1
|
Laskowski T, Kosno M, Andrałojć W, Pakuła J, Stojałowski R, Borzyszkowska-Bukowska J, Paluszkiewicz E, Mazerska Z. The interactions of Pu22 G-quadruplex, derived from c-MYC promoter sequence, with antitumor acridine derivatives-An NMR/MD combined study. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102513. [PMID: 40226330 PMCID: PMC11986977 DOI: 10.1016/j.omtn.2025.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents that exhibit significant antitumor activity against a wide range of cancer cell lines and solid tumors in vivo. UAs consist of two different acridine-based ring systems, which are connected by an aminoalkyl linker. Recent studies have demonstrated that UAs can suppress the c-MYC protooncogene, which is overexpressed in many tumor types. As a proposed molecular basis for this activity, UAs have been suggested to stabilize the G-quadruplex structure formed within the promoter region of c-MYC. In this study, we performed spectroscopic and computational analyses to investigate the stereochemistry of the c-MYC NHE III1 representative G-quadruplex, codenamed Pu22, in complex with two promising bisacridines, C-2045 and C-2053, as well as their monomeric counterparts, C-1311 and C-1748. C-1311 formed a well-defined 1:2 mol/mol DNA:ligand non-covalent adduct, whose solution structure was determined via 2D NMR. In contrast, C-1748 displayed weak and nonspecific interactions with the Pu22 G-quadruplex. Finally, the Pu22:UA complexes were examined using a combination of NMR and molecular modeling approaches, including umbrella sampling simulations. These results provide insights into the interaction mechanisms of UAs with G-quadruplex structures and highlight their potential as therapeutic agents targeting c-MYC.
Collapse
Affiliation(s)
- Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland
| | - Julia Pakuła
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Rafał Stojałowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
2
|
Bisoi A, Majumdar T, Sarkar S, Singh PC. Nucleobase Level Information into the Folding of G-Quadruplex by Anti-inflammatory Drugs in the Absence of Salt. J Phys Chem B 2025; 129:4159-4168. [PMID: 40262105 DOI: 10.1021/acs.jpcb.5c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
G-quadruplexes (G4s) in the telomere region are important targets for cancer therapy. Molecules that can fold and stabilize the telomere DNA sequences, even in the absence of salt, can be an exciting prospect for therapy purposes. Anti-inflammatory drugs hydroxychloroquine (HCQ) and chloroquine (CQ) have shown promising effects in cancer therapy and also in the different levels of trial stages. In this study, we have investigated the structure and stability of several natural and mutated telomeric sequences with anti-inflammatory drugs and their analogues in the absence of salts using the biophysical and docking methods to understand the role of the quartet and loop nucleobases of DNA along with the functional group of drugs responsible for triggering the folding of telomeric DNA sequences into G4. The findings indicate that the hydrogen bonding between the charged side chain with the guanine repeating unit associated with the quartet and the thymine in the terminal loops of telomere DNA is the main driving force for the folding of telomere DNA sequences into G4 induced by anti-inflammatory drugs. The data indicate that the adenine nucleobase in the loop of the telomere does not play any role in its folding process induced by HCQ and CQ.
Collapse
Affiliation(s)
- Asim Bisoi
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Trideep Majumdar
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sunipa Sarkar
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Pruška A, Harrison JA, Granzhan A, Marchand A, Zenobi R. Solution and Gas-Phase Stability of DNA Junctions from Temperature-Controlled Electrospray Ionization and Surface-Induced Dissociation. Anal Chem 2023; 95:14384-14391. [PMID: 37699589 DOI: 10.1021/acs.analchem.3c02742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
DNA three-way junction (TWJ) structures transiently form during key cellular processes such as transcription, replication, and DNA repair. Despite their significance, the thermodynamics of TWJs, including the influence of strand length, base pair composition, and ligand binding on TWJ stability and dissociation mechanisms, are poorly understood. To address these questions, we interfaced temperature-controlled nanoelectrospray ionization mass spectrometry (TC-nESI-MS) with a cyclic ion mobility spectrometry (cIMS) instrument that was also equipped with a surface-induced dissociation (SID) stage. This novel combination allowed us to investigate the structural intermediates of three TWJ complexes and examine the effects of GC base pairs on their dissociation pathways. We found that two TWJ-specific ligands, 2,7-tris-naphthalene (2,7-TrisNP) and tris-phenoxybenzene (TrisPOB), lead to TWJ stabilization, revealed by an increase in the melting temperature (Tm) by 13 or 26 °C, respectively. To gain insights into conformational changes in the gas phase, we employed cIMS and SID to analyze TWJs and their complexes with ligands. Analysis of IM arrival distributions suggested a single-step dissociation of TWJs and their intermediates for the three studied TWJ complexes. Upon ligand binding, a higher SID energy by 3 V (2,7-TrisNP) and 5 V (TrisPOB) was required to induce 50% dissociation of TWJ, compared to 38 V in the absence of ligands. Our results demonstrate the power of utilizing TC-nESI-MS in combination with cIMS and SID for thermodynamic characterization of TWJ complexes and investigation of ligand binding. These techniques are essential for the TWJ design and development as drug targets, aptamers, and structural units for functional biomaterials.
Collapse
Affiliation(s)
- Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, Paris Saclay University, F-91405 Orsay, France
| | - Adrien Marchand
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
4
|
Jiang D, Zhao H, Du H, Deng Y, Wu Z, Wang J, Zeng Y, Zhang H, Wang X, Wu J, Hsieh CY, Hou T. How Good Are Current Docking Programs at Nucleic Acid-Ligand Docking? A Comprehensive Evaluation. J Chem Theory Comput 2023; 19:5633-5647. [PMID: 37480347 DOI: 10.1021/acs.jctc.3c00507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
Collapse
Affiliation(s)
- Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Huifeng Zhao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yafeng Deng
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yundian Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haotian Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaorui Wang
- China State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Jian Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
5
|
Göç YB, Poziemski J, Smolińska W, Suwała D, Wieczorek G, Niedzialek D. Tracking Topological and Electronic Effects on the Folding and Stability of Guanine-Deficient RNA G-Quadruplexes, Engineered with a New Computational Tool for De Novo Quadruplex Folding. Int J Mol Sci 2022; 23:10990. [PMID: 36232294 PMCID: PMC9570295 DOI: 10.3390/ijms231910990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The initial aim of this work was to elucidate the mutual influence of different single-stranded segments (loops and caps) on the thermodynamic stability of RNA G-quadruplexes. To this end, we used a new NAB-GQ-builder software program, to construct dozens of two-tetrad G-quadruplex topologies, based on a designed library of sequences. Then, to probe the sequence-morphology-stability relationships of the designed topologies, we performed molecular dynamics simulations. Their results provide guidance for the design of G-quadruplexes with balanced structures, and in turn programmable physicochemical properties for applications as biomaterials. Moreover, by comparative examinations of the single-stranded segments of three oncogene promoter G-quadruplexes, we assess their druggability potential for future therapeutic strategies. Finally, on the basis of a thorough analysis at the quantum mechanical level of theory on a series of guanine assemblies, we demonstrate how a valence tautomerism, triggered by a coordination of cations, initiates the process of G-quadruplex folding, and we propose a sequential folding mechanism, otherwise dictated by the cancellation of the dipole moments on guanines.
Collapse
Affiliation(s)
- Yavuz Burak Göç
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Chemistry, Biological & Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Jakub Poziemski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
| | - Weronika Smolińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Dominik Suwała
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Grzegorz Wieczorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Molecure SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dorota Niedzialek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
| |
Collapse
|
6
|
Pal S, Paul S. Theoretical investigation of conformational deviation of the human parallel telomeric G-quadruplex DNA in the presence of different salt concentrations and temperatures under confinement. Phys Chem Chem Phys 2021; 23:14372-14382. [PMID: 34179908 DOI: 10.1039/d0cp06702d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Various experimental reports address the stability of G-quadruplex DNA inside a close confinement such as α-hemolysin, nanocavity water pool and different metal-organic-frameworks (MOFs). To understand the conformational change of G-quadruplex DNA at the atomistic level, we have carried out a total of 40 μs simulation run under both non-polar and polar confinement conditions. To investigate the dynamics, we have considered two different KCl salt concentrations, i.e., 0.47 M (minimal salt concentration) and higher than 2 M (higher salt concentration), at two distinct temperatures, 300 K and 350 K. Here, we have observed that the human telomeric G-quadruplex DNA deviates more from its crystal structure at minimal salt concentration under both non-polar and polar confinement conditions. Besides, the loop regions deviate and fluctuate more compared to the other regions, i.e., sugar-phosphate backbone and tetrad regions. The presence of K+ ions is found to be primarily responsible for this phenomenon. From the spatial density function (SDF) plots, a higher density of K+ ions is observed in the backbone region. Furthermore, from the residue-wise first solvation shell estimation, we have noticed that the K+ ions mainly accumulate in the tetrad region under both non-polar and polar confinement conditions due to which the tetrad regions are more rigid than the loop regions. Higher salt concentration results in increased rigidity of the G-quadruplex DNA. Our study provides valuable insight into the conformational deviation of the G-quadruplex DNA under nanoconfinement conditions.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India.
| |
Collapse
|
7
|
Pruška A, Marchand A, Zenobi R. Novel Insight into Proximal DNA Domain Interactions from Temperature-Controlled Electrospray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2021; 60:15390-15398. [PMID: 33822450 PMCID: PMC8251475 DOI: 10.1002/anie.202016757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/07/2021] [Indexed: 01/05/2023]
Abstract
Quadruplexes are non-canonical nucleic acid structures essential for many cellular processes. Hybrid quadruplex-duplex oligonucleotide assemblies comprised of multiple domains are challenging to study with conventional biophysical methods due to their structural complexity. Here, we introduce a novel method based on native mass spectrometry (MS) coupled with a custom-built temperature-controlled nanoelectrospray ionization (TCnESI) source designed to investigate interactions between proximal DNA domains. Thermal denaturation experiments were aimed to study unfolding of multi-stranded oligonucleotide constructs derived from biologically relevant structures and to identify unfolding intermediates. Using the TCnESI MS, we observed changes in Tm and thermodynamic characteristics of proximal DNA domains depending on the number of domains, their position, and order in a single experiment.
Collapse
Affiliation(s)
- Adam Pruška
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Adrien Marchand
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| |
Collapse
|
8
|
Pruška A, Marchand A, Zenobi R. Novel Insight into Proximal DNA Domain Interactions from Temperature‐Controlled Electrospray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Pruška
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Adrien Marchand
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
9
|
Pal S, Paul S. An in silico investigation of the binding modes and pathway of APTO-253 on c-KIT G-quadruplex DNA. Phys Chem Chem Phys 2021; 23:3361-3376. [PMID: 33502401 DOI: 10.1039/d0cp05210h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The stability of c-KIT G-quadruplex DNA via ligands has been a significant concern in the growing field of cancer therapy. Thus, it is very important to understand the mechanism behind the high binding affinity of the small drug molecules on the c-KIT G-quadruplex DNA. In this study, we have investigated the binding mode and pathway of the APTO-253 ligand on the c-KIT G-quadruplex DNA employing a total of 10 μs all atom molecular dynamics simulations and further 8.82 μs simulations via the umbrella sampling method using both OL15 and BSC1 latest force fields for DNA structures. From the cluster structure analysis, mainly three binding pathways i.e., top, bottom and side loop stacking modes are identified. Moreover, RMSD, RMSF and 2D-RMSD values indicate that the c-KIT G-quadruplex DNA and APTO-253 molecules are stable throughout the simulation run. Furthermore, the number of hydrogen bonds in each tetrad and the distance between the two central K+ cations confirm that the c-KIT G-quadruplex DNA maintains its conformation in the process of complex formation with the APTO-253 ligand. The binding free energies and the minimum values in the potential of mean forces suggest that the binding processes are energetically favorable. Furthermore, we have found that the bottom stacking mode is the most favorable binding mode among all the three modes for the OL15 force field. However, for the BSC1 force field, both the top and bottom binding modes of the APTO-253 ligand in c-KIT G-quadruplex DNA are comparable to each other. To investigate the driving force for the complex formation, we have noticed that the van der Waals (vdW) and π-π stacking interactions are mainly responsible. Our detailed studies provide useful information for the discovery of novel drugs in the field of stabilization of G-quadruplex DNAs.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | | |
Collapse
|
10
|
Kharel P, Becker G, Tsvetkov V, Ivanov P. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res 2020; 48:12534-12555. [PMID: 33264409 PMCID: PMC7736831 DOI: 10.1093/nar/gkaa1126] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Guanine-quadruplexes (G4s) are non-canonical four-stranded structures that can be formed in guanine (G) rich nucleic acid sequences. A great number of G-rich sequences capable of forming G4 structures have been described based on in vitro analysis, and evidence supporting their formation in live cells continues to accumulate. While formation of DNA G4s (dG4s) within chromatin in vivo has been supported by different chemical, imaging and genomic approaches, formation of RNA G4s (rG4s) in vivo remains a matter of discussion. Recent data support the dynamic nature of G4 formation in the transcriptome. Such dynamic fluctuation of rG4 folding-unfolding underpins the biological significance of these structures in the regulation of RNA metabolism. Moreover, rG4-mediated functions may ultimately be connected to mechanisms underlying disease pathologies and, potentially, provide novel options for therapeutics. In this framework, we will review the landscape of rG4s within the transcriptome, focus on their potential impact on biological processes, and consider an emerging connection of these functions in human health and disease.
Collapse
Affiliation(s)
- Prakash Kharel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gertraud Becker
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Tsvetkov
- Computational Oncology Group, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Federal Research and Clinical Center for Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow 119435, Russia
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 117912, Russia
| | - Pavel Ivanov
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| |
Collapse
|
11
|
O'Hagan MP, Haldar S, Morales JC, Mulholland AJ, Galan MC. Enhanced sampling molecular dynamics simulations correctly predict the diverse activities of a series of stiff-stilbene G-quadruplex DNA ligands. Chem Sci 2020; 12:1415-1426. [PMID: 34163904 PMCID: PMC8179204 DOI: 10.1039/d0sc05223j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ligands with the capability to bind G-quadruplexes (G4s) specifically, and to control G4 structure and behaviour, offer great potential in the development of novel therapies, technologies and functional materials. Most known ligands bind to a pre-formed topology, but G4s are highly dynamic and a small number of ligands have been discovered that influence these folding equilibria. Such ligands may be useful as probes to understand the dynamic nature of G4 in vivo, or to exploit the polymorphism of G4 in the development of molecular devices. To date, these fascinating molecules have been discovered serendipitously. There is a need for tools to predict such effects to drive ligand design and development, and for molecular-level understanding of ligand binding mechanisms and associated topological perturbation of G4 structures. Here we study the G4 binding mechanisms of a family of stiff-stilbene G4 ligands to human telomeric DNA using molecular dynamics (MD) and enhanced sampling (metadynamics) MD simulations. The simulations predict a variety of binding mechanisms and effects on G4 structure for the different ligands in the series. In parallel, we characterize the binding of the ligands to the G4 target experimentally using NMR and CD spectroscopy. The results show good agreement between the simulated and experimentally observed binding modes, binding affinities and ligand-induced perturbation of the G4 structure. The simulations correctly predict ligands that perturb G4 topology. Metadynamics simulations are shown to be a powerful tool to aid development of molecules to influence G4 structure, both in interpreting experiments and to help in the design of these chemotypes.
Collapse
Affiliation(s)
- Michael P O'Hagan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Susanta Haldar
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (CSIC), PTS Granada Avenida del Conocimiento 17, 18016 Armilla Granada Spain
| | - Adrian J Mulholland
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
12
|
Biological activity of quinazoline analogues and molecular modeling of their interactions with G-quadruplexes. Biochim Biophys Acta Gen Subj 2020; 1865:129773. [PMID: 33132199 DOI: 10.1016/j.bbagen.2020.129773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Quinazolines 1 to 6, with an aromatic or aryl-vinyl substituent in position 2 are selected with the aim to compare their structures and biological activity. The selection includes a natural alkaloid, schizocommunin, and the synthetic 2-(2'-quinolyl)-3H-quinazolin-4-one, known to interact with guanine-quadruplex dependent enzymes, respectively telomerase and topoisomerase. METHODS Breast cancer cells of the MDA cell line have been used to study the bioactivity of the tested compounds by the method of Comet Assay and FACS analyses. We model observed effects assuming stacking interactions of studied heterocycles with a naked skeleton of G-quadruplex, consisting of guanine quartet layers and potassium ions. Interaction energies are computed using a dispersion corrected density functional theory method, and an electron-correlated molecular orbital theory method. RESULTS Selected compounds do not remarkably delay nor change the dynamics of cellular progression through the cell cycle phases, while changing significantly cell morphology. Our computational models quantify structural effects on heterocyclic G4-complex stabilization energies, which directly correlate with observed biological activity. CONCLUSION Our computational model of G-quadruplexes is an acceptable tool for the study of interaction energies of G-quadruplexes and heterocyclic ligands, predicting, and allowing design of novel structures. GENERAL SIGNIFICANCE Genotoxicity of quinazolin-4-one analogues on human breast cancer cells is not related to molecular metabolism but rather to their interference with G-quadruplex regulatory mechanisms. Computed stabilization energies of heterocyclic ligand complexes of G-quadruplexes might be useful in the prediction of novel telomerase / helicase, topoisomerase and NA polymerase dependent drugs.
Collapse
|
13
|
Sullivan HJ, Chen B, Wu C. Molecular Dynamics Study on the Binding of an Anticancer DNA G-Quadruplex Stabilizer, CX-5461, to Human Telomeric, c-KIT1, and c-Myc G-Quadruplexes and a DNA Duplex. J Chem Inf Model 2020; 60:5203-5224. [PMID: 32820923 DOI: 10.1021/acs.jcim.0c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA G-quadruplex (G4) stabilizer, CX-5461, is in phase I/II clinical trials for advanced cancers with BRCA1/2 deficiencies. A FRET-melting temperature increase assay measured the stabilizing effects of CX-5461 to a DNA duplex (∼10 K), and three G4 forming sequences negatively implicated in the cancers upon its binding: human telomeric (∼30 K), c-KIT1 (∼27 K), and c-Myc (∼25 K). Without experimentally solved structures of these CX-5461-G4 complexes, CX-5461's interactions remain elusive. In this study, we performed a total of 73.5 μs free ligand molecular dynamics binding simulations of CX-5461 to the DNA duplex and three G4s. Three binding modes (top, bottom, and side) were identified for each system and their thermodynamic, kinetic, and structural nature were deciphered. The molecular mechanics/Poisson Boltzmann surface area binding energies of CX-5461 were calculated for the human telomeric (-28.6 kcal/mol), c-KIT1 (-23.9 kcal/mol), c-Myc (-22.0 kcal/mol) G4s, and DNA duplex (-15.0 kcal/mol) systems. These energetic differences coupled with structural differences at the 3' site explained the different melting temperatures between the G4s, while CX-5461's lack of intercalation to the duplex explained the difference between the G4s and duplex. Based on the interaction insight, CX-5461 derivatives were designed and docked, showing higher selectivity to the G4s over the duplex.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| |
Collapse
|
14
|
Pal S, Paul S. Understanding The Role of Reline, a Natural DES, on Temperature-Induced Conformational Changes of C-Kit G-Quadruplex DNA: A Molecular Dynamics Study. J Phys Chem B 2020; 124:3123-3136. [PMID: 32207949 DOI: 10.1021/acs.jpcb.0c00644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The noncanonical guanine-rich DNAs have drawn particular attention to the scientific world due to their controllable diverse and polymorphic structures. Apart from biological and medical significance, G-quadruplex DNAs are widely used in various fields such as nanotechnology, nanomachine, biosensors, and biocatalyst. So far, the applications of the G-quadruplex DNA are mainly limited in the water medium. Recently, a new generation of solvent named deep eutectic solvent (DES) has become very popular and has been widely used as a reaction medium of biocatalytic reactions and long-term storage medium for nucleic acids, even at high temperature. Hence, it is essential to understand the role of DES on temperature-induced conformational changes of a G-quadruplex DNA. In this research work, we have explored the temperature-mediated conformational dynamics of c-kit oncogene promoter G-quadruplex DNA in reline medium in the temperature range of 300-500 K, using a total of 10 μs unbiased all-atom molecular dynamics simulation. Here, from RMSD, RMSF, Rg and principal component analyses, we notice that the c-kit G-quadruplex DNA is stable up to 450 K in reline medium. However, it unfolds in water medium at 450 K. It is found that the hydrogen bonding interactions between c-kit G-quadruplex DNA and reline play a key role in the stabilization of the G-quadruplex DNA even at high temperature. Furthermore, in this work we have observed a very interesting and distinctive phenomenon of the central cation of the G-quadruplex DNA. Its position was seen to fluctuate between the two tetrad cores, that is, the region between tetrad-1 and tetrad-2 and that between tetrad-2 and tetrad-3 and vice versa at 450 and 500 K in reline medium which is absent in water medium at 450 K. Moreover, the rate of its oscillation is increased when temperature is increased.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India, 781039
| |
Collapse
|
15
|
Khanna L, Singhal S, Jain SC, Khanna P. Spiro-Indole-Coumarin Hybrids: Synthesis, ADME, DFT, NBO Studies and In Silico Screening through Molecular Docking on DNA G-Quadruplex. ChemistrySelect 2020; 5:3420-3433. [PMID: 32328514 PMCID: PMC7169502 DOI: 10.1002/slct.201904783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
New series of hybrids were synthesized by combination of 4-hydroxycoumarin with spiro[indol-indazole-thiazolidine]-diones and spiro[indol-pyrazole-thiazolidine]-diones, via hitherto unknown Schiff bases. The effects of substituents, such as -F, -Br and -CH3, on the crucial characteristics pertaining to the hybrids were investigated through computational studies. In silico or virtual screening through molecular docking studies on the library of 22 compounds, including reference compounds, precursors, non-hybrid and hybrid derivatives, was performed on DNA G-quadruplex of the human genome. All six freshly synthesized hybrids showed high binding energy as compared to non-hybrids as well as reference compounds. The presence of substituents at 5-position of indole enhanced the binding tendency of the ligand. ADME studies indicated good oral bioavailability and absorption of these compounds. Density Functional Theory (DFT) calculations of hybrids were done at B3LYP/6-311G++(d,p) level of computation. Their HOMO and LUMO energy plots reflected the presence of high charge transfer and chemical potential. Natural bond order (NBO) calculations predicted hyperconjugative interactions. The Molecular Electrostatic Potential (MEP) surface plots showed possible electrophilic and nucleophilic attacking sites of the hybrids. Compound 10 a (5-fluoro-spiro[indol-indazole-thiazolidine]-dione-coumarin hybrid), on the basis of global reactivity descriptors, was filtered to be chemically most reactive with the highest binding energy of -8.23 kcal/mol with DNA G-quadruplex. The synthesized hybrid coumarin derivatives in correlation with theoretical docking studies validate that hybrid derivatives are more reactive compared to their non-hybrid counterparts.
Collapse
Affiliation(s)
- Leena Khanna
- Department of ChemistryUniversity of DelhiDelhi110007India
- University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha University, Sector 16-C, DwarkaNew Delhi110078India
| | - Sugandha Singhal
- University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha University, Sector 16-C, DwarkaNew Delhi110078India
| | | | - Pankaj Khanna
- Department of ChemistryUniversity of DelhiDelhi110007India
- Department of ChemistryAcharya Narendra Dev CollegeUniversity of Delhi, KalkajiNew Delhi110019India
| |
Collapse
|
16
|
Carvalho J, Santos T, Carrilho R, Sousa F, Salgado GF, Queiroz JA, Cruz C. Ligand screening to pre-miRNA 149 G-quadruplex investigated by molecular dynamics. J Biomol Struct Dyn 2019; 38:2276-2286. [DOI: 10.1080/07391102.2019.1632743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Josué Carvalho
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Tiago Santos
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Rui Carrilho
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Gilmar F. Salgado
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, IECB, Université de Bordeaux, Pessac, France
| | - João António Queiroz
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
17
|
Tikhomirov AS, Tsvetkov VB, Kaluzhny DN, Volodina YL, Zatonsky GV, Schols D, Shchekotikhin AE. Tri-armed ligands of G-quadruplex on heteroarene-fused anthraquinone scaffolds: Design, synthesis and pre-screening of biological properties. Eur J Med Chem 2018; 159:59-73. [DOI: 10.1016/j.ejmech.2018.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023]
|