their carbon-carbon double bonds. Particularly, Nickel-based catalytic complexes have attracted a great deal of attention. This is because they are prone to undergoing oxidative addition and slow β-hydride elimination, and can access both two-electron and radical pathways. Numerous elegant Ni-catalyzed cross-coupling methods, e.g., (hetero)arylboration, alkenylboration, alkylboration and alkynylboration of alkenes, have been developed with broad scopes and a high tolerance to a variety of functional groups. Therefore, the Ni-catalyzed carboboration of alkenes has become an efficient synthetic protocol to deliver substituted compounds by the cross-coupling of alkenes, electrophiles, and B2Pin2. Despite this progress, a number of challenging issues remaining in the field include broadening the types of carboboration reactions, especially the asymmetric ones, diversifying electrophile types (which is limited to halogens for now) and gaining profound insight into the reaction mechanisms. This review summarizes the recent progress in this emerging field from the literature published since 2018. It will provide the scientific community with convenience to access collective information and to accelerate their further research in order to broaden the scope of methodology and application in drug discovery programs.
Collapse
Affiliation(s)
- Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| |
Collapse
|
18
|
Wang L, Chen Z, Fan G, Liu X, Liu P. Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C-H Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. J Org Chem 2022; 87:14580-14587. [PMID: 36206555 DOI: 10.1021/acs.joc.2c01967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Described is a mild method that merges organophotoredox catalysis with hydrogen atom transfer to enable C-H alkylation of quinoxalin-2(1H)-ones with feedstock aldehydes, amides, alcohols, ethers, or cycloalkanes. This reaction occurred under environmentally benign and external oxidant-free reaction conditions, providing a general and sustainable access to various C3-alkylated quinoxalinone derivatives with broad substituent diversity and good functional group compatibility.
Collapse
Affiliation(s)
- Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhaoxing Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
19
|
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Max Schwenzer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|