1
|
Xu R, Liu S, Yang M, Yang G, Luo Z, Ran R, Zhou W, Shao Z. Advancements and prospects of perovskite-based fuel electrodes in solid oxide cells for CO 2 electrolysis to CO. Chem Sci 2024; 15:11166-11187. [PMID: 39055001 PMCID: PMC11268505 DOI: 10.1039/d4sc03306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Carbon dioxide (CO2) electrolysis to carbon monoxide (CO) is a very promising strategy for economically converting CO2, with high-temperature solid oxide electrolysis cells (SOECs) being regarded as the most suitable technology due to their high electrode reaction kinetics and nearly 100% faradaic efficiency, while their practical application is highly dependent on the performance of their fuel electrode (cathode), which significantly determines the cell activity, selectivity, and durability. In this review, we provide a timely overview of the recent progress in the understanding and development of fuel electrodes, predominantly based on perovskite oxides, for CO2 electrochemical reduction to CO (CO2RR) in SOECs. Initially, the current understanding of the reaction mechanisms over the perovskite electrocatalyst for CO synthesis from CO2 electrolysis in SOECs is provided. Subsequently, the recent experimental advances in fuel electrodes are summarized, with importance placed on perovskite oxides and their modification, including bulk doping with multiple elements to introduce high entropy effects, various methods for realizing surface nanoparticles or even single atom catalyst modification, and nanocompositing. Additionally, the recent progress in numerical modeling-assisted fast screening of perovskite electrocatalysts for high-temperature CO2RR is summarized, and the advanced characterization techniques for an in-depth understanding of the related fundamentals for the CO2RR over perovskite oxides are also reviewed. The recent pro-industrial application trials of the CO2RR in SOECs are also briefly discussed. Finally, the future prospects and challenges of SOEC cathodes for the CO2RR are suggested.
Collapse
Affiliation(s)
- Ruijia Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Shuai Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Meiting Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Guangming Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zhixin Luo
- WA School of Mines: Minerals, Energy & Chemical Engineering (WASM-MECE), Curtin University Perth WA 6102 Australia
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy & Chemical Engineering (WASM-MECE), Curtin University Perth WA 6102 Australia
| |
Collapse
|
2
|
Song D, Wu W. Study on Electrical and Mechanical Properties of Double-End Supported Elastic Substrate Prepared by Wet Etching Process. MICROMACHINES 2024; 15:929. [PMID: 39064440 PMCID: PMC11279102 DOI: 10.3390/mi15070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Preparing elastic substrates as a carrier for dual-end supported nickel chromium thin film strain sensors is crucial. Wet etching is a vital microfabrication process widely used in producing microelectronic components for various applications. This article combines lithography and wet etching methods to microprocess the external dimensions and rectangular grooves of 304 stainless steel substrates. The single-factor variable method was used to explore the influence mechanism of FeCl3, HCl, HNO3, and temperature on the etching rate, etching factor, and etching surface roughness. The optimal etching parameter combination was summarized: an FeCl3 concentration of 350 g/L, HCl concentration of 150 mL/L, HNO3 concentration of 100 mL/L, and temperature of 40 °C. In addition, by comparing the surface morphology, microstructure, and chemical and mechanical properties of a 304 stainless steel substrate before and after etching treatment, it can be seen that the height difference of the substrate surface before and after etching is between 160 μm and -70 μm, which is basically consistent with the initial design of 0.2 mm. The results of an XPS analysis and Raman spectroscopy analysis both indicate that the surface C content increases after etching, and the corrosion resistance of the surface after etching decreases. The nano-hardness after etching increased by 26.4% compared to before, and the ζ value decreased by 7%. The combined XPS and Raman results indicate that the changes in surface mechanical properties of 304 stainless steel substrates after etching are mainly caused by the formation of micro-nanostructures, grain boundary density, and dislocations after wet etching. Compared with the initial rectangular substrate, the strain of the I-shaped substrate after wet etching increased by 3.5-4 times. The results of this study provide the preliminary process parameters for the wet etching of a 304 stainless steel substrate of a strain measuring force sensor and have certain guiding significance for the realization of simple steps and low cost of 304 stainless steel substrate micro-nano-processing.
Collapse
Affiliation(s)
| | - Wenge Wu
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China;
| |
Collapse
|
3
|
Rao M, Li M, Chen Z, Xiong K, Huang H, Yang W, Ling Y, Chen C, Zhang Z, Lin B. Direct carbon dioxide-methane solid oxide fuel cells integrated for high-efficiency power generation with La0.75Sr0.25Cr0.5Fe0.4Ni0.1O3–δ-based dry reforming catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Solid-State Electrochemistry and Solid Oxide Fuel Cells: Status and Future Prospects. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractSolid-state electrochemistry (SSE) is an interdisciplinary field bridging electrochemistry and solid-state ionics and deals primarily with the properties of solids that conduct ions in the case of ionic conducting solid electrolytes and electrons and/or electron holes in the case of mixed ionic and electronic conducting materials. However, in solid-state devices such as solid oxide fuel cells (SOFCs), there are unique electrochemical features due to the high operating temperature (600–1 000 °C) and solid electrolytes and electrodes. The solid-to-solid contact at the electrode/electrolyte interface is one of the most distinguished features of SOFCs and is one of the fundamental reasons for the occurance of most importance phenomena such as shift of the equipotential lines, the constriction effect, polarization-induced interface formation, etc. in SOFCs. The restriction in placing the reference electrode in solid electrolyte cells further complicates the SSE in SOFCs. In addition, the migration species at the solid electrode/electrolyte interface is oxygen ions, while in the case of the liquid electrolyte system, the migration species is electrons. The increased knowledge and understanding of SSE phenomena have guided the development of SOFC technologies in the last 30–40 years, but thus far, no up-to-date reviews on this important topic have appeared. The purpose of the current article is to review and update the progress and achievements in the SSE in SOFCs, largely based on the author’s past few decades of research and understanding in the field, and to serve as an introduction to the basics of the SSE in solid electrolyte devices such as SOFCs.
Graphical abstract
Collapse
|
6
|
High-Temperature Electrochemical Devices Based on Dense Ceramic Membranes for CO2 Conversion and Utilization. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00099-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Early-Stage Detection of Solid Oxide Cells Anode Degradation by Operando Impedance Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9050848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Solid oxide cells represent one of the most efficient and promising electrochemical technologies for hydrogen energy conversion. Understanding and monitoring degradation is essential for their full development and wide diffusion. Techniques based on electrochemical impedance spectroscopy and distribution of relaxation times of physicochemical processes occurring in solid oxide cells have attracted interest for the operando diagnosis of degradation. This research paper aims to validate the methodology developed by the authors in a previous paper, showing how such a diagnostic tool may be practically implemented. The validation methodology is based on applying an a priori known stress agent to a solid oxide cell operated in laboratory conditions and on the discrete measurement and deconvolution of electrochemical impedance spectra. Finally, experimental evidence obtained from a fully operando approach was counterchecked through ex-post material characterization.
Collapse
|
8
|
Kim JH, Chern ZY, Yoo S, deGlee B, Wang J, Liu M. Unraveling the Mechanism of Water-Mediated Sulfur Tolerance via Operando Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2370-2379. [PMID: 31845795 DOI: 10.1021/acsami.9b17294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While several proton-conducting anode materials have shown excellent tolerance to sulfur poisoning, the mechanism is still unclear due largely to the inability to probe miniscule amounts of sulfur-containing species using conventional surface characterization techniques. Here we present our findings in unraveling the mechanism of water-mediated sulfur tolerance of a proton conductor under operating conditions empowered by surface-sensitive, operando surface-enhanced Raman spectroscopy (SERS) coupled with impedance spectroscopy. Contrary to the conventional view that surface-adsorbed sulfur is removed mainly by oxygen anions, it is found that -SO4 groups on the surface of the proton conductor are converted to SO2 by a water-mediated process, as confirmed by operando SERS analysis and density functional theory (DFT)-based calculations. The combination of operando SERS performed on a model electrode and theoretical computation offers an effective approach to investigate into complex mechanisms of electrode processes in various electrochemical systems, providing information vital to achieve the rational design of better electrode materials.
Collapse
Affiliation(s)
- Jun Hyuk Kim
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0245 , United States
| | - Zhao-Ying Chern
- Department of Chemistry , National Taiwan Normal University , 88, Section 4, Ting-Zhou Road , Taipei 11677 , Taiwan , R.O.C
| | - Seonyoung Yoo
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0245 , United States
| | - Ben deGlee
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0245 , United States
| | - Jenghan Wang
- Department of Chemistry , National Taiwan Normal University , 88, Section 4, Ting-Zhou Road , Taipei 11677 , Taiwan , R.O.C
| | - Meilin Liu
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0245 , United States
| |
Collapse
|
9
|
Nanocomposite electrodes for high current density over 3 A cm -2 in solid oxide electrolysis cells. Nat Commun 2019; 10:5432. [PMID: 31780713 PMCID: PMC6883038 DOI: 10.1038/s41467-019-13426-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/07/2019] [Indexed: 12/03/2022] Open
Abstract
Solid oxide electrolysis cells can theoretically achieve high energy-conversion efficiency, but current density must be further increased to improve the hydrogen production rate, which is essential to realize widespread application. Here, we report a structure technology for solid oxide electrolysis cells to achieve a current density higher than 3 A cm−2, which exceeds that of state-of-the-art electrolyzers. Bimodal-structured nanocomposite oxygen electrodes are developed where nanometer-scale Sm0.5Sr0.5CoO3−δ and Ce0.8Sm0.2O1.9 are highly dispersed and where submicrometer-scale particles form conductive networks with broad pore channels. Such structure is realized by fabricating the electrode structure from the raw powder material stage using spray pyrolysis. The solid oxide electrolysis cells with the nanocomposite electrodes exhibit high current density in steam electrolysis operation (e.g., at 1.3 V), reaching 3.13 A cm−2 at 750 °C and 4.08 A cm−2 at 800 °C, corresponding to a hydrogen production rate of 1.31 and 1.71 L h−1 cm−2 respectively. High-temperature solid oxide electrolysis cells are a promising technology for energy conversion, but higher current density is needed to increase efficiency. Here the authors design nanocomposite electrodes to improve electronic and ionic conductivity to achieve a high current density.
Collapse
|
10
|
Chen Y, Liang L, Paredes Navia SA, Hinerman A, Gerdes K, Song X. Synergetic Interaction of Additive Dual Nanocatalysts to Accelerate Oxygen Reduction Reaction in Fuel Cell Cathodes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun Chen
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Liang Liang
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sergio A. Paredes Navia
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Alec Hinerman
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kirk Gerdes
- National Energy Technology Laboratory, United States Department of Energy, Morgantown, West Virginia 26507, United States
| | - Xueyan Song
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|