1
|
Humayun M, Li Z, Israr M, Khan A, Luo W, Wang C, Shao Z. Perovskite Type ABO 3 Oxides in Photocatalysis, Electrocatalysis, and Solid Oxide Fuel Cells: State of the Art and Future Prospects. Chem Rev 2025; 125:3165-3241. [PMID: 40071570 DOI: 10.1021/acs.chemrev.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Since photocatalytic and electrocatalytic technologies are crucial for tackling the energy and environmental challenges, significant efforts have been put into exploring advanced catalysts. Among them, perovskite type ABO3 oxides show great promising catalytic activities because of their flexible physical and chemical properties. In this review, the fundamentals and recent progress in the synthesis of perovskite type ABO3 oxides are considered. We describe the mechanisms for electrocatalytic oxygen evolution reactions (OER), oxygen reduction reactions (ORR), hydrogen evolution reactions (HER), nitrogen reduction reactions (NRR), carbon dioxide reduction reactions (CO2RR), and metal-air batteries in details. Furthermore, the photocatalytic water splitting, CO2 conversion, pollutant degradation, and nitrogen fixation are reviewed as well. We also stress the applications of perovskite type ABO3 oxides in solid oxide fuel cells (SOFs). Finally, the optimization of perovskite type ABO3 oxides for applications in various fields and an outlook on the current and future challenges are depicted. The aim of this review is to present a broad overview of the recent advancements in the development of perovskite type ABO3 oxides-based catalysts and their applications in energy conversion and environmental remediation, as well as to present a roadmap for future development in these hot research areas.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Zhishan Li
- Faculty of Metallurgical and Energy Engineering, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Muhammad Israr
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Wei Luo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
| |
Collapse
|
2
|
Cui H, Gao M, Cao G, Liu F, Hu J, Ban J. How Thick Aqueous Alkali Should be Better for Aluminum-Air Batteries at Sub-Zero Temperatures: A Critical Anti-Freezing Concentration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402005. [PMID: 38816929 PMCID: PMC11304294 DOI: 10.1002/advs.202402005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Indexed: 06/01/2024]
Abstract
The application of portable aluminum-air batteries (AABs) in extreme environments is an inevitable demand for future development. Aqueous electrolyte freezing is a major challenge for low-temperature operations. Conventionally, enlightened by the organic system in metal ion batteries, blindly increasing the concentration is regarded as an efficient technique to reduce the freezing point (FP). However, the underlying contradiction between the adjusting mechanism of the FP and OH- transportation is ignored. Herein, the aqueous alkali solution of CsOH is researched as a prototype to disclose the intrinsic conductive behavior and related solvent structure evolution. Different from these inorganic electrolyte systems, the concept of a critical anti-freezing concentration (CFC) is proposed based on a specific temperature. The relationship between hydrogen bond reconstruction and de-solvation behavior is analyzed. A high conductivity is obtained at -30 °C, which is also a recorded value in an intrinsic aqueous AAB. The homogenous dissolution of the Al anode is also observed. As a general rule, the CFC concept is also applied in both the KOH and NaOH systems.
Collapse
Affiliation(s)
- Hongyu Cui
- School of Materials Science and EngineeringState Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM), Zhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Ming Gao
- School of Materials Science and EngineeringState Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM), Zhengzhou UniversityZhengzhouHenan450001P. R. China
- School of Computational Science and ElectronicsHunan Institute of EngineeringXiangtan411104P. R. China
| | - Guoqin Cao
- School of Materials Science and EngineeringState Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM), Zhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Fanfan Liu
- School of Materials Science and EngineeringState Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM), Zhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Junhua Hu
- School of Materials Science and EngineeringState Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM), Zhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Jinjin Ban
- School of Materials Science and EngineeringState Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM), Zhengzhou UniversityZhengzhouHenan450001P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University InstitutionTianjin300071P. R. China
| |
Collapse
|
3
|
Rani B, Yadav JK, Saini P, Pandey AP, Dixit A. Aluminum-air batteries: current advances and promises with future directions. RSC Adv 2024; 14:17628-17663. [PMID: 38832240 PMCID: PMC11145468 DOI: 10.1039/d4ra02219j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Owing to their attractive energy density of about 8.1 kW h kg-1 and specific capacity of about 2.9 A h g-1, aluminum-air (Al-air) batteries have become the focus of research. Al-air batteries offer significant advantages in terms of high energy and power density, which can be applied in electric vehicles; however, there are limitations in their design and aluminum corrosion is a main bottleneck. Herein, we aim to provide a detailed overview of Al-air batteries and their reaction mechanism and electrochemical characteristics. This review emphasizes each component/sub-component including the anode, electrolyte, and air cathode together with strategies to modify the electrolyte, air-cathode, and even anode for enhanced performance. The latest advancements focusing on the specific design of Al-air batteries and their rechargeability characteristics are discussed. Finally, the constraints and prospects of their use in mobility applications are also covered in depth. Thus, the present review may pave the way for researchers and developers working in energy storage solutions to look beyond lithium/sodium ion-based storage solutions.
Collapse
Affiliation(s)
- Bharti Rani
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Jitendra Kumar Yadav
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Priyanka Saini
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Anant Prakash Pandey
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| | - Ambesh Dixit
- Advanced Material and Devices Laboratory (A-MAD), Department of Physics, Indian Institute of Technology Jodhpur Rajasthan 342030 India
| |
Collapse
|
4
|
Vasudevan S, D ST, Manickam M, Sivasubramanian R. A sol-gel derived LaCoO 3 perovskite as an electrocatalyst for Al-air batteries. Dalton Trans 2024; 53:3713-3721. [PMID: 38299266 DOI: 10.1039/d3dt03736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In this work, we report the performance of the LaCoO3 perovskite oxide as a cathode catalyst for an Al-air battery. LaCoO3 was prepared using the sol-gel method and its suitability as a catalyst has been studied. XRD studies of the perovskite revealed a monoclinic symmetry with no secondary phase being observed. An aggregated morphology with a porous structure was observed from SEM analysis. TEM studies showed that the aggregated LaCoO3 particles exhibited an average diameter of 49.94 nm. The surface area obtained using the BET method is found to be 9.088 m2 g-1. The electrochemical activity of LaCoO3 towards the oxygen reduction reaction (ORR) was higher than that of the bare glassy carbon electrode (GCE). From the kinetic studies, the number of electrons transferred was found to be 4.08, indicating that the reaction occurs through a 4e- pathway. The mass activity and specific activity were found to be 3.05 mA mg-1 and 0.33 mA cm-2 at 1.2 V (vs. the reversible hydrogen electrode (RHE)), respectively. The stability of LaCoO3 was studied using chronoamperometry and impedance analyses, which revealed less charge transfer resistance before and after the stability test. Subsequently, an Al-air battery was fabricated using LaCoO3 as the cathode and Al as the anode. Polyvinyl alcohol (PVA) based KOH gel was used as an electrolyte. The cell exhibited an open circuit voltage (OCV) of 1.35 V with a discharging capacity of 1770 mA h g-1. In addition, the power density was calculated to be 10.04 mW cm-2 at 0.6 V vs. RHE. Our studies suggest that LaCoO3 can be a promising candidate as a cathode for high-performance Al-air batteries.
Collapse
Affiliation(s)
- Suruthi Vasudevan
- Electrochemical Sensors and Energy Materials Lab, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu 641004, India
| | - Swathi Tharani D
- Electrochemical Sensors and Energy Materials Lab, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu 641004, India
| | - Minakshi Manickam
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia.
| | - R Sivasubramanian
- Department of Chemistry, Amrita School of Physical Sciences, Amaravati, Amrita Vishwa Vidyapeetham, Andhra Pradesh 522503, India.
| |
Collapse
|
5
|
Nayem SMA, Islam S, Mohamed M, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries. CHEM REC 2024; 24:e202300005. [PMID: 36807755 DOI: 10.1002/tcr.202300005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Aluminum-air batteries (AABs) are regarded as attractive candidates for usage as an electric vehicle power source due to their high theoretical energy density (8100 Wh kg-1 ), which is considerably higher than that of lithium-ion batteries. However, AABs have several issues with commercial applications. In this review, we outline the difficulties and most recent developments in AABs technology, including electrolytes and aluminum anodes, as well as their mechanistic understanding. First, the impact of the Al anode and alloying on battery performance is discussed. Then we focus on the impact of electrolytes on battery performances. The possibility of enhancing electrochemical performances by adding inhibitors to electrolytes is also investigated. Additionally, the use of aqueous and non-aqueous electrolytes in AABs is also discussed. Finally, the challenges and potential future research areas for the advancement of AABs are suggested.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Mostafa Mohamed
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM, Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Yang X, Wang X, Xiang Y, Ma L, Huang W. Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries. NANO-MICRO LETTERS 2023; 16:51. [PMID: 38099969 PMCID: PMC10724106 DOI: 10.1007/s40820-023-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
With the rapid development of portable electronics and electric road vehicles, high-energy-density batteries have been becoming front-burner issues. Traditionally, homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode, which are essential for high-voltage batteries. Meanwhile, homogeneous electrolyte is difficult to achieve bi- or multi-functions to meet different requirements of electrodes. In comparison, the asymmetric electrolyte with bi- or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte. Consequently, the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan. In this review, we comprehensively divide asymmetric electrolytes into three categories: decoupled liquid-state electrolytes, bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes. The design principles, reaction mechanism and mutual compatibility are also studied, respectively. Finally, we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density, and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
Collapse
Affiliation(s)
- Xiaochen Yang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xinyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yue Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Longtao Ma
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
7
|
Soeteman-Hernández LG, Blanco CF, Koese M, Sips AJAM, Noorlander CW, Peijnenburg WJGM. Life cycle thinking and safe-and-sustainable-by-design approaches for the battery innovation landscape. iScience 2023; 26:106060. [PMID: 36915691 PMCID: PMC10005908 DOI: 10.1016/j.isci.2023.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Developments in battery technology are essential for the energy transition and need to follow the framework for safe-and-sustainable-by-design (SSbD) materials, chemicals, products, and processes as set by the EU. SSbD is a broad approach that ensures that chemicals/advanced materials/products/services are produced and used in a way to avoid harm to humans and the environment. Technical and policy-related literature was surveyed for battery technologies and recommendations were provided for a broad SSbD approach that remains firmly grounded in Life Cycle Thinking principles. The approach integrates functional performance and sustainability (safety, social, environmental, and economic) aspects throughout the life cycle of materials, products, and processes, and evaluates how their interactions reflect on SSbD parameters. 22 different types of batteries were analyzed in a life cycle thinking approach for criticality, toxicity/safety, environmental and social impact, circularity, functionality, and cost to ensure battery innovation has a green and sustainable purpose to avoid unintended consequences.
Collapse
Affiliation(s)
- Lya G Soeteman-Hernández
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | - Carlos Felipe Blanco
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Maarten Koese
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Adrienne J A M Sips
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | - Cornelle W Noorlander
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | - Willie J G M Peijnenburg
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands.,Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
Li K, Cheng R, Xue Q, Zhao T, Wang F, Fu C. Construction of a Co/MnO Mott-Schottky Heterostructure to Achieve Interfacial Synergy in the Oxygen Reduction Reaction for Aluminum-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9150-9159. [PMID: 36780395 DOI: 10.1021/acsami.2c13871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rational design of non-noble metal-based electrocatalysts for an efficient oxygen reduction reaction (ORR) is an important research topic to promote the advancement of aluminum-air batteries. In this work, heterostructural Co/MnO nanoparticles encapsulated in a N-doped carbon electrocatalyst were prepared via one-step pyrolysis utilizing different reduction potentials of Co and Mn ions, and the heterointerface between the two phases was confirmed. The prepared catalyst displays Pt/C competitive ORR performance because of the interfacial synergy of a Co/MnO Mott-Schottky (M-S) heterostructure, which leads to boosted conductivity, formation of an M-S barrier, and a reduced oxygen reduction energy barrier for excited electrons. Furthermore, the Co/MnO-based aluminum-air battery displays good discharge performance, demonstrating good feasibility for practical application.
Collapse
Affiliation(s)
- Kaiqi Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyue Xue
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianshuo Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Cathode materials for lithium-sulfur battery: a review. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractLithium-sulfur batteries (LSBs) are considered to be one of the most promising candidates for becoming the post-lithium-ion battery technology, which would require a high level of energy density across a variety of applications. An increasing amount of research has been conducted on LSBs over the past decade to develop fundamental understanding, modelling, and application-based control. In this study, the advantages and disadvantages of LSB technology are discussed from a fundamental perspective. Then, the focus shifts to intermediate lithium polysulfide adsorption capacity and the challenges involved in improving LSBs by using alternative materials besides carbon for cathode construction. Attempted alternative materials include metal oxides, metal carbides, metal nitrides, MXenes, graphene, quantum dots, and metal organic frameworks. One critical issue is that polar material should be more favorable than non-polar carbonaceous materials in the aspect of intermediate lithium polysulfide species adsorption and suppress shuttle effect. It will be also presented that by preparing cathode with suitable materials and morphological structure, high-performance LSB can be obtained.
Graphical abstract
Collapse
|
10
|
Moser D, Materna P, Stark A, Lammer J, Csík A, Abdou JM, Dorner R, Sterrer M, Goessler W, Kothleitner G, Gollas B. Corrosion of Passive Aluminum Anodes in a Chloroaluminate Deep Eutectic Solvent for Secondary Batteries: The Bad, the Good, and the Ugly. ACS APPLIED MATERIALS & INTERFACES 2023; 15:882-892. [PMID: 36574963 PMCID: PMC9837816 DOI: 10.1021/acsami.2c16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The passivity of aluminum is detrimental to its performance as an anode in batteries. Soaking of native oxide-covered aluminum in a chloroaluminate deep eutectic solvent gradually activates the electrode surface, which is reflected in a continuously decreasing open circuit potential. The underlying processes were studied by analyzing the 3 to 7 nm thick layer of native oxide after increasing periods of soaking with secondary neutral mass spectrometry, X-ray photoelectron spectroscopy, and energy-dispersive spectroscopy in a transmission electron microscope. They consistently show permeation of electrolyte species into the layer associated with gradual swelling. After extended periods of soaking at open circuit potentials, local deposits of a range of foreign metals have been found in scanning electron microscopy images of the electrode surface. The pitting corrosion is caused by trace metal ion impurities present in the electrolyte and results in highly nonuniform current density distribution during discharge/charge cycling of battery cells as shown by local deposits of aluminum. The processes during soaking at open circuit potentials have been monitored by electrochemical impedance spectroscopy and could be analyzed by fitting an equivalent circuit model for pitting corrosion.
Collapse
Affiliation(s)
- David Moser
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010Graz, Austria
| | - Philipp Materna
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9/II, 8010Graz, Austria
| | - Anna Stark
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9/II, 8010Graz, Austria
| | - Judith Lammer
- Graz
Centre for Electron Microscopy, Steyrergasse 17, 8010Graz, Austria
| | - Attila Csík
- Institute
for Nuclear Research, Bem ter 18/c, 4026Debrecen, Hungary
| | - Jasmin M. Abdou
- Institute
of Physics, University of Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Raphael Dorner
- Institute
of Physics, University of Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Martin Sterrer
- Institute
of Physics, University of Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Walter Goessler
- Institute
of Chemistry, University of Graz, Universitätsplatz 1, 8010Graz, Austria
| | - Gerald Kothleitner
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010Graz, Austria
- Graz
Centre for Electron Microscopy, Steyrergasse 17, 8010Graz, Austria
| | - Bernhard Gollas
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9/II, 8010Graz, Austria
| |
Collapse
|
11
|
Enhanced electrical conductivity and stretchability of ionic-liquid PEDOT:PSS air-cathodes for aluminium-air batteries with long lifetime and high specific energy. Sci Rep 2022; 12:22107. [PMID: 36543823 PMCID: PMC9772303 DOI: 10.1038/s41598-022-26546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
A hydrogel film, poly-3,4-ethylenedioxythiophene (PEDOT):polystyrenesulfonate (PSS), containing an ionic liquid, is used as an air-cathode for a metal-air battery and its performance is investigated. This work presents the development of the air-cathode and the characterization of its physical, chemical and mechanical properties. Moreover, in view of wearable batteries, these air-cathodes are implemented within a flexible aluminium-air battery. It contains an aluminium anode, an electrolyte made of cellulose paper imbibed with an aqueous sodium chloride solution and the PEDOT:PSS air-cathode. Characterisation tests showed that the ionic liquid did not change the air-cathode chemically, while the electric conductivity increased considerably. The anode has an acceptable purity and was found to be resistant against self-corrosion. Discharge tests showed operating voltages up to 0.65 V, whereas two batteries in series could deliver up to 1.3 V at a current density of 0.9 mA cm-2 for almost a day, sufficient for monitoring and medical devices. Several discharge tests with current densities from 0.25 up to 2.5 mA cm-2 have presented operating lifetimes from 10 h up until over a day. At a current density of 2.8 mA cm-2, the operating voltage and lifetime dropped considerably, explained by approaching the limiting current density of about 3 mA cm-2, as evidenced by linear sweep voltammetry. The batteries showed high specific energies up to about 3140 Wh kg-1. Mechanical tests revealed a sufficient stretchability of the air-cathode, even after battery discharge, implying an acceptable degree of wearability. Together with the reusability of the air-cathode, the battery is a promising route towards a low-cost viable way for wearable power supply for monitoring medical devices with long lifetimes and high specific energies. Optimization of the air-cathode could even lead to higher power applications.
Collapse
|
12
|
Mehek R, Iqbal N, Noor T, Ghazi ZA, Umair M. Metal-organic framework derived vanadium oxide supported nanoporous carbon structure as a bifunctional electrocatalyst for potential application in metal air batteries. RSC Adv 2022; 13:652-664. [PMID: 36605659 PMCID: PMC9780743 DOI: 10.1039/d2ra06688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
High-efficiency, sustainable, non-precious metal-based electrocatalysts with bifunctional catalytic activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are essential for metal-air batteries. In this research, a bifunctional electrocatalyst is developed by synthesizing a novel nanoporous vanadium oxide/carbon composite (NVC-900) through pyrolysis of a highly efficient vanadium metal-organic framework, MIL-101 (V). The fabrication process was conveniently carried out by pyrolyzing the synthesized MIL-101 (V) at 900 °C, producing vanadium oxide nanoparticles embedded in the extensively distributed pores of the carbon network. The evenly distributed nanopores substantially improve the performance of the efficient electrocatalyst for both the oxygen reduction reaction and oxygen evolution reactions (ORR/OER) by increasing surface area and facilitating access to stable catalytic active sites. The unique structure was characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). For oxygen reduction reaction (ORR), the electrocatalyst established a promising limiting current density (J L) of 5.2 mA cm-2 at 1600 rpm at an onset potential of 1.18 V and a half-wave potential of 0.82 V, and for OER, a current density of 10 mA cm-2 was delivered at a potential of 1.48 V. In comparison to 10% Pt/C, the synthesized bifunctional electrocatalyst being almost equally active towards bifunctional activity, showed much better long-term cyclic stability. The one-step thermal pyrolysis strategy to synthesize the nanoporous functional material and the proposed electrocatalytic material's long-term bifunctional activity and durability make it an ideal fit for next-generation portable green metal-air batteries.
Collapse
Affiliation(s)
- Rimsha Mehek
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| | - Naseem Iqbal
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan
| | - Zahid Ali Ghazi
- National Centre of Excellence in Physical Chemistry, University of Peshawar25120Pakistan
| | - Muhammad Umair
- US-Pakistan Center for Advanced Studies (USPCAS-E), National University of Sciences and Technology (NUST)H-12Islamabad 44000Pakistan+92 51 9085 5281
| |
Collapse
|
13
|
Synthesis of Cyano-Benzylidene Xanthene Synthons Using a Diprotic Brønsted Acid Catalyst, and Their Application as Efficient Inhibitors of Aluminum Corrosion in Alkaline Solutions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175733. [PMID: 36080500 PMCID: PMC9457813 DOI: 10.3390/molecules27175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/13/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Novel cyano-benzylidene xanthene derivatives were synthesized using one-pot and condensation reactions. A diprotic Brønsted acid (i.e., oxalic acid) was used as an effective catalyst for the promotion of the synthesis process of the new starting xanthene–aldehyde compound. Different xanthene concentrations (ca. 0.1–2.0 mM) were applied as corrosion inhibitors to control the alkaline uniform corrosion of aluminum. Measurements were conducted in 1.0 M NaOH solution using Tafel extrapolation and linear polarization resistance (LPR) methods. The investigated xanthenes acted as mixed-type inhibitors that primarily affect the anodic process. Their inhibition efficiency values were enhanced with inhibitor concentration, and varied according to their chemical structures. At a concentration of 2.0 mM, the best-performing studied xanthene derivative recorded maximum inhibition efficiency values of 98.9% (calculated via the Tafel extrapolation method) and 98.4% (estimated via the LPR method). Scanning electron microscopy (SEM) was used to examine the morphology of the corroded and inhibited aluminum surfaces, revealing strong inhibitory action of each studied compound. High-resolution X-ray photoelectron spectroscopy (XPS) profiles validated the inhibitor compounds’ adsorption on the Al surface. Density functional theory (DFT) and Monte Carlo simulations were applied to investigate the distinction of the anticorrosive behavior among the studied xanthenes toward the Al (111) surface. The non-planarity of xanthenes and the presence of the nitrile group were the key players in the adsorption process. A match between the experimental and theoretical findings was evidenced.
Collapse
|
14
|
Gong Y, Xu Y, Que Y, Xu X, Tang Y, Ye D, Zhao H, Zhang J. Prussian blue analogues derived electrocatalyst with multicatalytic centers for boosting oxygen reduction reaction in the wide pH range. J Colloid Interface Sci 2022; 612:639-649. [PMID: 35026569 DOI: 10.1016/j.jcis.2021.12.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
Due to the complex of oxygen reduction reaction (ORR), designing catalysts with multicatalytic centers is considered as a promising way for boosting the ORR. Herein, a multicatalytic centers electrocatalyst Fe3C/Mn3O4 encased by N-doped graphitic layers (FeMn PDA-900) is synthesized using iron manganese Prussian blue analogues and dopamine as the precursor. It exhibits a half-wave potential (E1/2) of 0.86 V for ORR and yields of H2O2 lower than 5% in 0.1 M KOH. Moreover, the prepared catalyst has also shown high catalytic ORR performance in both acidic and neutral electrolyte solutions, which exhibits the potential application in both the proton exchange membrane fuel cell and the microbial electrolysis cell. It is found that the good performance can be well explained by proton-coupled electron transfer mechanism due to the multicatalytic centers from Fe-Nx, Fe3C and Mn3O4 for providing enough active sites at the same time and the N-doped graphitic layers as a bridge for facilitating the electron transfer between the interfaces of Fe3C/Mn3O4 nanoparticles, which paves the way for protons and electrons transfer simultaneously and rapidly, and thus lowing the energy barrier and facilitating the ORR process. Therefore, FeMn PDA-900 is a promising candidate to replace precious metal-based ORR electrocatalysts at the whole pH range.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Yuan Xu
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Yipeng Que
- Chilwee Group Co., Ltd, Huzhou 313100, PR China
| | - Xueliang Xu
- Chilwee Group Co., Ltd, Huzhou 313100, PR China
| | - Ya Tang
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Daixin Ye
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China.
| | - Hongbin Zhao
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China.
| | - Jiujun Zhang
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| |
Collapse
|
15
|
Gao Y, Pan Z, Sun J, Liu Z, Wang J. High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. NANO-MICRO LETTERS 2022; 14:94. [PMID: 35384559 PMCID: PMC8986960 DOI: 10.1007/s40820-022-00844-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 05/02/2023]
Abstract
Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century. While lithium-ion batteries have so far been the dominant choice, numerous emerging applications call for higher capacity, better safety and lower costs while maintaining sufficient cyclability. The design space for potentially better alternatives is extremely large, with numerous new chemistries and architectures being simultaneously explored. These include other insertion ions (e.g. sodium and numerous multivalent ions), conversion electrode materials (e.g. silicon, metallic anodes, halides and chalcogens) and aqueous and solid electrolytes. However, each of these potential "beyond lithium-ion" alternatives faces numerous challenges that often lead to very poor cyclability, especially at the commercial cell level, while lithium-ion batteries continue to improve in performance and decrease in cost. This review examines fundamental principles to rationalise these numerous developments, and in each case, a brief overview is given on the advantages, advances, remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges. Finally, research and development results obtained in academia are compared to emerging commercial examples, as a commentary on the current and near-future viability of these "beyond lithium-ion" alternatives.
Collapse
Affiliation(s)
- Yulin Gao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- ST Engineering Advanced Material Engineering Pte. Ltd., Singapore, 619523, Singapore.
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zhaolin Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore.
| |
Collapse
|
16
|
Zhao Q, Wu P, Sun D, Wang H, Tang Y. A dual-electrolyte system for highly efficient Al-air batteries. Chem Commun (Camb) 2022; 58:3282-3285. [PMID: 35188155 DOI: 10.1039/d1cc07044d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a brand-new dual-electrolyte consisting of porous polyacrylic acid (PAA) hydrogel and 4 M KOH aqueous electrolyte is put forward. The Al-air battery with this dual-electrolyte demonstrates well-suppressed self-corrosion and enhanced electrochemical performance.
Collapse
Affiliation(s)
- Qian Zhao
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Pengfei Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Dan Sun
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| |
Collapse
|
17
|
Investigation on the Potential of Various Biomass Waste for the Synthesis of Carbon Material for Energy Storage Application. SUSTAINABILITY 2022. [DOI: 10.3390/su14052919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The metal–air battery (MAB) has been a promising technology to store energy, with its outstanding energy density, as well as safety features. Yet, the current material used as air cathode is costly and not easily available. This study investigated a few biomass wastes with good potential, including the oil palm empty fruit bunch and garlic peel, as well as the oil palm frond, to determine a sufficiently environmentally-safe, yet efficient, precursor to produce carbon material as an electro-catalyst for MAB. The precursors were carbonized at different temperatures (450, 600, and 700 °C) and time (30, 45, and 60 min) followed by chemical (KOH) activation to synthesize the carbon material. The synthesized materials were subsequently studied through chemical, as well as physical characterization. It was found that PF presented superior tunability that can improve electrical conductivity, due to its ability to produce amorphous carbon particles with a smaller size, consisting of hierarchical porous structure, along with a higher specific surface area of up to 777.62 m2g−1, when carbonized at 600 °C for 60 min. This paper identified that PF has the potential as a sustainable and cost-efficient alternative to carbon nanotube (CNT) as an electro-catalyst for energy storage application, such as MAB.
Collapse
|
18
|
Synthesis and Electrochemical Activity of Carbon-Supported Trimetallic Ir95-xPd5Ptx Nanoparticles as Bifunctional Catalysts for Oxygen Evolution/Reduction Reactions. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Electrochemical Performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) Alloys Used as the Anode of an Al-Air Battery. Processes (Basel) 2022. [DOI: 10.3390/pr10020420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) alloys are prepared and used as the anode of an Al-air battery (AAB). We use scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) and optical microscopy (OM) to analyze the microstructures of the alloys. The hydrogen evolution rate, electrochemical performance (including polarization curves), electrochemical impedance spectroscopy (EIS), and battery performance of the samples are examined in the 4 M NaOH electrolyte. The experimental data display that the average grain size is significantly refined after adding manganese into the Al-1Zn-0.1In-0.1Sn-0.5Mg alloy, with a decrease in grain size from over 100 μm to about 10 μm. The improved activity of the aluminum anode in the AAB can be attributed to the introduction of manganese. The Al-1Zn-0.1In-0.1Sn-0.5Mg-0.1Mn alloy possesses the optimal overall performance with a lower self-corrosion rate (0.128 mL∙cm−2∙min−1), the highest working potential (1.630 V) and energy density (2415 mWh·g−1), a higher capacity (1481 mAh·g−1) and anodic utilization (49.75%).
Collapse
|
20
|
Wang H, Jin Z, Wang J, Yuan S, Wei C, Gao Q. Contribution of constitutional liquation of the segregation phase to improve the electrochemical performance of Al-Sn based anodes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01023b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the strategy of regulating the constitutional liquation of the segregation phases, the Al-based anode materials with high voltage in the neutral electrolyte are designed and prepared for the...
Collapse
|
21
|
Multiple Roles of Graphene in Electrocatalysts for Metal-Air Batteries. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Sultana F, Althubeiti K, Abualnaja KM, Wang J, Zaman A, Ali A, Arbab SA, Uddin S, Yang Q. An innovative approach towards the simultaneous enhancement of the oxygen reduction and evolution reactions using a redox mediator in polymer based Li-O 2 batteries. Dalton Trans 2021; 50:16386-16394. [PMID: 34734595 DOI: 10.1039/d1dt03033g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For safety concerns, polymer-based Li-O2 batteries have received more attention than traditional non-aqueous Li-O2 batteries. However, poor cycling stability, low round trip efficiency, and over charge potential during cycling are the major shortcomings for their future applications. In this work, a soluble redox mediator integrated into a polymer electrolyte provides immediate access to the solid discharged product, lowering the energy barrier for reversible Li2O2 generation and disintegration. Moreover, introducing a redox mediator to the polymer electrolyte boosts the ORR during discharge and the OER during the recharge process. The synergistic redox mediator pBQ (1,4 benzoquinone) dramatically reduces the over-potential. A small proportion of pBQ in the polymer electrolyte allows Li2O2 to develop in a thin film-like morphology on the cathode surface, resulting in a high reversible capacity of ∼12 000 mA h g-1 and an extended cycling stability of 100 cycles at 200 mA g-1 with a cut-off capacity of 1000 mA h g-1. The remarkable cell performance is attributed to the fast kinetics of para benzoquinone for the ORR and OER in Li-O2 batteries. The use of a redox mediator in a polymer electrolyte opens a new avenue for practical Li-O2 battery applications in achieving low charge potential and excellent energy efficiency.
Collapse
Affiliation(s)
- Fozia Sultana
- Hefei National Laboratory of Physical Sciences at the Microscale (HFNL), Department of Chemistry, Laboratory of Nanomaterial's for Energy Conversion (LNEC), University of Science and Technology China, Hefei 230026, Anhui, P. R. China.
| | - Khaled Althubeiti
- Department of Chemistry, College of Science, Taif University, P. O Box 11099, Taif 21944, Saudi Arabia.
| | - Khamael M Abualnaja
- Department of Chemistry, College of Science, Taif University, P. O Box 11099, Taif 21944, Saudi Arabia.
| | - Jiahui Wang
- Hefei National Laboratory of Physical Sciences at the Microscale (HFNL), Department of Chemistry, Laboratory of Nanomaterial's for Energy Conversion (LNEC), University of Science and Technology China, Hefei 230026, Anhui, P. R. China.
| | - Abid Zaman
- Department of Physics, Riphah International University, Islamabad 44000, Pakistan.
| | - Asad Ali
- Department of Physics, Riphah International University, Islamabad 44000, Pakistan.
| | - Safeer Ahmad Arbab
- Founding Director Centre for Material Science, Islamia College University Peshawar, Pakistan.
| | - Sarir Uddin
- Department of Physics, Government College Hayatabad, Peshawar 25000, Pakistan.
| | - Qing Yang
- Hefei National Laboratory of Physical Sciences at the Microscale (HFNL), Department of Chemistry, Laboratory of Nanomaterial's for Energy Conversion (LNEC), University of Science and Technology China, Hefei 230026, Anhui, P. R. China.
| |
Collapse
|
23
|
Abstract
Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mechanisms of MABs, electrochemical performance, and the progress made in the development of different structures of MABs. The operational concepts and recent developments in MABs are thoroughly discussed, with a particular focus on innovative materials design and cell structures. The classical research on traditional MABs was chosen and contrasted with metal–air flow systems, demonstrating the merits associated with the latter in terms of achieving higher energy density and efficiency, along with stability. Furthermore, the recent applications of MABs were discussed. Finally, a broad overview of challenges/opportunities and potential directions for commercializing this technology is carefully discussed. The primary focus of this investigation is to present a concise summary and to establish future directions in the development of MABs from traditional static to advanced flow technologies. A systematic analysis of this subject from a material and chemistry standpoint is presented as well.
Collapse
|
24
|
Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Synergistic air electrode combining carbon nanotube tissue and fluorinated graphite material in hybrid nonaqueous aluminum batteries. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Xie Q, Si W, Shen Y, Wang Z, Uyama H. N- and O-doped hollow carbons constructed by self- and extrinsic activation for the oxygen reduction reaction and flexible zinc-air Batteries. NANOSCALE 2021; 13:16296-16306. [PMID: 34558569 DOI: 10.1039/d1nr04821j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zinc-air batteries (ZAB), especially those assembled on flexible substrates, have attracted great research attention in electronics and wearable electronics. However, the air-cathode reaction-oxygen reduction reaction (ORR) has limited the development of ZAB technology. In this study, a hollow carbon catalyst, NOC-1000-1, was prepared by pyrolysis of a mixture of a N-enriched Zn/bispyrozolate-based metal-organic framework and urea to replace the labile Pt-based catalysts for ORR. The employment of sacrifical urea eliminated the requirement for complicated post-treatment compared to the template method. Combined with self-activation (Zn evaporation), the obtained carbon showed a micro- and mesopore-dominant hierarchical structure coexisting with some macropores. Moreover, the doped N and O species were also tailored in a preferable configuration for ORR by simply screening the pyrolysis conditions. Under the synergistic effect of the preferable N and O configurations and pore structure, the derived carbon catalyst displayed superior ORR activity of 0.977 V onset potential and 0.867 V half-wave potential; these values are slightly better than those of the 20% Pt/C benchmark catalyst (0.985 and 0.861 V, respectively). Flexible solid-state ZABs were further assembled by employing the derived carbon catalyst as an air-cathode, and they exhibited a higher peak power density of 100.92 mW cm-2 than a 20% Pt/C-RuO2 battery as well as previously reported similar batteries and very high stability for up to 30 h. The flexible solid-state ZABs could drive a red light-emitting diode and run a 130-type motor for hours, which indicates their promising applications in real-world technologies.
Collapse
Affiliation(s)
- Qianjie Xie
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Wenfang Si
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Zheng Wang
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
27
|
|
28
|
|
29
|
Bošković MV, Šljukić B, Vasiljević Radović D, Radulović K, Rašljić Rafajilović M, Frantlović M, Sarajlić M. Full-Self-Powered Humidity Sensor Based on Electrochemical Aluminum-Water Reaction. SENSORS 2021; 21:s21103486. [PMID: 34067738 PMCID: PMC8156808 DOI: 10.3390/s21103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
A detailed examination of the principle of operation behind the functioning of the full-self-powered humidity sensor is presented. The sensor has been realized as a structure consisting of an interdigitated capacitor with aluminum thin-film digits. In this work, the details of its fabrication and activation are described in detail. The performed XRD, FTIR, SEM, AFM, and EIS analyses, as well as noise measurements, revealed that the dominant process of electricity generation is the electrochemical reaction between the sensor's aluminum electrodes and the water from humid air in the presence of oxygen, which was the main goal of this work. The response of the sensor to human breath is also presented as a demonstration of its possible practical application.
Collapse
Affiliation(s)
- Marko V. Bošković
- Department of Microelectronic Technologies, Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.R.); (K.R.); (M.R.R.); (M.F.)
- Correspondence: (M.V.B.); (M.S.)
| | - Biljana Šljukić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia;
- CeFEMA, Instituto Superior Téchnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Dana Vasiljević Radović
- Department of Microelectronic Technologies, Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.R.); (K.R.); (M.R.R.); (M.F.)
| | - Katarina Radulović
- Department of Microelectronic Technologies, Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.R.); (K.R.); (M.R.R.); (M.F.)
| | - Milena Rašljić Rafajilović
- Department of Microelectronic Technologies, Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.R.); (K.R.); (M.R.R.); (M.F.)
| | - Miloš Frantlović
- Department of Microelectronic Technologies, Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.R.); (K.R.); (M.R.R.); (M.F.)
| | - Milija Sarajlić
- Department of Microelectronic Technologies, Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.R.); (K.R.); (M.R.R.); (M.F.)
- Correspondence: (M.V.B.); (M.S.)
| |
Collapse
|
30
|
Hsu CH, Pan ZB, Qu HT, Chen CR, Lin HP, Sun IW, Huang CY, Li CH. Green synthesis of nitrogen-doped multiporous carbons for oxygen reduction reaction using water-caltrop shells and eggshell waste. RSC Adv 2021; 11:15738-15747. [PMID: 35481169 PMCID: PMC9030168 DOI: 10.1039/d1ra02100a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
A green synthesis method is proposed for the preparation of nitrogen-doped multiporous carbons (denoted as N-MPCs) from water-caltrop shell (WCS) using eggshell waste as both a nitrogen-dopant and an activating agent. It is shown that the surface area, porosity, yield and nitrogen content of the as-prepared N-MPCs can be easily controlled by adjusting the activation temperature. Moreover, in oxygen reduction reaction (ORR) tests performed in O2-saturated 0.1 M KOH(aq) electrolyte containing 1.0 M methanol, the N-MPC catalysts show a high ORR stability and good resistance to methanol corrosion. In addition, as a cathode material in Al–air battery tests, the N-MPCs achieve a power density of 16 mW g−1 in a saturated NaCl(aq) electrolyte. Overall, the results show that the N-MPCs have a promising potential as a green and sustainable material for ORR catalysis applications. A green synthetic method is proposed for the preparation of nitrogen-doped multiporous carbons (denoted as N-MPCs) from water-caltrop-shell (WCS) biochar by using eggshell waste as both a nitrogen-dopant and an activating agent.![]()
Collapse
Affiliation(s)
- Chun-Han Hsu
- General Education Center
- National Tainan Junior College of Nursing
- Tainan 700
- Taiwan
| | - Zheng-Bang Pan
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Hau-Ting Qu
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Chuan-Ren Chen
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Hong-Ping Lin
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - I-Wen Sun
- Department of Chemistry
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Ching-Ying Huang
- Green Energy and Environment Research Laboratories
- Industrial Technology Research Institute
- Tainan 71150
- Taiwan
| | - Chun-Han Li
- Green Energy and Environment Research Laboratories
- Industrial Technology Research Institute
- Tainan 71150
- Taiwan
| |
Collapse
|