1
|
Liu M, Fu X, Lu M, Liu J, Xie H, Wei P, Zhang W, Xie Y, Qi Y. Colorimetric and visual determination of iodide ions via morphology transition of gold nanobipyramids. Anal Biochem 2023; 666:115077. [PMID: 36754136 DOI: 10.1016/j.ab.2023.115077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The gold nanobipyramids (Au NBPs) are widely used in the analytical detection of biochemistry due to their unique localized surface plasmon resonance (LSPR) properties. In our developed approach, I- in kelp was detected by etching Au NBPs in the presence of IO3-. Under acidic conditions, IO3- reacted rapidly with I- to form I2, subsequently I2 reacted with I- to form the intermediate I3-. In the presence of CTAB, Au NBPs were etched by I2 derived from I3-, resulting in a decrease in the aspect ratio of Au NBPs, to form a significant blue shift of LSPR longitudinal peak and color variation of colloid which changed from blue-green to magenta and could be employed to quantitatively detect the concentration of I- with the naked eye. A linear relationship can be found between the LSPR peak changes with the I- concentration in a wide range from 4.0 μM to 15.0 μM, and the sensitive limit of detection (LOD) was 0.2 μM for UV-vis spectroscopy and the obvious color changes with a visual LOD was 4.0 μM for the naked eye. Benefiting from the high specificity, the proposed colorimetric detection of I- in kelp samples was achieved, indicating the available potential of the colorimetric detection for the determination of I- in real samples. What's more, this detection procedure was time-saving and could avoid tedious procedures.
Collapse
Affiliation(s)
- Min Liu
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xiaojuan Fu
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Mengjie Lu
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Jijian Liu
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Huihui Xie
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Peng Wei
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Weidong Zhang
- School of Chemical Engineering, Qinghai University, Xining, 810016, China.
| | - Yahong Xie
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Ying Qi
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
2
|
Wang Y, Teng W, Zhang Z, Ma S, Jin Z, Zhou X, Ye Y, Zhang C, Gou Z, Yu X, Ye Z, Ren Y. Remote Eradication of Bacteria on Orthopedic Implants via Delayed Delivery of Polycaprolactone Stabilized Polyvinylpyrrolidone Iodine. J Funct Biomater 2022; 13:jfb13040195. [PMID: 36278664 PMCID: PMC9589933 DOI: 10.3390/jfb13040195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria-associated late infection of the orthopedic devices would further lead to the failure of the implantation. However, present ordinary antimicrobial strategies usually deal with early infection but fail to combat the late infection of the implants due to the burst release of the antibiotics. Thus, to fabricate long-term antimicrobial (early antibacterial, late antibacterial) orthopedic implants is essential to address this issue. Herein, we developed a sophisticated MAO-I2-PCLx coating system incorporating an underlying iodine layer and an upper layer of polycaprolactone (PCL)-controlled coating, which could effectively eradicate the late bacterial infection throughout the implantation. Firstly, micro-arc oxidation was used to form a microarray tubular structure on the surface of the implants, laying the foundation for iodine loading and PCL bonding. Secondly, electrophoresis was applied to load iodine in the tubular structure as an efficient bactericidal agent. Finally, the surface-bonded PCL coating acts as a controller to regulate the release of iodine. The hybrid coatings displayed great stability and control release capacity. Excellent antibacterial ability was validated at 30 days post-implantation via in vitro experiments and in vivo rat osteomyelitis model. Expectedly, it can become a promising bench-to-bedside strategy for current infection challenges in the orthopedic field.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Wangsiyuan Teng
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Zengjie Zhang
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Siyuan Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Zhihui Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Xingzhi Zhou
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Chongda Zhang
- New York University Medical Center, New York University, New York, NY 10016, USA
| | - Zhongru Gou
- Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaohua Yu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Zhaoming Ye
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Correspondence: (Z.Y.); (Y.R.); Tel.: +86-571-8778-3777 (Z.Y.); +86-027-8804-1911 (ext. 83380) (Y.R.)
| | - Yijun Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Correspondence: (Z.Y.); (Y.R.); Tel.: +86-571-8778-3777 (Z.Y.); +86-027-8804-1911 (ext. 83380) (Y.R.)
| |
Collapse
|
3
|
Nie J, Fu X, Wang L, Xu J, Gao X. A systematic review of fermented Saccharina japonica: Fermentation conditions, metabolites, potential health benefits and mechanisms. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Rezaei M, Ataei N, Zarban A, Mobasher N, Farkhondeh T, Samarghandian S. Assessment of Iodofolic Supplementation on Thyroid Function in Pregnant Women with Iodine Sufficient Status and their Infants in Birjand. Curr Pediatr Rev 2022; 18:237-241. [PMID: 34911429 DOI: 10.2174/1573396317666211215142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Maintaining iodine at sufficient levels is necessary throughout the pregnancy to prevent adverse outcomes in infants. This study aimed to assess iodofolic supplementation's impact on thyroid function in women at the end of the third trimesters of gestation. METHODS This case-control study was conducted on 130 pregnant women in the Birjand, east of Iran, during the period from August 2017 to February 2019. We assessed iodofolic supplementation effect in the women at the first trimesters of gestation and followed them at the end of the third trimesters and also their infants on days 3-5. Serum samples were obtained from women and infants for measuring levels of thyroid-stimulating hormone (TSH). Urinary iodine concentration (UIC) was also determined at the end of the third trimester. RESULTS The median serum TSH concentration in the folic acid consumed group (3.26 ± 1.91) did not significantly differ from another group (2.98 ± 1.41), (p = 0.68). There is also no considerable difference in the mean serum TSH concentration between infants born from mothers who consumed folic acid in the first trimester of pregnancy and another group (p = 0.50). The TSH concentration in all infants was below 5 μM/L. The significant difference in the mean of UIC was also not observed between pregnant women in the folic acid consumed group (188.02 ± 105.38) and iodofolic consumed group (225.77 ± 130.26), (p = 0.13). CONCLUSION Iodine intake in our study was sufficient according to the WHO recommendation and idofolic supplementation was not emphasized.
Collapse
Affiliation(s)
- Maryam Rezaei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.,Department of Endocrinology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Naeemeh Ataei
- Medical Student, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Nahid Mobasher
- Obsterician, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Opazo MC, Rivera JC, Gonzalez PA, Bueno SM, Kalergis AM, Riedel CA. Thyroid Gene Mutations in Pregnant and Breastfeeding Women Diagnosed With Transient Congenital Hypothyroidism: Implications for the Offspring's Health. Front Endocrinol (Lausanne) 2021; 12:679002. [PMID: 34721286 PMCID: PMC8551387 DOI: 10.3389/fendo.2021.679002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Fetus and infants require appropriate thyroid hormone levels and iodine during pregnancy and lactation. Nature endorses the mother to supply thyroid hormones to the fetus and iodine to the lactating infant. Genetic variations on thyroid proteins that cause dyshormonogenic congenital hypothyroidism could in pregnant and breastfeeding women impair the delivery of thyroid hormones and iodine to the offspring. The review discusses maternal genetic variations in thyroid proteins that, in the context of pregnancy and/or breastfeeding, could trigger thyroid hormone deficiency or iodide transport defect that will affect the proper development of the offspring.
Collapse
Affiliation(s)
- Maria C. Opazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Juan Carlos Rivera
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
6
|
Atmospheric Pollution and Thyroid Function of Pregnant Women in Athens, Greece: A Pilot Study. Med Sci (Basel) 2020; 8:medsci8020019. [PMID: 32260367 PMCID: PMC7353503 DOI: 10.3390/medsci8020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Exposure to air pollution and, in particular, to nitrogen dioxide (NO2) or particulate pollutants less than 2.5 μm (PM2.5) or 10 μm (PM10) in diameter has been linked to thyroid (dys)function in pregnant women. We hypothesized that there may be a dose-effect relationship between air pollutants and thyroid function parameters. We retrospectively evaluated thyrotropin (TSH) in 293 women, NO2, PM2.5 and PM10 levels in Athens. All the women were diagnosed with hypothyroidism for the first time during their pregnancy. Exposure to air pollution for each woman was considered according to her place of residence. Statistical analysis of age, pregnancy weight change, and air pollutants versus TSH was performed with ordinary least squares regression (OLS-R) and quantile regression (Q-R). A positive correlation for logTSH and PM2.5(r = +0.13, p = 0.02) was found, using OLS-R. Further analysis with Q-R showed that each incremental unit increase (for the 10th to the 90th response quantile) in PM2.5 increased logTSH(±SE) between +0.029 (0.001) to +0.025 (0.001) mIU/L (p < 0.01). The other parameters and pollutants (PM10 and NO2) had no significant effect on TSH. Our results indeed show a dose-response relationship between PM2.5 and TSH. The mechanisms involved in the pathophysiological effects of atmospheric pollutants, in particular PM2.5, are being investigated.
Collapse
|