1
|
Zhou D, Ni J. Ligand Engineering Toward Robust Sodium Storage in Self-Supported Metal-Organic Frameworks. Chemistry 2025; 31:e202403902. [PMID: 39600295 DOI: 10.1002/chem.202403902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Sodium-ion batteries capable of charging and discharging rapidly and durably are eagerly demanded to replace current lithium-ion batteries. However, large Na+ ions need more space to accommodate them. Metal-organic frameworks are promising anode materials, and their structure and performance are governed by organic ligands. Herein, we report a ligand engineering to design metal-organic frameworks with large conjugated naphthalene-2,6-dicarboxylic acid. Self-supported arrays of metal-organic frameworks reveal robust sodium storage when used as a binder-free anode. The uniquely long and conjugated aromatic ligands endow the metal-organic frameworks with rich sites to accommodate Na+ ions, thus enabling a high reversible capacity for sodium storage. As a result, such metal-organic frameworks exhibit a high capacity of 330 mAh g-1 at 1000 mA g-1 with remarkable rate capability and cycling performance. This work provides an exciting ligand strategy to design high-capacity metal-organic framework materials and would find extensive applications in various energy storage systems.
Collapse
Affiliation(s)
- Dan Zhou
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Kaifeng, 475004, China
| | - Jiangfeng Ni
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, China
| |
Collapse
|
2
|
Zhu X, Zhang H, Huang Y, He E, Shen Y, Huang G, Yuan S, Dong X, Zhang Y, Chen R, Zhang X, Wang Y. Recent progress of flexible rechargeable batteries. Sci Bull (Beijing) 2024; 69:3730-3755. [PMID: 39389866 DOI: 10.1016/j.scib.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The rapid popularization of wearable electronics, soft robots and implanted medical devices has stimulated extensive research in flexible batteries, which are bendable, foldable, knittable, wearable, and/or stretchable. Benefiting from these distinct characteristics, flexible batteries can be seamlessly integrated into various wearable/implantable devices, such as smart home systems, flexible displays, and implantable sensors. In contrast to conventional lithium-ion batteries necessitating the incorporation of stringent current collectors and packaging layers that are typically rigid, flexible batteries require the flexibility of each component to accommodate diverse shapes or sizes. Accordingly, significant advancements have been achieved in the development of flexible electrodes, current collectors, electrolytes, and flexible structures to uphold superior electrochemical performance and exceptional flexibility. In this review, typical structures of flexible batteries are firstly introduced and classified into mono-dimensional, two-dimensional, and three-dimensional structures according to their configurations. Subsequently, five distinct types of flexible batteries, including flexible lithium-ion batteries, flexible sodium-ion batteries, flexible zinc-ion batteries, flexible lithium/sodium-air batteries, and flexible zinc/magnesium-air batteries, are discussed in detail according to their configurations, respectively. Meanwhile, related comprehensive analysis is introduced to delve into the fundamental design principles pertaining to electrodes, electrolytes, current collectors, and integrated structures for various flexible batteries. Finally, the developments and challenges of flexible batteries are summarized, offering viable guidelines to promote the practical applications in the future.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Haoran Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongxin Huang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering & Applied Science, Nanjing University, Nanjing 210023, China
| | - Yun Shen
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shouyi Yuan
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China.
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering & Applied Science, Nanjing University, Nanjing 210023, China.
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Wu Y, Zhu J, Ni J, Li L. Liquid Metal-Modified 3D Cu Foam for Dendrite-Free Sodium Plating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405357. [PMID: 39115110 DOI: 10.1002/smll.202405357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Indexed: 11/21/2024]
Abstract
Sodium metal is regarded as one of the most promising anode materials due to its high theoretical capacity (1166 mAh g-1) and low redox potential (-2.714 V vs standard hydrogen electrode). However, the practical application of sodium metal is hindered by the formation of dendrites during Na stripping and plating, which can degrade performance and cause potential safety hazards. To address this issue, previous work focuses on leveraging either 3D current collectors or liquid metal modification on current collectors. In this work, both strategies are simultaneously leveraged to design a 3D Cu foam with liquid metal modification (LM@Cu) for dendrite-free sodium plating. The 3D configuration of Cu effectively reduces local current density and evenly distributes electric fields, while the introduction of liquid metal enhances the sodiophilicity of Cu to lower the nucleation barrier for sodium, thereby promoting its uniform plating. As a result, symmetric cells of Na with LM@Cu maintain stable cycling for over 2800 h. Additionally, full cells comprising Na-LM@Cu and Na3V2(PO4)3 sustain 97.5% of the capacity upon 1000 cycles, underscoring the great potentiality of liquid metal-mediated 3D current collectors in energy storage.
Collapse
Affiliation(s)
- Yinghong Wu
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, China
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Junbing Zhu
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, China
| | - Jiangfeng Ni
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, China
| | - Liang Li
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, China
| |
Collapse
|
4
|
Liu LB, Yi C, Mi HC, Zhang SL, Fu XZ, Luo JL, Liu S. Perovskite Oxides Toward Oxygen Evolution Reaction: Intellectual Design Strategies, Properties and Perspectives. ELECTROCHEM ENERGY R 2024; 7:14. [PMID: 38586610 PMCID: PMC10995061 DOI: 10.1007/s41918-023-00209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/15/2023] [Accepted: 12/03/2023] [Indexed: 04/09/2024]
Abstract
Developing electrochemical energy storage and conversion devices (e.g., water splitting, regenerative fuel cells and rechargeable metal-air batteries) driven by intermittent renewable energy sources holds a great potential to facilitate global energy transition and alleviate the associated environmental issues. However, the involved kinetically sluggish oxygen evolution reaction (OER) severely limits the entire reaction efficiency, thus designing high-performance materials toward efficient OER is of prime significance to remove this obstacle. Among various materials, cost-effective perovskite oxides have drawn particular attention due to their desirable catalytic activity, excellent stability and large reserves. To date, substantial efforts have been dedicated with varying degrees of success to promoting OER on perovskite oxides, which have generated multiple reviews from various perspectives, e.g., electronic structure modulation and heteroatom doping and various applications. Nonetheless, the reviews that comprehensively and systematically focus on the latest intellectual design strategies of perovskite oxides toward efficient OER are quite limited. To bridge the gap, this review thus emphatically concentrates on this very topic with broader coverages, more comparative discussions and deeper insights into the synthetic modulation, doping, surface engineering, structure mutation and hybrids. More specifically, this review elucidates, in details, the underlying causality between the being-tuned physiochemical properties [e.g., electronic structure, metal-oxygen (M-O) bonding configuration, adsorption capacity of oxygenated species and electrical conductivity] of the intellectually designed perovskite oxides and the resulting OER performances, coupled with perspectives and potential challenges on future research. It is our sincere hope for this review to provide the scientific community with more insights for developing advanced perovskite oxides with high OER catalytic efficiency and further stimulate more exciting applications. Graphical Abstract
Collapse
Affiliation(s)
- Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Chenxing Yi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Hong-Cheng Mi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Song Lin Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000 China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000 China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9 Canada
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| |
Collapse
|
5
|
Zhang Y, Li D, Li J, Li Y, Wang L, Xu H, Han W. Flexible TiVCTx MXene film for high-performance magnesium-ion storage device. J Colloid Interface Sci 2024; 657:550-558. [PMID: 38071804 DOI: 10.1016/j.jcis.2023.11.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024]
Abstract
Magnesium-based battery system has emerged as the potential candidate to beyond Li-ion battery system due to the numerous advantageous of magnesium anode, such as natural abundance, high capacity and dendrites free. However, the selection of cathode materials and the intercalation of magnesium-ions in the cathode host material remains a challenge due to the strong interaction of highly polar divalent magnesium ions with the cathode material, making the diffusion of magnesium ions relatively difficult. Herein, the flexible TiVCTx MXene film was developed via a facile and economical approach. As the cathode host material for magnesium-ion storage, the freestanding TiVCTx MXene film displays a high specific capacity of 111 and 135 mAh g-1 at a current density of 0.05 A g-1 for magnesium-ion batteries (MIB) and Mg/Li hybrid batteries (MLHB). Furthermore, a long-term cycling stability over 1000 cycles was demonstrated and a detailed investigation of the unique long activation phenomenon of MXene films during cycling. More importantly, the reaction mechanism of magnesium-ion storage was validated, i.e., the MXene interlayer spacing variation with the reversible Mg2+ diffusion behavior. This work reveals the magnesium storage mechanism of MXene materials and provides a new pathway for high-performance storage of magnesium-ion cathode materials.
Collapse
Affiliation(s)
- Yuming Zhang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China; Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Dongdong Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China; Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Junzhi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yilin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China; Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Hao Xu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| | - Wei Han
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Xu K, Xie J, Dong H, Sun C, Li Y, Guo J, Wang Z, Yang J, Geng H. Structural regulation enabled stable hollow molybdenum diselenide nanosheet anode for ultrahigh energy density sodium ion pouch cell. J Colloid Interface Sci 2023; 656:241-251. [PMID: 37992530 DOI: 10.1016/j.jcis.2023.11.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
For the continued use of sodium-ion batteries (SIBs), which require matching anode materials, it is crucial to create high energy density energy storage devices. Here, hollow nanoboxes shaped carbon supported sulfur-doped MoSe2 nanosheets (S-MoSe2@NC) are fabricated by in situ growth and heterodoping strategy. This ensures that the MoSe2 nanosheets are tightly anchored to the nanoboxes carbon, and the structure can effectively buffer the volume stress caused by sodium ion (de)intercalation, as well as providing abundant ion/electron migration transportations. As anode for SIBs, the S-MoSe2@NC shows a higher rate capability and excellent cycling stability (431.1 mAh/g after 1100 cycles at 10 A/g). This excellent cycle life and high rate ability are due to the structural stability and outstanding electronic conductance with reduced band gap of the S-MoSe2@NC, as evidenced by the diffusion analysis and theoretical calculation. In order to promote the application of SIBs, the S-MoSe2@NC and NaNi1/3Fe1/3Mn1/3O2 were assembled into a pouch cell, and the test found that besides the excellent cycle rate performance, the ultrahigh energy density of 256 Wh kg-1 and flexible characteristics can be achieved. This study has proven that building a structure with a rock-steady foundation and quick ion migration may efficiently control sodium storage and pave the way for novel applications of high-performance transition metal dichalcogenides in sodium storage.
Collapse
Affiliation(s)
- Kang Xu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Juan Xie
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Chencheng Sun
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yue Li
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Jia Guo
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Zhefei Wang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Jun Yang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| |
Collapse
|
7
|
Wang H, Yu K, Wang P, Jia P, Yuan Y, Liang C. ZIF-67-derived Co/CoSe ultrafine nanocrystal Schottky heterojunction decorated hollow carbon nanospheres as new-type anodes for potassium-ion batteries. J Colloid Interface Sci 2023; 645:55-65. [PMID: 37146379 DOI: 10.1016/j.jcis.2023.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Metal-organic frameworks (MOFs) have the advantages of controllable chemical properties, rich pore structures and reaction sites and are expected to be high-performance anode materials for the next generation of potassium-ion batteries (PIBs). However, due to the large radius of potassium ions, the pure MOF crystal structure is prone to collapse during ion insertion and processing, so its electrochemical performance is quite limited. In this work, a hollow carbon sphere-supported MOF-derived Co/CoSe heterojunction anode material for potassium-ion batteries was developed by a hydrothermal method. The anode has high potassium storage capacity (461.9 mA h/g after 200 cycles at 1 A/g), excellent cycling stability and superior rate performance. It is worth noting that the potassium ion storage capacity of the anode material shows a gradual upward trend with the charge-discharge cycle, which is 145.9 mA h/g after 3000 cycles at a current density of 10 A/g. This work demonstrates that MOF-derived CoSe anodes with high capacity and low cost may be promising candidates for the introduction of potassium ion storage.
Collapse
Affiliation(s)
- Haonan Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Kaifeng Yu
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Pengtao Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Pengcheng Jia
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongzhi Yuan
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Ce Liang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
8
|
Li R, Deng R, Wang Z, Wang Y, Huang G, Wang J, Pan F. The challenges and perspectives of developing solid-state electrolytes for rechargeable multivalent battery. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
9
|
Wu J, He J, Wang M, Li M, Zhao J, Li Z, Chen H, Li X, Li C, Chen X, Li X, Mai YW, Chen Y. Electrospun carbon-based nanomaterials for next-generation potassium batteries. Chem Commun (Camb) 2023; 59:2381-2398. [PMID: 36723354 DOI: 10.1039/d2cc06692k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rechargeable potassium (K) batteries that are of low cost, with high energy densities and long cycle lives have attracted tremendous interest in affordable and large-scale energy storage. However, the large size of the K-ion leads to sluggish reaction kinetics and causes a large volume variation during the ion insertion/extraction processes, thus hindering the utilization of active electrode materials, triggering a serious structural collapse, and deteriorating the cycling performance. Therefore, the exploration of suitable materials/hosts that can reversibly and sustainably accommodate K-ions and host K metals are urgently needed. Electrospun carbon-based materials have been extensively studied as electrode/host materials for rechargeable K batteries owing to their designable structures, tunable composition, hierarchical pores, high conductivity, large surface areas, and good flexibility. Here, we present the recent developments in electrospun CNF-based nanomaterials for various K batteries (e.g., K-ion batteries, K metal batteries, K-chalcogen batteries), including their fabrication methods, structural modulation, and electrochemical performance. This Feature Article is expected to offer guidelines for the rational design of novel electrospun electrodes for the next-generation K batteries.
Collapse
Affiliation(s)
- Junxiong Wu
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Jiabo He
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Manxi Wang
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Manxian Li
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Jingyue Zhao
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Zulin Li
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Hongyang Chen
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Xuan Li
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Chuanping Li
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Xiaochuan Chen
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Xiaoyan Li
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| | - Yiu-Wing Mai
- Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronics Engineering J07, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yuming Chen
- College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350000, Fujian, China.
| |
Collapse
|
10
|
Ball mill–assisted synthesis of carbon-free SnSe nanoparticles for sodium-ion battery anodes. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Cellulose acetate-promoted polymer-in-salt electrolytes for solid-state lithium batteries. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Xia Y, Zhou L, Wang K, Lu C, Xiao Z, Mao Q, Lu X, Zhang J, Huang H, Gan Y, He X, Zhang W, Xia X. Economical cobalt-free single-crystal LiNi0.6Mn0.4O2 cathodes for high-performance lithium-ion batteries. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Sui Y, Guan J, Li K, Feng Y, Peng S, Maximov MY, Liu Q, Yang J, Geng H. Synergy of oxygen defects and structural modulation on titanium niobium oxide with a constructed conductive network for high-rate lithium-ion half/full batteries. Inorg Chem Front 2023. [DOI: 10.1039/d3qi00182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Titanium niobium oxide as an electrode material for lithium-ion batteries (LIBs) has relatively high working potential and theoretical capacity, which is expected to replace a graphite anode.
Collapse
Affiliation(s)
- Yangyang Sui
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Jinpeng Guan
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Kaiyang Li
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yubo Feng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Maxim Yu. Maximov
- Peter the Great Saint-Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Quan Liu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Jun Yang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| |
Collapse
|
14
|
Bai H, Chen D, Ma Q, Qin R, Xu H, Zhao Y, Chen J, Mu S. Atom Doping Engineering of Transition Metal Phosphides for Hydrogen Evolution Reactions. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Wang X, Jia N, Li J, Liu P, Zhao X, Lin Y, Sun C, Qin W. Sb Nanoparticles Embedded in the N-Doped Carbon Fibers as Binder-Free Anode for Flexible Li-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3093. [PMID: 36144880 PMCID: PMC9506069 DOI: 10.3390/nano12183093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Antimony (Sb) is considered a promising anode for Li-ion batteries (LIBs) because of its high theoretical specific capacity and safe Li-ion insertion potential; however, the LIBs suffer from dramatic volume variation. The volume expansion results in unstable electrode/electrolyte interphase and active material exfoliation during lithiation and delithiation processes. Designing flexible free-standing electrodes can effectively inhibit the exfoliation of the electrode materials from the current collector. However, the generally adopted methods for preparing flexible free-standing electrodes are complex and high cost. To address these issues, we report the synthesis of a unique Sb nanoparticle@N-doped porous carbon fiber structure as a free-standing electrode via an electrospinning method and surface passivation. Such a hierarchical structure possesses a robust framework with rich voids and a stable solid electrolyte interphase (SEI) film, which can well accommodate the mechanical strain and avoid electrode cracks and pulverization during lithiation/delithiation processes. When evaluated as an anode for LIBs, the as-prepared nanoarchitectures exhibited a high initial reversible capacity (675 mAh g-1) and good cyclability (480 mAh g-1 after 300 cycles at a current density of 400 mA g-1), along with a superior rate capability (420 mA h g-1 at 1 A g-1). This work could offer a simple, effective, and efficient approach to improve flexible and free-standing alloy-based anode materials for high performance Li-ion batteries.
Collapse
Affiliation(s)
- Xin Wang
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Nanjun Jia
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Jianwei Li
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Pengbo Liu
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Yuxiao Lin
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Changqing Sun
- Research Institute of Interdisciplinary Science and School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523820, China
| | - Wei Qin
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
16
|
Zhu S, Ni J. The Critical Role of Carbon Nanotubes in Bridging Academic Research to Commercialization of Lithium Batteries. CHEM REC 2022; 22:e202200125. [PMID: 35789096 DOI: 10.1002/tcr.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Indexed: 11/07/2022]
Abstract
Rechargeable lithium batteries have been intensively explored due to their potential to deliver a high energy and stable cycling performance. Yet considerable achievements have been reported on battery performance in lab-based research, a broad gap from fundamental research to their industrial application needs to be filled. The significant advances in the field of carbon nanotubes over the past decades make it a promising candidate to bridge such a gap. Nevertheless, a systematic and profound understanding of its roles in Li batteries is lacking. In this review, we discuss the critical role of carbon nanotube in developing several lithium techniques such as Li-ion, Li-sulfur, and Li-air cells. The focus is laid on the elevation of device capacity, energy, and cyclic life to meet the practical demand. We hope this paper, together with other recently-proposed guiding principles, will pave the way for the massive application of carbon nanotube-based lithium batteries.
Collapse
Affiliation(s)
- Sheng Zhu
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, China
| | - Jiangfeng Ni
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| |
Collapse
|