1
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
2
|
Ochieng BO, Zhao L, Ye Z. Three-Dimensional Bioprinting in Vascular Tissue Engineering and Tissue Vascularization of Cardiovascular Diseases. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:340-358. [PMID: 37885200 DOI: 10.1089/ten.teb.2023.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In the 21st century, significant progress has been made in repairing damaged materials through material engineering. However, the creation of large-scale artificial materials still faces a major challenge in achieving proper vascularization. To address this issue, researchers have turned to biomaterials and three-dimensional (3D) bioprinting techniques, which allow for the combination of multiple biomaterials with improved mechanical and biological properties that mimic natural materials. Hydrogels, known for their ability to support living cells and biological components, have played a crucial role in this research. Among the recent developments, 3D bioprinting has emerged as a promising tool for constructing hybrid scaffolds. However, there are several challenges in the field of bioprinting, including the need for nanoscale biomimicry, the formulation of hydrogel blends, and the ongoing complexity of vascularizing biomaterials, which requires further research. On a positive note, 3D bioprinting offers a solution to the vascularization problem due to its precise spatial control, scalability, and reproducibility compared with traditional fabrication methods. This paper aims at examining the recent advancements in 3D bioprinting technology for creating blood vessels, vasculature, and vascularized materials. It provides a comprehensive overview of the progress made and discusses the limitations and challenges faced in current 3D bioprinting of vascularized tissues. In addition, the paper highlights the future research directions focusing on the development of 3D bioprinting techniques and bioinks for creating functional materials.
Collapse
Affiliation(s)
- Ben Omondi Ochieng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Leqian Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Sheng L, Song X, Wang M, Zheng S. Thermally reversible hydrogels printing of customizable bio-channels with curvature. Int J Biol Macromol 2024; 257:128595. [PMID: 38056748 DOI: 10.1016/j.ijbiomac.2023.128595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Replicating intricate bio-channels, akin to expansive vascular networks, offers numerous advantages including self-repair, replacing damaged bio-channels, testing drugs, and biomedical devices. But, crafting multi-sized, editable bio-channels with specific curvatures, particularly using natural polymer-based bio-inks, poses a significant challenge. To address this, this study introduces a temperature-driven indirect printing method, exemplified by the diploic vein. Here, K-carrageenan (kca)-silk fiber (SF)-hyaluronic acid (HA)/hFOB 1.19 (SV40 transfection of human osteoblasts) and kca-collagen-HA/HUVECs (human umbilical vein endothelial cells) are employed to fabricate vascular-like walls and lumens, utilizing their thermoreversible properties to create multi-stage bifurcated lumens. Precise spatial curvature was generated by heating the vascular network wrapped in poly(N-isopropyl acrylamide) (PNIPAAm)-poly(ethylene glycol) diacrylate (PEGDA). Since temperature is specific to the thermal material carrying the cells, the rheological properties of bioinks, modeling temperature parameters, and their impact on printing size was explored. Additionally, mechanical properties and curvature response were characterized to determine the necessary process parameters for achieving the desired size. Ultimately, in vitro bioprinting experiments involving HUVECs and hFOB 1.19 demonstrate cell viability, adhesion, proliferation, and migration within the intraluminal hydrogel scaffold. This approach allows for customizing bio-channel content and controlling curvature programming, providing new prospects for in vitro biochannel production, with potential benefits for pathology research.
Collapse
Affiliation(s)
- Lin Sheng
- Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaofei Song
- Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Miaomiao Wang
- Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Shuxian Zheng
- Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
4
|
Shi X, Sun Y, Tian H, Abhilash PM, Luo X, Liu H. Material Extrusion Filament Width and Height Prediction via Design of Experiment and Machine Learning. MICROMACHINES 2023; 14:2091. [PMID: 38004948 PMCID: PMC10673448 DOI: 10.3390/mi14112091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
The dimensions of material extrusion 3D printing filaments play a pivotal role in determining processing resolution and efficiency and are influenced by processing parameters. This study focuses on four key process parameters, namely, nozzle diameter, nondimensional nozzle height, extrusion pressure, and printing speed. The design of experiment was carried out to determine the impact of various factors and interaction effects on filament width and height through variance analysis. Five machine learning models (support vector regression, backpropagation neural network, decision tree, random forest, and K-nearest neighbor) were built to predict the geometric dimension of filaments. The models exhibited good predictive performance. The coefficients of determination of the backpropagation neural network model for predicting line width and line height were 0.9025 and 0.9604, respectively. The effect of various process parameters on the geometric morphology based on the established prediction model was also studied. The order of influence on line width and height, ranked from highest to lowest, was as follows: nozzle diameter, printing speed, extrusion pressure, and nondimensional nozzle height. Different nondimensional nozzle height settings may cause the extruded material to be stretched or squeezed. The material being in a stretched state leads to a thin filament, and the regularity of processing parameters on the geometric size is not strong. Meanwhile, the nozzle diameter exhibits a significant impact on dimensions when the material is in a squeezing state. Thus, this study can be used to predict the size of printing filament structures, guide the selection of printing parameters, and determine the size of 3D printing layers.
Collapse
Affiliation(s)
- Xiaoquan Shi
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.T.)
| | - Yazhou Sun
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.T.)
| | - Haiying Tian
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.T.)
| | - Puthanveettil Madathil Abhilash
- Centre for Precision Manufacturing, Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK; (P.M.A.); (X.L.)
| | - Xichun Luo
- Centre for Precision Manufacturing, Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK; (P.M.A.); (X.L.)
| | - Haitao Liu
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.T.)
| |
Collapse
|
5
|
Zhang C, Hao J, Shi W, Su Y, Mitchell K, Hua W, Jin W, Lee S, Wen L, Jin Y, Zhao D. Sacrificial scaffold-assisted direct ink writing of engineered aortic valve prostheses. Biofabrication 2023; 15:10.1088/1758-5090/aceffb. [PMID: 37579750 PMCID: PMC10566457 DOI: 10.1088/1758-5090/aceffb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Heart valve disease has become a serious global health problem, which calls for numerous implantable prosthetic valves to fulfill the broader needs of patients. Although current three-dimensional (3D) bioprinting approaches can be used to manufacture customized valve prostheses, they still have some complications, such as limited biocompatibility, constrained structural complexity, and difficulty to make heterogeneous constructs, to name a few. To overcome these challenges, a sacrificial scaffold-assisted direct ink writing approach has been explored and proposed in this work, in which a sacrificial scaffold is printed to temporarily support sinus wall and overhanging leaflets of an aortic valve prosthesis that can be removed easily and mildly without causing any potential damages to the valve prosthesis. The bioinks, composed of alginate, gelatin, and nanoclay, used to print heterogenous valve prostheses have been designed in terms of rheological/mechanical properties and filament formability. The sacrificial ink made from Pluronic F127 has been developed by evaluating rheological behavior and gel temperature. After investigating the effects of operating conditions, complex 3D structures and homogenous/heterogenous aortic valve prostheses have been successfully printed. Lastly, numerical simulation and cycling experiments have been performed to validate the function of the printed valve prostheses as one-way valves.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Jiangtao Hao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Weiliang Shi
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Ya Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Wenbo Jin
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Serena Lee
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Danyang Zhao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
6
|
Azimi Yancheshme A, Palmese GR, Alvarez NJ. Predicting the Dynamics and Steady-State Shape of Cylindrical Newtonian Filaments on Solid Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10495-10503. [PMID: 37470441 DOI: 10.1021/acs.langmuir.3c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The spreading of liquid filaments on solid surfaces is of paramount importance to a wide range of applications including ink-jet printing, coating, and direct ink writing (DIW). However, there is a considerable lack of experimental, numerical, and theoretical studies on the spreading of filaments on solid substrates. In this work, we studied the dynamics of spreading of Newtonian filaments via experiment, numerical simulations, and theoretical analysis. More specifically, we used a novel experimental setup to validate a 2D moving mesh computational fluid dynamics (CFD) model. The CFD model is used to determine the effect of processing and fluid parameters on the dynamics of filament spreading. We experimentally showed that for a Newtonian filament, the same spreading dynamics and final shape are obtained when the initial radius is constant, independent of the magnitude in printing parameters. In other words, the only important parameter on the spreading of filaments is the initial filament radius. Using a numerical model, we showed that the initial filament radius manifests itself in two important dimensionless parameters, Bond number, Bo, and viscous timescale, τμ. Furthermore, the results clearly show that the dynamics of spreading are governed by the static advancing contact angle, θs. These three parameters determine a master spreading curve that can be used to predict the spreading of cylindrical filaments on flat substrates. Finally, we developed a theoretical model that was parameterized using experimental data to correlate the steady-state shape of filaments with Bo and θs. These results are particularly applicable for predicting and controlling the dynamics of filaments in DIW and other extrusion-based processes.
Collapse
Affiliation(s)
- Amir Azimi Yancheshme
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Giuseppe R Palmese
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Nicolas J Alvarez
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Wang J, Cui Z, Maniruzzaman M. Bioprinting: a focus on improving bioink printability and cell performance based on different process parameters. Int J Pharm 2023; 640:123020. [PMID: 37149110 DOI: 10.1016/j.ijpharm.2023.123020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Three dimensional (3D) bioprinting is an emerging biofabrication technique that shows great potential in the field of tissue engineering, regenerative medicine and advanced drug delivery. Despite the current advancement of bioprinting technology, it faces several obstacles such as the challenge of optimizing the printing resolution of 3D constructs while retaining cell viability before, during, and after bioprinting. Therefore, it is of great significance to fully understand factors that influence the shape fidelity of printed structures and the performance of cells encapsulated in bioinks. This review presents a comprehensive analysis of bioprinting process parameters that influence bioink printability and cell performance, including bioink properties (composition, concentration, and component ratio), printing speed and pressure, nozzle charateristics (size, length, and geometry), and crosslinking parameters (crosslinker types, concentration, and crosslinking time). Key examples are provided to analyze how these parameters could be tailored to achieve the optimal printing resolution as well as cell performance. Finally, future prospects of bioprinting technology, including correlating process parameters to particular cell types with predefined applications, applying statistical analysis and artificial intelligence (AI)/machine learning (ML) technique in parameter screening, and optimizing 4D bioprinting process parameters, are highlighted.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Direct ink writing to fabricate porous acetabular cups from titanium alloy. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Duraivel S, Subramaniam V, Chisolm S, Scheutz GM, Sumerlin BS, Bhattacharjee T, Angelini TE. Leveraging ultra-low interfacial tension and liquid-liquid phase separation in embedded 3D bioprinting. BIOPHYSICS REVIEWS 2022; 3:031307. [PMID: 38505275 PMCID: PMC10903370 DOI: 10.1063/5.0087387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/23/2022] [Indexed: 03/21/2024]
Abstract
Many recently developed 3D bioprinting strategies operate by extruding aqueous biopolymer solutions directly into a variety of different support materials constituted from swollen, solvated, aqueous, polymer assemblies. In developing these 3D printing methods and materials, great care is often taken to tune the rheological behaviors of both inks and 3D support media. By contrast, much less attention has been given to the physics of the interfaces created when structuring one polymer phase into another in embedded 3D printing applications. For example, it is currently unclear whether a dynamic interfacial tension between miscible phases stabilizes embedded 3D bioprinted structures as they are shaped while in a liquid state. Interest in the physics of interfaces between complex fluids has grown dramatically since the discovery of liquid-liquid phase separation (LLPS) in living cells. We believe that many new insights coming from this burst of investigation into LLPS within biological contexts can be leveraged to develop new materials and methods for improved 3D bioprinting that leverage LLPS in mixtures of biopolymers, biocompatible synthetic polymers, and proteins. Thus, in this review article, we highlight work at the interface between recent LLPS research and embedded 3D bioprinting methods and materials, and we introduce a 3D bioprinting method that leverages LLPS to stabilize printed biopolymer inks embedded in a bioprinting support material.
Collapse
Affiliation(s)
- Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Vignesh Subramaniam
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Steven Chisolm
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent. S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, Karnataka, India
| | - Thomas E. Angelini
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
10
|
Li Q, Jiang Z, Ma L, Yin J, Gao Z, Shen L, Yang H, Cui Z, Ye H, Zhou H. A versatile embedding medium for freeform bioprinting with multi-crosslinking methods. Biofabrication 2022; 14. [PMID: 35705061 DOI: 10.1088/1758-5090/ac7909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 11/12/2022]
Abstract
Embedded freeform writing addresses the contradiction between the material printability and biocompatibility for conventional extrusion-based bioprinting. However, the existing embedding mediums have limitations concerning the restricted printing temperature window, compatibility with bioinks or crosslinkers, and difficulties on medium removal. This work demonstrates a new embedding medium to meet the above demands, which composes of hydrophobically modified hydroxypropylmethyl cellulose (H-HPMC) and Pluronic F-127 (PF-127). The adjustable hydrophobic and hydrophilic associations between the components permit tunable thermoresponsive rheological properties, providing a programable printing window. These associations are hardly compromised by additives without strong hydrophilic groups, which means it is compatible with the majority of bioink choices. We use polyethylene glycol 400, a strong hydrophilic polymer, to facilitate easy medium removal. The proposed medium enables freeform writing of the millimetric complex tubular structures with great shape fidelity and cell viability. Moreover, five bioinks with up to five different crosslinking methods are patterned into arbitrary geometries in one single medium, demonstrating its potential in heterogeneous tissue regeneration. Utilizing the rheological properties of the medium, an enhanced adhesion writing method is developed to optimize the structure's strand-to-strand adhesion. In summary, this versatile embedding medium provides excellent compatibility with multi-crosslinking methods and a tunable printing window, opening new opportunities for heterogeneous tissue regeneration.
Collapse
Affiliation(s)
- Qi Li
- Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, CHINA
| | - Zhuoran Jiang
- University of Oxford, Oxford, Oxfordshire, Oxford, Oxfordshire, OX1 2JD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Liang Ma
- School of Mechanical Engineering, Zhejiang University, 866 Yuhang Tang road, Zijingang Campus, Room 517,Xi-4-A, Hangzhou, 310058, CHINA
| | - Jun Yin
- Mechanical Engineering, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310058, CHINA
| | - Ziqi Gao
- Zhejiang University, 866 Yuhang Tang road, Hangzhou, Zhejiang, 310058, CHINA
| | - Luqi Shen
- Westlake University, 600 Dun Yu road, Hangzhou, 310024, CHINA
| | - Huayong Yang
- Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, CHINA
| | - Zhanfeng Cui
- University of Oxford, Oxford, Oxfordshire, Oxford, Oxfordshire, OX1 2JD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, Oxfordshire, Oxford, OX1 3PJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Hongzhao Zhou
- Mechanical Engineering , Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, CHINA
| |
Collapse
|
11
|
Othman SA, Soon CF, Ma NL, Tee KS, Lim GP, Morsin M, Ahmad MK, Abdulmaged AI, Cheong SC. Alginate-gelatin bioink for bioprinting of hela spheroids in alginate-gelatin hexagon shaped scaffolds. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03421-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Ravanbakhsh H, Bao G, Luo Z, Mongeau LG, Zhang YS. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. ACS Biomater Sci Eng 2021; 7:4009-4026. [PMID: 34510905 DOI: 10.1021/acsbiomaterials.0c01158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extrusion-based three-dimensional (3D) printing is an emerging technology for the fabrication of complex structures with various biological and biomedical applications. The method is based on the layer-by-layer construction of the product using a printable ink. The material used as the ink should possess proper rheological properties and desirable performances. Composite materials, which are extensively used in 3D printing applications, can improve the printability and offer superior performances for the printed constructs. Herein, we review composite inks with a focus on composite hydrogels. The properties of different additives including fibers and nanoparticles are discussed. The performances of various composite inks in biological and biomedical systems are delineated through analyzing the synergistic effects between the composite ink components. Different applications, including tissue engineering, tissue model engineering, soft robotics, and four-dimensional printing, are selected to demonstrate how 3D-printable composite inks are exploited to achieve various desired functionality. This review finally presents an outlook of future perspectives on the design of composite inks.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States.,Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States.,Department of Orthopedics, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Luc G Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Li X, Deng Q, Wang S, Li Q, Zhao W, Lin B, Luo Y, Zhang X. Hydroxyethyl Cellulose As a Rheological Additive for Tuning the Extrusion Printability and Scaffold Properties. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:87-98. [PMID: 36655060 PMCID: PMC9828602 DOI: 10.1089/3dp.2020.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bioink, a key element of three-dimensional (3D) bioprinting, is frequently engineered to achieve improved printing performance. Viscoelasticity related to rheological properties is correlative of the printability of bioink for extrusion bioprinting, which affects the complexity of printing 3D structures. This article shows the use of hydroxyethyl cellulose (HEC) as a rheological additive for engineering bioink to improve the printability without reducing the biocompatibility. Different concentrations of HEC were added to four types of bioink, namely, reagent-crosslinked, temperature-dependent phase change, ultraviolet-polymerized, and composite hydrogel bioinks, to investigate the effect on the viscoelasticity properties, print fidelity, and other printed scaffold properties. The results indicate that HEC is able to increase the rheological properties by 100 times to stabilize complex structures and improve the printing fidelity to narrow the gap between the design value and theoretical value, even converting nonviscous ink into directly printable ink, as well as tune the swelling ratio for better molecular permeability. The degradation of bioink can also be tuned by the addition of HEC. Moreover, this bioink is biocompatible for cell lines and primary cells. HEC is expected to be widely used in 3D extrusion-based bioprinting.
Collapse
Affiliation(s)
- Xiaorui Li
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Quanfeng Deng
- College of Pharmaceutical Science, Soochow University, Soochow, China
| | - Shuai Wang
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Qi Li
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, Soochow, China
| |
Collapse
|
14
|
Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen DX. Printability in extrusion bioprinting. Biofabrication 2021; 13. [PMID: 33601340 DOI: 10.1088/1758-5090/abe7ab] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Extrusion bioprinting has been widely used to extrude continuous filaments of bioink (or the mixture of biomaterial and living cells), layer-by-layer, to build three-dimensional (3D) constructs for biomedical applications. In extrusion bioprinting, printability is an important parameter used to measure the difference between the designed construct and the one actually printed. This difference could be caused by the extrudability of printed bioink and/or the structural formability and stability of printed constructs. Although studies have reported in characterizing printability based on the bioink properties and printing process, the concept of printability is often confusingly and, sometimes, conflictingly used in the literature. The objective of this perspective is to define the printability for extrusion bioprinting in terms of extrudability, filament fidelity, and structural integrity, as well as to review the effect of bioink properties, bioprinting process, and construct design on the printability. Challenges related to the printability of extrusion bioprinting are also discussed, along with recommendations for improvements.
Collapse
Affiliation(s)
- Zhouquan Fu
- Mechanical Engineering and Mechanics, Drexel University, 3141 chestnut street, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| | - Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada, Saskatoon, Saskatchewan, S7N 5A9, CANADA
| | - Cancan Xu
- SunP Biotech LLC, 5 Allison Dr, Cherry Hill, New Jersey, 08003, UNITED STATES
| | - Chengjin Wang
- Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing, 100084, CHINA
| | - Wei Sun
- Mech Engineering, Drexel University, 3141 chestnut street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Daniel Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Saskatoon, Saskatchewan, S7N 5A9, CANADA
| |
Collapse
|
15
|
Naghieh S, Chen X. Printability–A key issue in extrusion-based bioprinting. J Pharm Anal 2021; 11:564-579. [PMID: 34765269 PMCID: PMC8572712 DOI: 10.1016/j.jpha.2021.02.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
- Corresponding author.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
- Corresponding author. Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| |
Collapse
|
16
|
3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 2021; 4:344-378. [PMID: 33425460 PMCID: PMC7779248 DOI: 10.1007/s42242-020-00109-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/24/2020] [Indexed: 01/31/2023]
Abstract
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.
Collapse
|
17
|
Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim DH. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater 2021; 119:75-88. [PMID: 33166713 DOI: 10.1016/j.actbio.2020.11.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
3D bioprinting is a powerful technique for engineering tissues used to study cell behavior and tissue properties in vitro. With the right formulation and printing parameters, bioinks can provide native biological and mechanical cues while allowing for versatile 3D structures that recapitulate tissue-level organization. Bio-based materials that support cellular adhesion, differentiation, and proliferation - including gelatin, collagen, hyaluronic acid, and alginate - have been successfully used as bioinks. In particular, decellularized extracellular matrix (dECM) has become a promising material with the unique ability to maintain both biochemical and topographical micro-environments of native tissues. However, dECM has shown technical limitations for 3D printing (3DP) applications posed by its intrinsically low mechanical stability. Herein, we report hydrogel bioinks composed of partially digested, porcine cardiac decellularized extracellular matrix (cdECM), Laponite-XLG nanoclay, and poly(ethylene glycol)-diacrylate (PEG-DA). The Laponite facilitated extrusion-based 3DP, while PEG-DA enabled photo-polymerization after printing. Improving upon previously reported bioinks derived from dECM, our bioinks combine extrudability, shape fidelity, rapid cross-linking, and cytocompatibility in a single formulation (> 97% viability of encapsulated human cardiac fibroblasts and > 94% viability of human induced pluripotent stem cell derived cardiomyocytes after 7 days). The compressive modulus of the cured hydrogel bioinks was tunable from 13.4-89 kPa by changing the concentration of PEG-DA in the bioink formulation. Importantly, this span of mechanical stiffness encompasses ranges of tissue stiffness from healthy (compressive modulus ~5-15 kPa) to fibrotic (compressive modulus ~30-100 kPa) cardiac tissue states. The printed constructs demonstrated shape fidelity, adaptability to different printing conditions, and high cell viability following extrusion and photo-polymerization, highlighting the potential for applications in modeling both healthy and fibrotic cardiac tissue.
Collapse
|
18
|
Ning L, Gil CJ, Hwang B, Theus AS, Perez L, Tomov ML, Bauser-Heaton H, Serpooshan V. Biomechanical factors in three-dimensional tissue bioprinting. APPLIED PHYSICS REVIEWS 2020; 7:041319. [PMID: 33425087 PMCID: PMC7780402 DOI: 10.1063/5.0023206] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
3D bioprinting techniques have shown great promise in various fields of tissue engineering and regenerative medicine. Yet, creating a tissue construct that faithfully represents the tightly regulated composition, microenvironment, and function of native tissues is still challenging. Among various factors, biomechanics of bioprinting processes play fundamental roles in determining the ultimate outcome of manufactured constructs. This review provides a comprehensive and detailed overview on various biomechanical factors involved in tissue bioprinting, including those involved in pre, during, and post printing procedures. In preprinting processes, factors including viscosity, osmotic pressure, and injectability are reviewed and their influence on cell behavior during the bioink preparation is discussed, providing a basic guidance for the selection and optimization of bioinks. In during bioprinting processes, we review the key characteristics that determine the success of tissue manufacturing, including the rheological properties and surface tension of the bioink, printing flow rate control, process-induced mechanical forces, and the in situ cross-linking mechanisms. Advanced bioprinting techniques, including embedded and multi-material printing, are explored. For post printing steps, general techniques and equipment that are used for characterizing the biomechanical properties of printed tissue constructs are reviewed. Furthermore, the biomechanical interactions between printed constructs and various tissue/cell types are elaborated for both in vitro and in vivo applications. The review is concluded with an outlook regarding the significance of biomechanical processes in tissue bioprinting, presenting future directions to address some of the key challenges faced by the bioprinting community.
Collapse
Affiliation(s)
- Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Carmen J. Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Lilanni Perez
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Holly Bauser-Heaton
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| | - Vahid Serpooshan
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| |
Collapse
|
19
|
Development of Prediction Model for Conductive Pattern Lines Generated Through Positive Displacement Microdispensing System Using Artificial Neural Network. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05103-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Ning L, Mehta R, Cao C, Theus A, Tomov M, Zhu N, Weeks ER, Bauser-Heaton H, Serpooshan V. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44563-44577. [PMID: 32966746 DOI: 10.1021/acsami.0c15078] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) bioprinting of hydrogel-based constructs at adequate consistency and reproducibility can be obtained through a compromise between the hydrogel's inherent instability and printing fidelity. There is an increasing demand to develop bioprinting modalities that enable high-fidelity fabrication of 3D hydrogel structures that closely correspond to the envisioned design. In this work, we performed a systematic, in-depth characterization and optimization of embedded 3D bioprinting to create 3D gelatin-methacryloyl (gelMA) structures with highly controlled fidelity using Carbopol as suspension bath. The role of various embedded printing process parameters in bioprinting fidelity was investigated using a combination of experimental and theoretical approaches. We examined the effect of rheological properties of gelMA and Carbopol at varying concentrations, as well as printing conditions on the volumetric flow rate of gelMA bioink. Printing speed was examined and optimized to successfully print gelMA into the support bath at varying Carbopol concentrations. Printing fidelity was characterized in terms of printed strand diameter, uniformity, angle, and area. The optimal Carbopol solution that retained filament shape at highest fidelity was determined. The efficacy of developed bioprinting approach was then demonstrated by fabricating 3D hydrogel constructs with varying geometries and visualized using an advanced synchrotron-based imaging technique. We also investigated the influence of the Carbopol medium on cross-linking and the resulting stiffness of gelMA constructs. Finally, in vitro cytotoxicity of the developed bioprinting approach was assessed by printing human umbilical vein endothelial cells encapsulated in the gelMA bioink. These results demonstrate the significance of the close interplay between bioink-support bath rheology and printing parameters and help to establish an optimized workflow for creating 3D hydrogel structures with high fidelity and cytocompatibility via embedded bioprinting techniques. This robust platform could further expand the application of bioprinted soft tissue constructs in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Riya Mehta
- Department of Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Cong Cao
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Andrea Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Martin Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Ning Zhu
- Canadian Light Source, Saskatoon, S7N 2 V3 Saskatchewan, Canada
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
- Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, Georgia 30322 United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Sears C, Mondragon E, Richards ZI, Sears N, Chimene D, McNeill EP, Gregory CA, Gaharwar AK, Kaunas R. Conditioning of 3D Printed Nanoengineered Ionic-Covalent Entanglement Scaffolds with iP-hMSCs Derived Matrix. Adv Healthc Mater 2020; 9:e1901580. [PMID: 32147960 PMCID: PMC7500865 DOI: 10.1002/adhm.201901580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/30/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Additive manufacturing is a promising method for producing customized 3D bioactive constructs for regenerative medicine. Here, 3D printed highly osteogenic scaffolds using nanoengineered ionic-covalent entanglement ink (NICE) for bone tissue engineering are reported. This NICE ink consists of ionic-covalent entanglement reinforced with Laponite, a 2D nanosilicate (nSi) clay, allowing for the printing of anatomic-sized constructs with high accuracy. The 3D printed structure is able to maintain high structural stability in physiological conditions without any significant swelling or deswelling. The presence of nSi imparts osteoinductive characteristics to the NICE scaffolds, which is further augmented by depositing pluripotent stem cell-derived extracellular matrix (ECM) on the scaffolds. This is achieved by stimulating human induced pluripotent stem cell-derived mesenchymal stem cells (iP-hMSCs) with 2-chloro-5-nitrobenzanilide, a PPARγ inhibitor that enhances Wnt pathway, resulting in the deposition of an ECM characterized by high levels of collagens VI and XII found in anabolic bone. The osteoinductive characteristics of these bioconditioned NICE (bNICE) scaffolds is demonstrated through osteogenic differentiation of bone marrow derived human mesenchymal stem cells. A significant increase in the expression of osteogenic gene markers as well as mineralized ECM are observed on bioconditioned NICE (bNICE) scaffolds compared to bare scaffolds (NICE). The bioconditioned 3D printed scaffolds provide a unique strategy to design personalized bone grafts for in situ bone regeneration.
Collapse
Affiliation(s)
- Candice Sears
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Eli Mondragon
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Zachary I Richards
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Nick Sears
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - David Chimene
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Eoin P McNeill
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| |
Collapse
|
22
|
Ning L, Yang B, Mohabatpour F, Betancourt N, Sarker MD, Papagerakis P, Chen X. Process-induced cell damage: pneumatic versus screw-driven bioprinting. Biofabrication 2020; 12:025011. [DOI: 10.1088/1758-5090/ab5f53] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Soltan N, Ning L, Mohabatpour F, Papagerakis P, Chen X. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. ACS Biomater Sci Eng 2019; 5:2976-2987. [PMID: 33405600 DOI: 10.1021/acsbiomaterials.9b00167] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) bioprinting is a promising technique used to fabricate scaffolds from hydrogels with living cells. However, the printability of hydrogels in bioprinting has not been adequately studied. The aim of this study was to quantitatively characterize the printability and cell viability of alginate dialdehyde (ADA)-gelatin (Gel) hydrogels for bioprinting. ADA-Gel hydrogels of various concentrations were synthesized and characterized using Fourier transform infrared spectroscopy, along with rheological tests for measuring storage and loss moduli. Scaffolds (with an area of 11 × 11 mm) of 1, 2, and 13 layers were fabricated from ADA-Gel hydrogels using a 3D-bioplotter under printing conditions with and without the use of cross-linker, respectively, at room temperature and at 4 °C. Scaffolds were then quantitatively assessed in terms of the minimum printing pressure, quality of strands and pores, and structural integrity, which were combined together for the characterization of ADA-Gel printability. For the assessment of cell viability, scaffolds were bioprinted from ADA-Gel hydrogels with human umbilical vein endothelial cells (HUVECs) and rat Schwann cells and were then examined at day 7 with live/dead assay. HUVECs and Schwann cells were used as models to demonstrate biocompatibility for potential angiogenesis and nerve repair applications, respectively. Our results illustrated that ADA-Gel hydrogels with a loss tangent (ratio of loss modulus over storage modulus) between 0.24 and 0.28 could be printed in cross-linker with the best printability featured by uniform strands, square pores, and good structural integrity. Additionally, our results revealed that ADA-Gel hydrogels with an appropriate printability could maintain cell viability over 7 days. Combined together, this study presents a novel method to characterize the printability of hydrogels in bioprinting and illustrates that ADA-Gel hydrogels can be synthesized and bioprinted with good printability and cell viability, thus demonstrating their suitability for bioprinting scaffolds in tissue engineering applications.
Collapse
Affiliation(s)
| | | | | | - Petros Papagerakis
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, Saskatchewan S7N5E4, Canada
| | | |
Collapse
|
24
|
Zhao D, Zhou R, Sun J, Li H, Jin Y. Experimental study of polymeric stent fabrication using homemade 3D printing system. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyang Zhao
- Department of Mechanical EngineeringDalian University of Technology Dalian Liaoning 116023 China
| | - Ruiqi Zhou
- Department of Mechanical EngineeringDalian University of Technology Dalian Liaoning 116023 China
| | - Jianxing Sun
- Department of Mechanical Engineering and Materials ScienceWashington University in Saint Louis St. Louis Missouri 63130
| | - Hongxia Li
- Department of Mechanical EngineeringDalian University of Technology Dalian Liaoning 116023 China
| | - Yifei Jin
- Department of Mechanical and Aerospace EngineeringUniversity of Florida Gainesville Florida 32611
| |
Collapse
|
25
|
Yang N, Chen H, Han H, Shen Y, Gu S, He Y, Guo S. 3D printing and coating to fabricate a hollow bullet-shaped implant with porous surface for controlled cytoxan release. Int J Pharm 2018; 552:91-98. [PMID: 30244147 DOI: 10.1016/j.ijpharm.2018.09.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
Intratumoral implants have aroused great interests for local chemotherapy of cancer, however, how to efficiently control drug release from implants is still a great challenge. Herein, we designed and prepared a new hollow bullet-shaped implant with porous surface by 3D printing, loaded chemotherapeutic agent cytoxan (CTX) with tetradecyl alcohol or lecithin as matrix and coated it with poly (lactic acid) to obtain a CTX implant, which has a highly tuned drug release property with a drug release time from 4 h to more than 1 month. The drug release from the implant can be easily controlled by changing pore sizes, kinds of matrices, and coating thickness.
Collapse
Affiliation(s)
- Ning Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huanfei Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Huijie Han
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Song Gu
- Shanghai Children's Medical Center, Department of Surgery, School of Medicine, Shanghai Jiao Tong University, China.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|